mame/src/emu/tilemap.c
2012-01-29 16:34:26 +00:00

1521 lines
46 KiB
C

/***************************************************************************
tilemap.c
Generic tilemap management system.
****************************************************************************
Copyright Aaron Giles
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name 'MAME' nor the names of its contributors may be
used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***************************************************************************/
#include "emu.h"
#include "profiler.h"
//**************************************************************************
// INLINE FUNCTIONS
//**************************************************************************
//-------------------------------------------------
// effective_rowscroll - return the effective
// rowscroll value for a given index, taking into
// account tilemap flip states
//-------------------------------------------------
inline INT32 tilemap_t::effective_rowscroll(int index, UINT32 screen_width)
{
// if we're flipping vertically, adjust the row number
if (m_attributes & TILEMAP_FLIPY)
index = m_scrollrows - 1 - index;
// adjust final result based on the horizontal flip and dx values
INT32 value;
if (!(m_attributes & TILEMAP_FLIPX))
value = m_dx - m_rowscroll[index];
else
value = screen_width - m_width - (m_dx_flipped - m_rowscroll[index]);
// clamp to 0..width
if (value < 0)
value = m_width - (-value) % m_width;
else
value %= m_width;
return value;
}
//-------------------------------------------------
// effective_colscroll - return the effective
// colscroll value for a given index, taking into
// account tilemap flip states
//-------------------------------------------------
inline INT32 tilemap_t::effective_colscroll(int index, UINT32 screen_height)
{
// if we're flipping horizontally, adjust the column number
if (m_attributes & TILEMAP_FLIPX)
index = m_scrollcols - 1 - index;
// adjust final result based on the vertical flip and dx values
INT32 value;
if (!(m_attributes & TILEMAP_FLIPY))
value = m_dy - m_colscroll[index];
else
value = screen_height - m_height - (m_dy_flipped - m_colscroll[index]);
// clamp to 0..height
if (value < 0)
value = m_height - (-value) % m_height;
else
value %= m_height;
return value;
}
//-------------------------------------------------
// gfx_tiles_changed - return TRUE if any
// gfx_elements used by this tilemap have
// changed
//-------------------------------------------------
inline bool tilemap_t::gfx_elements_changed()
{
UINT32 usedmask = m_gfx_used;
bool isdirty = false;
// iterate over all used gfx types and set the dirty flag if any of them have changed
for (int gfxnum = 0; usedmask != 0; usedmask >>= 1, gfxnum++)
if ((usedmask & 1) != 0)
if (m_gfx_dirtyseq[gfxnum] != machine().gfx[gfxnum]->dirtyseq)
{
m_gfx_dirtyseq[gfxnum] = machine().gfx[gfxnum]->dirtyseq;
isdirty = true;
}
return isdirty;
}
//**************************************************************************
// SCANLINE RASTERIZERS
//**************************************************************************
//-------------------------------------------------
// scanline_draw_opaque_null - draw to a NULL
// bitmap, setting priority only
//-------------------------------------------------
inline void tilemap_t::scanline_draw_opaque_null(int count, UINT8 *pri, UINT32 pcode)
{
// skip entirely if not changing priority
if (pcode == 0xff00)
return;
// update priority across the scanline
for (int i = 0; i < count; i++)
pri[i] = (pri[i] & (pcode >> 8)) | pcode;
}
//-------------------------------------------------
// scanline_draw_masked_null - draw to a NULL
// bitmap using a mask, setting priority only
//-------------------------------------------------
inline void tilemap_t::scanline_draw_masked_null(const UINT8 *maskptr, int mask, int value, int count, UINT8 *pri, UINT32 pcode)
{
// skip entirely if not changing priority
if (pcode == 0xff00)
return;
// update priority across the scanline, checking the mask
for (int i = 0; i < count; i++)
if ((maskptr[i] & mask) == value)
pri[i] = (pri[i] & (pcode >> 8)) | pcode;
}
//-------------------------------------------------
// scanline_draw_opaque_ind16 - draw to a 16bpp
// indexed bitmap
//-------------------------------------------------
inline void tilemap_t::scanline_draw_opaque_ind16(UINT16 *dest, const UINT16 *source, int count, UINT8 *pri, UINT32 pcode)
{
// special case for no palette offset
int pal = pcode >> 16;
if (pal == 0)
{
// use memcpy which should be well-optimized for the platform
memcpy(dest, source, count * 2);
// skip the rest if not changing priority
if (pcode == 0xff00)
return;
// update priority across the scanline
for (int i = 0; i < count; i++)
pri[i] = (pri[i] & (pcode >> 8)) | pcode;
}
// priority case
else if ((pcode & 0xffff) != 0xff00)
{
for (int i = 0; i < count; i++)
{
dest[i] = source[i] + pal;
pri[i] = (pri[i] & (pcode >> 8)) | pcode;
}
}
// no priority case
else
{
for (int i = 0; i < count; i++)
dest[i] = source[i] + pal;
}
}
//-------------------------------------------------
// scanline_draw_masked_ind16 - draw to a 16bpp
// indexed bitmap using a mask
//-------------------------------------------------
inline void tilemap_t::scanline_draw_masked_ind16(UINT16 *dest, const UINT16 *source, const UINT8 *maskptr, int mask, int value, int count, UINT8 *pri, UINT32 pcode)
{
int pal = pcode >> 16;
// priority case
if ((pcode & 0xffff) != 0xff00)
{
for (int i = 0; i < count; i++)
if ((maskptr[i] & mask) == value)
{
dest[i] = source[i] + pal;
pri[i] = (pri[i] & (pcode >> 8)) | pcode;
}
}
// no priority case
else
{
for (int i = 0; i < count; i++)
if ((maskptr[i] & mask) == value)
dest[i] = source[i] + pal;
}
}
//-------------------------------------------------
// scanline_draw_opaque_rgb32 - draw to a 32bpp
// RGB bitmap
//-------------------------------------------------
inline void tilemap_t::scanline_draw_opaque_rgb32(UINT32 *dest, const UINT16 *source, int count, const pen_t *pens, UINT8 *pri, UINT32 pcode)
{
const pen_t *clut = &pens[pcode >> 16];
// priority case
if ((pcode & 0xffff) != 0xff00)
{
for (int i = 0; i < count; i++)
{
dest[i] = clut[source[i]];
pri[i] = (pri[i] & (pcode >> 8)) | pcode;
}
}
// no priority case
else
{
for (int i = 0; i < count; i++)
dest[i] = clut[source[i]];
}
}
//-------------------------------------------------
// scanline_draw_masked_rgb32 - draw to a 32bpp
// RGB bitmap using a mask
//-------------------------------------------------
inline void tilemap_t::scanline_draw_masked_rgb32(UINT32 *dest, const UINT16 *source, const UINT8 *maskptr, int mask, int value, int count, const pen_t *pens, UINT8 *pri, UINT32 pcode)
{
const pen_t *clut = &pens[pcode >> 16];
// priority case
if ((pcode & 0xffff) != 0xff00)
{
for (int i = 0; i < count; i++)
if ((maskptr[i] & mask) == value)
{
dest[i] = clut[source[i]];
pri[i] = (pri[i] & (pcode >> 8)) | pcode;
}
}
// no priority case
else
{
for (int i = 0; i < count; i++)
if ((maskptr[i] & mask) == value)
dest[i] = clut[source[i]];
}
}
//-------------------------------------------------
// scanline_draw_opaque_rgb32_alpha - draw to a
// 32bpp RGB bitmap with alpha blending
//-------------------------------------------------
inline void tilemap_t::scanline_draw_opaque_rgb32_alpha(UINT32 *dest, const UINT16 *source, int count, const pen_t *pens, UINT8 *pri, UINT32 pcode, UINT8 alpha)
{
const pen_t *clut = &pens[pcode >> 16];
// priority case
if ((pcode & 0xffff) != 0xff00)
{
for (int i = 0; i < count; i++)
{
dest[i] = alpha_blend_r32(dest[i], clut[source[i]], alpha);
pri[i] = (pri[i] & (pcode >> 8)) | pcode;
}
}
// no priority case
else
{
for (int i = 0; i < count; i++)
dest[i] = alpha_blend_r32(dest[i], clut[source[i]], alpha);
}
}
//-------------------------------------------------
// scanline_draw_masked_rgb32_alpha - draw to a
// 32bpp RGB bitmap using a mask and alpha
// blending
//-------------------------------------------------
inline void tilemap_t::scanline_draw_masked_rgb32_alpha(UINT32 *dest, const UINT16 *source, const UINT8 *maskptr, int mask, int value, int count, const pen_t *pens, UINT8 *pri, UINT32 pcode, UINT8 alpha)
{
const pen_t *clut = &pens[pcode >> 16];
// priority case
if ((pcode & 0xffff) != 0xff00)
{
for (int i = 0; i < count; i++)
if ((maskptr[i] & mask) == value)
{
dest[i] = alpha_blend_r32(dest[i], clut[source[i]], alpha);
pri[i] = (pri[i] & (pcode >> 8)) | pcode;
}
}
// no priority case
else
{
for (int i = 0; i < count; i++)
if ((maskptr[i] & mask) == value)
dest[i] = alpha_blend_r32(dest[i], clut[source[i]], alpha);
}
}
//**************************************************************************
// TILEMAP CREATION AND CONFIGURATION
//**************************************************************************
//-------------------------------------------------
// tilemap_create_common - shared creation
// function
//-------------------------------------------------
tilemap_t::tilemap_t(tilemap_manager &manager, tilemap_get_info_delegate tile_get_info, tilemap_mapper_delegate mapper, int tilewidth, int tileheight, int cols, int rows)
: m_next(NULL),
m_rows(rows),
m_cols(cols),
m_tilewidth(tilewidth),
m_tileheight(tileheight),
m_width(cols * tilewidth),
m_height(rows * tileheight),
m_mapper(mapper),
m_memory_to_logical(NULL),
m_max_logical_index(0),
m_logical_to_memory(NULL),
m_max_memory_index(0),
m_tile_get_info(tile_get_info),
m_user_data(NULL),
m_enable(true),
m_attributes(0),
m_all_tiles_dirty(true),
m_all_tiles_clean(false),
m_palette_offset(0),
m_pen_data_offset(0),
m_gfx_used(0),
m_scrollrows(1),
m_scrollcols(1),
m_rowscroll(auto_alloc_array_clear(manager.machine(), INT32, m_height)),
m_colscroll(auto_alloc_array_clear(manager.machine(), INT32, m_width)),
m_dx(0),
m_dx_flipped(0),
m_dy(0),
m_dy_flipped(0),
m_pixmap(m_width, m_height),
m_flagsmap(m_width, m_height),
m_tileflags(NULL),
m_manager(manager)
{
// reset internal arrays
memset(m_gfx_dirtyseq, 0, sizeof(m_gfx_dirtyseq));
memset(m_pen_to_flags, 0, sizeof(m_pen_to_flags));
// create the initial mappings
mappings_create();
// set up the default pen mask
memset(&m_tileinfo, 0, sizeof(m_tileinfo));
m_tileinfo.pen_mask = 0xff;
m_tileinfo.gfxnum = 0xff;
// allocate transparency mapping data
m_tileflags = auto_alloc_array(machine(), UINT8, m_max_logical_index);
for (int group = 0; group < TILEMAP_NUM_GROUPS; group++)
map_pens_to_layer(group, 0, 0, TILEMAP_PIXEL_LAYER0);
// save relevant state
int instance = manager.alloc_instance();
machine().save().save_item("tilemap", NULL, instance, NAME(m_enable));
machine().save().save_item("tilemap", NULL, instance, NAME(m_attributes));
machine().save().save_item("tilemap", NULL, instance, NAME(m_palette_offset));
machine().save().save_item("tilemap", NULL, instance, NAME(m_pen_data_offset));
machine().save().save_item("tilemap", NULL, instance, NAME(m_scrollrows));
machine().save().save_item("tilemap", NULL, instance, NAME(m_scrollcols));
machine().save().save_pointer("tilemap", NULL, instance, NAME(m_rowscroll), rows * tileheight);
machine().save().save_pointer("tilemap", NULL, instance, NAME(m_colscroll), cols * tilewidth);
machine().save().save_item("tilemap", NULL, instance, NAME(m_dx));
machine().save().save_item("tilemap", NULL, instance, NAME(m_dx_flipped));
machine().save().save_item("tilemap", NULL, instance, NAME(m_dy));
machine().save().save_item("tilemap", NULL, instance, NAME(m_dy_flipped));
// reset everything after a load
machine().save().register_postload(save_prepost_delegate(FUNC(tilemap_t::postload), this));
}
//-------------------------------------------------
// ~tilemap_t - destructor
//-------------------------------------------------
tilemap_t::~tilemap_t()
{
}
//-------------------------------------------------
// mark_tile_dirty - mark a single tile dirty
// based on its memory index
//-------------------------------------------------
void tilemap_t::mark_tile_dirty(tilemap_memory_index memindex)
{
// only mark if within range
if (memindex < m_max_memory_index)
{
// there may be no logical index for a given memory index
logical_index logindex = m_memory_to_logical[memindex];
if (logindex != INVALID_LOGICAL_INDEX)
{
m_tileflags[logindex] = TILE_FLAG_DIRTY;
m_all_tiles_clean = false;
}
}
}
//-------------------------------------------------
// map_pens_to_layer - specify the mapping of one
// or more pens (where (<pen> & mask) == pen) to
// a layer
//-------------------------------------------------
void tilemap_t::map_pens_to_layer(int group, pen_t pen, pen_t mask, UINT8 layermask)
{
assert(group < TILEMAP_NUM_GROUPS);
assert((layermask & TILEMAP_PIXEL_CATEGORY_MASK) == 0);
// we start at the index where (pen & mask) == pen, and all other bits are 0
pen_t start = pen & mask;
// we stop at the index where (pen & mask) == pen, and all other bits are 1
pen_t stop = start | ~mask;
// clamp to the number of entries actually there
stop = MIN(stop, MAX_PEN_TO_FLAGS - 1);
// iterate and set
UINT8 *array = m_pen_to_flags + group * MAX_PEN_TO_FLAGS;
bool changed = false;
for (pen_t cur = start; cur <= stop; cur++)
if ((cur & mask) == pen && array[cur] != layermask)
{
changed = true;
array[cur] = layermask;
}
// everything gets dirty if anything changed
if (changed)
mark_all_dirty();
}
//-------------------------------------------------
// set_transparent_pen - set a single transparent
// pen into the tilemap, mapping all other pens
// to layer 0
//-------------------------------------------------
void tilemap_t::set_transparent_pen(pen_t pen)
{
// reset the whole pen map to opaque
map_pens_to_layer(0, 0, 0, TILEMAP_PIXEL_LAYER0);
// set the single pen to transparent
map_pen_to_layer(0, pen, TILEMAP_PIXEL_TRANSPARENT);
}
//-------------------------------------------------
// set_transmask - set up the first 32 pens using
// a foreground mask (mapping to layer 0) and a
// background mask (mapping to layer 1)
//-------------------------------------------------
void tilemap_t::set_transmask(int group, UINT32 fgmask, UINT32 bgmask)
{
// iterate over all 32 pens specified
for (pen_t pen = 0; pen < 32; pen++)
{
UINT8 fgbits = ((fgmask >> pen) & 1) ? TILEMAP_PIXEL_TRANSPARENT : TILEMAP_PIXEL_LAYER0;
UINT8 bgbits = ((bgmask >> pen) & 1) ? TILEMAP_PIXEL_TRANSPARENT : TILEMAP_PIXEL_LAYER1;
map_pen_to_layer(group, pen, fgbits | bgbits);
}
}
//**************************************************************************
// COMMON LOGICAL-TO-MEMORY MAPPERS
//**************************************************************************
//-------------------------------------------------
// tilemap_scan_rows
// tilemap_scan_rows_flip_x
// tilemap_scan_rows_flip_y
// tilemap_scan_rows_flip_xy - scan in row-major
// order with optional flipping
//-------------------------------------------------
TILEMAP_MAPPER( tilemap_scan_rows )
{
return row * num_cols + col;
}
TILEMAP_MAPPER( tilemap_scan_rows_flip_x )
{
return row * num_cols + (num_cols - 1 - col);
}
TILEMAP_MAPPER( tilemap_scan_rows_flip_y )
{
return (num_rows - 1 - row) * num_cols + col;
}
TILEMAP_MAPPER( tilemap_scan_rows_flip_xy )
{
return (num_rows - 1 - row) * num_cols + (num_cols - 1 - col);
}
//-------------------------------------------------
// tilemap_scan_cols
// tilemap_scan_cols_flip_x
// tilemap_scan_cols_flip_y
// tilemap_scan_cols_flip_xy - scan in column-
// major order with optional flipping
//-------------------------------------------------
TILEMAP_MAPPER( tilemap_scan_cols )
{
return col * num_rows + row;
}
TILEMAP_MAPPER( tilemap_scan_cols_flip_x )
{
return (num_cols - 1 - col) * num_rows + row;
}
TILEMAP_MAPPER( tilemap_scan_cols_flip_y )
{
return col * num_rows + (num_rows - 1 - row);
}
TILEMAP_MAPPER( tilemap_scan_cols_flip_xy )
{
return (num_cols - 1 - col) * num_rows + (num_rows - 1 - row);
}
//-------------------------------------------------
// postload - after loading a save state
// invalidate everything
//-------------------------------------------------
void tilemap_t::postload()
{
mappings_update();
}
//**************************************************************************
// LOGICAL <-> MEMORY INDEX MAPPING
//**************************************************************************
//-------------------------------------------------
// mappings_create - allocate memory for the
// mapping tables and compute their extents
//-------------------------------------------------
void tilemap_t::mappings_create()
{
// compute the maximum logical index
m_max_logical_index = m_rows * m_cols;
// compute the maximum memory index
m_max_memory_index = 0;
for (UINT32 row = 0; row < m_rows; row++)
for (UINT32 col = 0; col < m_cols; col++)
{
tilemap_memory_index memindex = memory_index(col, row);
m_max_memory_index = MAX(m_max_memory_index, memindex);
}
m_max_memory_index++;
// allocate the necessary mappings
m_memory_to_logical = auto_alloc_array(machine(), logical_index, m_max_memory_index);
m_logical_to_memory = auto_alloc_array(machine(), tilemap_memory_index, m_max_logical_index);
// update the mappings
mappings_update();
}
//-------------------------------------------------
// mappings_update - update the mappings after
// a major change (flip x/y changes)
//-------------------------------------------------
void tilemap_t::mappings_update()
{
// initialize all the mappings to invalid values
memset(m_memory_to_logical, 0xff, m_max_memory_index * sizeof(m_memory_to_logical[0]));
// now iterate over all logical indexes and populate the memory index
for (logical_index logindex = 0; logindex < m_max_logical_index; logindex++)
{
UINT32 logical_col = logindex % m_cols;
UINT32 logical_row = logindex / m_cols;
tilemap_memory_index memindex = memory_index(logical_col, logical_row);
// apply tilemap flip to get the final location to store
if (m_attributes & TILEMAP_FLIPX)
logical_col = (m_cols - 1) - logical_col;
if (m_attributes & TILEMAP_FLIPY)
logical_row = (m_rows - 1) - logical_row;
UINT32 flipped_logindex = logical_row * m_cols + logical_col;
// fill in entries in both arrays
m_memory_to_logical[memindex] = flipped_logindex;
m_logical_to_memory[flipped_logindex] = memindex;
}
// mark the whole tilemap dirty
mark_all_dirty();
}
//**************************************************************************
// TILE RENDERING
//**************************************************************************
inline void tilemap_t::realize_all_dirty_tiles()
{
// if all the tiles are marked dirty, or something in the gfx has changed,
// flush the dirty status to all tiles
if (m_all_tiles_dirty || gfx_elements_changed())
{
memset(m_tileflags, TILE_FLAG_DIRTY, m_max_logical_index);
m_all_tiles_dirty = false;
m_gfx_used = 0;
}
}
//-------------------------------------------------
// pixmap_update - update the entire pixmap
//-------------------------------------------------
void tilemap_t::pixmap_update()
{
// if the graphics changed, we need to mark everything dirty
if (gfx_elements_changed())
mark_all_dirty();
// if everything is clean, do nothing
if (m_all_tiles_clean)
return;
g_profiler.start(PROFILER_TILEMAP_DRAW);
// flush the dirty state to all tiles as appropriate
realize_all_dirty_tiles();
// iterate over rows and columns
logical_index logindex = 0;
for (int row = 0; row < m_rows; row++)
for (int col = 0; col < m_cols; col++, logindex++)
if (m_tileflags[logindex] == TILE_FLAG_DIRTY)
tile_update(logindex, col, row);
// mark it all clean
m_all_tiles_clean = true;
g_profiler.stop();
}
//-------------------------------------------------
// tile_update - update a single dirty tile
//-------------------------------------------------
void tilemap_t::tile_update(logical_index logindex, UINT32 col, UINT32 row)
{
g_profiler.start(PROFILER_TILEMAP_UPDATE);
// call the get info callback for the associated memory index
tilemap_memory_index memindex = m_logical_to_memory[logindex];
m_tile_get_info(m_tileinfo, memindex, m_user_data);
// apply the global tilemap flip to the returned flip flags
UINT32 flags = m_tileinfo.flags ^ (m_attributes & 0x03);
// draw the tile, using either direct or transparent
UINT32 x0 = m_tilewidth * col;
UINT32 y0 = m_tileheight * row;
m_tileflags[logindex] = tile_draw(m_tileinfo.pen_data + m_pen_data_offset, x0, y0,
m_tileinfo.palette_base, m_tileinfo.category, m_tileinfo.group, flags, m_tileinfo.pen_mask);
// if mask data is specified, apply it
if ((flags & (TILE_FORCE_LAYER0 | TILE_FORCE_LAYER1 | TILE_FORCE_LAYER2)) == 0 && m_tileinfo.mask_data != NULL)
m_tileflags[logindex] = tile_apply_bitmask(m_tileinfo.mask_data, x0, y0, m_tileinfo.category, flags);
// track which gfx have been used for this tilemap
if (m_tileinfo.gfxnum != 0xff && (m_gfx_used & (1 << m_tileinfo.gfxnum)) == 0)
{
m_gfx_used |= 1 << m_tileinfo.gfxnum;
m_gfx_dirtyseq[m_tileinfo.gfxnum] = machine().gfx[m_tileinfo.gfxnum]->dirtyseq;
}
g_profiler.stop();
}
//-------------------------------------------------
// tile_draw - draw a single tile to the
// tilemap's internal pixmap, using the pen as
// the pen_to_flags lookup value, and adding
// the palette_base
//-------------------------------------------------
UINT8 tilemap_t::tile_draw(const UINT8 *pendata, UINT32 x0, UINT32 y0, UINT32 palette_base, UINT8 category, UINT8 group, UINT8 flags, UINT8 pen_mask)
{
// OR in the force layer flags
category |= flags & (TILE_FORCE_LAYER0 | TILE_FORCE_LAYER1 | TILE_FORCE_LAYER2);
// if we're vertically flipped, point to the bottom row and work backwards
int dy0 = 1;
if (flags & TILE_FLIPY)
{
y0 += m_tileheight - 1;
dy0 = -1;
}
// if we're horizontally flipped, point to the rightmost column and work backwards
int dx0 = 1;
if (flags & TILE_FLIPX)
{
x0 += m_tilewidth - 1;
dx0 = -1;
}
// iterate over rows
const UINT8 *penmap = m_pen_to_flags + group * MAX_PEN_TO_FLAGS;
UINT8 andmask = ~0, ormask = 0;
for (int ty = 0; ty < m_tileheight; ty++)
{
UINT16 *pixptr = &m_pixmap.pix16(y0, x0);
UINT8 *flagsptr = &m_flagsmap.pix8(y0, x0);
// pre-advance to the next row
y0 += dy0;
// 8bpp data
for (int tx = 0, xoffs = 0; tx < m_tilewidth; tx++, xoffs += dx0)
{
UINT8 pen = (*pendata++) & pen_mask;
UINT8 map = penmap[pen];
pixptr[xoffs] = palette_base + pen;
flagsptr[xoffs] = map | category;
andmask &= map;
ormask |= map;
}
}
return andmask ^ ormask;
}
//-------------------------------------------------
// tile_apply_bitmask - apply a bitmask to an
// already-rendered tile by modifying the
// flagsmap appropriately
//-------------------------------------------------
UINT8 tilemap_t::tile_apply_bitmask(const UINT8 *maskdata, UINT32 x0, UINT32 y0, UINT8 category, UINT8 flags)
{
// if we're vertically flipped, point to the bottom row and work backwards
int dy0 = 1;
if (flags & TILE_FLIPY)
{
y0 += m_tileheight - 1;
dy0 = -1;
}
// if we're horizontally flipped, point to the rightmost column and work backwards
int dx0 = 1;
if (flags & TILE_FLIPX)
{
x0 += m_tilewidth - 1;
dx0 = -1;
}
// iterate over rows
UINT8 andmask = ~0, ormask = 0;
int bitoffs = 0;
for (int ty = 0; ty < m_tileheight; ty++)
{
// pre-advance to the next row
UINT8 *flagsptr = &m_flagsmap.pix8(y0, x0);
y0 += dy0;
// anywhere the bitmask is 0 should be transparent
for (int tx = 0, xoffs = 0; tx < m_tilewidth; tx++, xoffs += dx0)
{
UINT8 map = flagsptr[xoffs];
if ((maskdata[bitoffs / 8] & (0x80 >> (bitoffs & 7))) == 0)
map = flagsptr[xoffs] = TILEMAP_PIXEL_TRANSPARENT | category;
andmask &= map;
ormask |= map;
bitoffs++;
}
}
return andmask ^ ormask;
}
//**************************************************************************
// DRAWING HELPERS
//**************************************************************************
//-------------------------------------------------
// configure_blit_parameters - fill in the
// standard blit parameters based on the input
// data; this code is shared by normal, roz,
// and indexed drawing code
//-------------------------------------------------
void tilemap_t::configure_blit_parameters(blit_parameters &blit, const rectangle &cliprect, UINT32 flags, UINT8 priority, UINT8 priority_mask)
{
// set the target bitmap
blit.cliprect = cliprect;
// set the priority code and alpha
blit.tilemap_priority_code = priority | (priority_mask << 8) | (m_palette_offset << 16);
blit.alpha = (flags & TILEMAP_DRAW_ALPHA_FLAG) ? (flags >> 24) : 0xff;
// tile priority; unless otherwise specified, draw anything in layer 0
blit.mask = TILEMAP_PIXEL_CATEGORY_MASK;
blit.value = flags & TILEMAP_PIXEL_CATEGORY_MASK;
// if no layers specified, draw layer 0
if ((flags & (TILEMAP_DRAW_LAYER0 | TILEMAP_DRAW_LAYER1 | TILEMAP_DRAW_LAYER2)) == 0)
flags |= TILEMAP_DRAW_LAYER0;
// OR in the bits from the draw masks
blit.mask |= flags & (TILEMAP_DRAW_LAYER0 | TILEMAP_DRAW_LAYER1 | TILEMAP_DRAW_LAYER2);
blit.value |= flags & (TILEMAP_DRAW_LAYER0 | TILEMAP_DRAW_LAYER1 | TILEMAP_DRAW_LAYER2);
// for all-opaque rendering, don't check any of the layer bits
if (flags & TILEMAP_DRAW_OPAQUE)
{
blit.mask &= ~(TILEMAP_PIXEL_LAYER0 | TILEMAP_PIXEL_LAYER1 | TILEMAP_PIXEL_LAYER2);
blit.value &= ~(TILEMAP_PIXEL_LAYER0 | TILEMAP_PIXEL_LAYER1 | TILEMAP_PIXEL_LAYER2);
}
// don't check category if requested
if (flags & TILEMAP_DRAW_ALL_CATEGORIES)
{
blit.mask &= ~TILEMAP_PIXEL_CATEGORY_MASK;
blit.value &= ~TILEMAP_PIXEL_CATEGORY_MASK;
}
}
//-------------------------------------------------
// draw_common - draw a tilemap to the
// destination with clipping; pixels apply
// priority/priority_mask to the priority bitmap
//-------------------------------------------------
template<class _BitmapClass>
void tilemap_t::draw_common(_BitmapClass &dest, const rectangle &cliprect, UINT32 flags, UINT8 priority, UINT8 priority_mask)
{
// skip if disabled
if (!m_enable)
return;
g_profiler.start(PROFILER_TILEMAP_DRAW);
// configure the blit parameters based on the input parameters
blit_parameters blit;
configure_blit_parameters(blit, cliprect, flags, priority, priority_mask);
// flush the dirty state to all tiles as appropriate
realize_all_dirty_tiles();
UINT32 width = machine().primary_screen->width();
UINT32 height = machine().primary_screen->height();
// XY scrolling playfield
if (m_scrollrows == 1 && m_scrollcols == 1)
{
// iterate to handle wraparound
int scrollx = effective_rowscroll(0, width);
int scrolly = effective_colscroll(0, height);
for (int ypos = scrolly - m_height; ypos <= blit.cliprect.max_y; ypos += m_height)
for (int xpos = scrollx - m_width; xpos <= blit.cliprect.max_x; xpos += m_width)
draw_instance(dest, blit, xpos, ypos);
}
// scrolling rows + vertical scroll
else if (m_scrollcols == 1)
{
const rectangle original_cliprect = blit.cliprect;
// iterate over Y to handle wraparound
int rowheight = m_height / m_scrollrows;
int scrolly = effective_colscroll(0, height);
for (int ypos = scrolly - m_height; ypos <= original_cliprect.max_y; ypos += m_height)
{
int const firstrow = MAX((original_cliprect.min_y - ypos) / rowheight, 0);
int const lastrow = MIN((original_cliprect.max_y - ypos) / rowheight, m_scrollrows - 1);
// iterate over rows in the tilemap
int nextrow;
for (int currow = firstrow; currow <= lastrow; currow = nextrow)
{
// scan forward until we find a non-matching row
int scrollx = effective_rowscroll(currow, width);
for (nextrow = currow + 1; nextrow <= lastrow; nextrow++)
if (effective_rowscroll(nextrow, width) != scrollx)
break;
// skip if disabled
if (scrollx == TILE_LINE_DISABLED)
continue;
// update the cliprect just for this set of rows
blit.cliprect.min_y = currow * rowheight + ypos;
blit.cliprect.max_y = nextrow * rowheight - 1 + ypos;
blit.cliprect &= original_cliprect;
// iterate over X to handle wraparound
for (int xpos = scrollx - m_width; xpos <= original_cliprect.max_x; xpos += m_width)
draw_instance(dest, blit, xpos, ypos);
}
}
}
// scrolling columns + horizontal scroll
else if (m_scrollrows == 1)
{
const rectangle original_cliprect = blit.cliprect;
// iterate over columns in the tilemap
int scrollx = effective_rowscroll(0, width);
int colwidth = m_width / m_scrollcols;
int nextcol;
for (int curcol = 0; curcol < m_scrollcols; curcol = nextcol)
{
// scan forward until we find a non-matching column
int scrolly = effective_colscroll(curcol, height);
for (nextcol = curcol + 1; nextcol < m_scrollcols; nextcol++)
if (effective_colscroll(nextcol, height) != scrolly)
break;
// skip if disabled
if (scrolly == TILE_LINE_DISABLED)
continue;
// iterate over X to handle wraparound
for (int xpos = scrollx - m_width; xpos <= original_cliprect.max_x; xpos += m_width)
{
// update the cliprect just for this set of columns
blit.cliprect.min_x = curcol * colwidth + xpos;
blit.cliprect.max_x = nextcol * colwidth - 1 + xpos;
blit.cliprect &= original_cliprect;
// iterate over Y to handle wraparound
for (int ypos = scrolly - m_height; ypos <= original_cliprect.max_y; ypos += m_height)
draw_instance(dest, blit, xpos, ypos);
}
}
}
g_profiler.stop();
}
void tilemap_t::draw(bitmap_ind16 &dest, const rectangle &cliprect, UINT32 flags, UINT8 priority, UINT8 priority_mask)
{ draw_common(dest, cliprect, flags, priority, priority_mask); }
void tilemap_t::draw(bitmap_rgb32 &dest, const rectangle &cliprect, UINT32 flags, UINT8 priority, UINT8 priority_mask)
{ draw_common(dest, cliprect, flags, priority, priority_mask); }
//-------------------------------------------------
// draw_roz - draw a tilemap to the destination
// with clipping and arbitrary rotate/zoom; pixels
// apply priority/priority_mask to the priority
// bitmap
//-------------------------------------------------
template<class _BitmapClass>
void tilemap_t::draw_roz_common(_BitmapClass &dest, const rectangle &cliprect,
UINT32 startx, UINT32 starty, int incxx, int incxy, int incyx, int incyy,
bool wraparound, UINT32 flags, UINT8 priority, UINT8 priority_mask)
{
// notes:
// - startx and starty MUST be UINT32 for calculations to work correctly
// - srcbim_width and height are assumed to be a power of 2 to speed up wraparound
// skip if disabled
if (!m_enable)
return;
// see if this is just a regular render and if so, do a regular render
if (incxx == (1 << 16) && incxy == 0 && incyx == 0 && incyy == (1 << 16) && wraparound)
{
set_scrollx(0, startx >> 16);
set_scrolly(0, starty >> 16);
draw(dest, cliprect, flags, priority, priority_mask);
return;
}
g_profiler.start(PROFILER_TILEMAP_DRAW_ROZ);
// configure the blit parameters
blit_parameters blit;
configure_blit_parameters(blit, cliprect, flags, priority, priority_mask);
// get the full pixmap for the tilemap
pixmap();
// then do the roz copy
draw_roz_core(dest, blit, startx, starty, incxx, incxy, incyx, incyy, wraparound);
g_profiler.stop();
}
void tilemap_t::draw_roz(bitmap_ind16 &dest, const rectangle &cliprect,
UINT32 startx, UINT32 starty, int incxx, int incxy, int incyx, int incyy,
bool wraparound, UINT32 flags, UINT8 priority, UINT8 priority_mask)
{ draw_roz_common(dest, cliprect, startx, starty, incxx, incxy, incyx, incyy, wraparound, flags, priority, priority_mask); }
void tilemap_t::draw_roz(bitmap_rgb32 &dest, const rectangle &cliprect,
UINT32 startx, UINT32 starty, int incxx, int incxy, int incyx, int incyy,
bool wraparound, UINT32 flags, UINT8 priority, UINT8 priority_mask)
{ draw_roz_common(dest, cliprect, startx, starty, incxx, incxy, incyx, incyy, wraparound, flags, priority, priority_mask); }
//-------------------------------------------------
// draw_instance - draw a single instance of the
// tilemap to the internal pixmap at the given
// xpos,ypos
//-------------------------------------------------
template<class _BitmapClass>
void tilemap_t::draw_instance(_BitmapClass &dest, const blit_parameters &blit, int xpos, int ypos)
{
// clip destination coordinates to the tilemap
// note that x2/y2 are exclusive, not inclusive
int x1 = MAX(xpos, blit.cliprect.min_x);
int x2 = MIN(xpos + (int)m_width, blit.cliprect.max_x + 1);
int y1 = MAX(ypos, blit.cliprect.min_y);
int y2 = MIN(ypos + (int)m_height, blit.cliprect.max_y + 1);
// if totally clipped, stop here
if (x1 >= x2 || y1 >= y2)
return;
// look up priority and destination base addresses for y1
bitmap_ind8 &priority_bitmap = machine().priority_bitmap;
UINT8 *priority_baseaddr = &priority_bitmap.pix8(y1, xpos);
typename _BitmapClass::pixel_t *dest_baseaddr = NULL;
int dest_rowpixels = 0;
if (dest.valid())
{
dest_rowpixels = dest.rowpixels();
dest_baseaddr = &dest.pix(y1, xpos);
}
// convert screen coordinates to source tilemap coordinates
x1 -= xpos;
y1 -= ypos;
x2 -= xpos;
y2 -= ypos;
// get tilemap pixels
const UINT16 *source_baseaddr = &m_pixmap.pix16(y1);
const UINT8 *mask_baseaddr = &m_flagsmap.pix8(y1);
// get start/stop columns, rounding outward
int mincol = x1 / m_tilewidth;
int maxcol = (x2 + m_tilewidth - 1) / m_tilewidth;
// set up row counter
int y = y1;
int nexty = m_tileheight * (y1 / m_tileheight) + m_tileheight;
nexty = MIN(nexty, y2);
// loop over tilemap rows
for (;;)
{
int row = y / m_tileheight;
int x_start = x1;
// iterate across the applicable tilemap columns
trans_t prev_trans = WHOLLY_TRANSPARENT;
trans_t cur_trans;
for (int column = mincol; column <= maxcol; column++)
{
int x_end;
// we don't actually render the last column; it is always just used for flushing
if (column == maxcol)
cur_trans = WHOLLY_TRANSPARENT;
// for other columns we look up the transparency information
else
{
logical_index logindex = row * m_cols + column;
// if the current tile is dirty, fix it
if (m_tileflags[logindex] == TILE_FLAG_DIRTY)
tile_update(logindex, column, row);
// if the current summary data is non-zero, we must draw masked
if ((m_tileflags[logindex] & blit.mask) != 0)
cur_trans = MASKED;
// otherwise, our transparency state is constant across the tile; fetch it
else
cur_trans = ((mask_baseaddr[column * m_tilewidth] & blit.mask) == blit.value) ? WHOLLY_OPAQUE : WHOLLY_TRANSPARENT;
}
// if the transparency state is the same as last time, don't render yet
if (cur_trans == prev_trans)
continue;
// compute the end of this run, in pixels
x_end = column * m_tilewidth;
x_end = MAX(x_end, x1);
x_end = MIN(x_end, x2);
// if we're rendering something, compute the pointers
if (prev_trans != WHOLLY_TRANSPARENT)
{
const UINT16 *source0 = source_baseaddr + x_start;
typename _BitmapClass::pixel_t *dest0 = dest_baseaddr + x_start;
UINT8 *pmap0 = priority_baseaddr + x_start;
// if we were opaque, use the opaque renderer
if (prev_trans == WHOLLY_OPAQUE)
{
for (int cury = y; cury < nexty; cury++)
{
if (dest_baseaddr == NULL)
scanline_draw_opaque_null(x_end - x_start, pmap0, blit.tilemap_priority_code);
else if (sizeof(*dest0) == 2)
scanline_draw_opaque_ind16(reinterpret_cast<UINT16 *>(dest0), source0, x_end - x_start, pmap0, blit.tilemap_priority_code);
else if (sizeof(*dest0) == 4 && blit.alpha >= 0xff)
scanline_draw_opaque_rgb32(reinterpret_cast<UINT32 *>(dest0), source0, x_end - x_start, machine().pens, pmap0, blit.tilemap_priority_code);
else if (sizeof(*dest0) == 4)
scanline_draw_opaque_rgb32_alpha(reinterpret_cast<UINT32 *>(dest0), source0, x_end - x_start, machine().pens, pmap0, blit.tilemap_priority_code, blit.alpha);
dest0 += dest_rowpixels;
source0 += m_pixmap.rowpixels();
pmap0 += priority_bitmap.rowpixels();
}
}
// otherwise use the masked renderer
else
{
const UINT8 *mask0 = mask_baseaddr + x_start;
for (int cury = y; cury < nexty; cury++)
{
if (dest_baseaddr == NULL)
scanline_draw_masked_null(mask0, blit.mask, blit.value, x_end - x_start, pmap0, blit.tilemap_priority_code);
else if (sizeof(*dest0) == 2)
scanline_draw_masked_ind16(reinterpret_cast<UINT16 *>(dest0), source0, mask0, blit.mask, blit.value, x_end - x_start, pmap0, blit.tilemap_priority_code);
else if (sizeof(*dest0) == 4 && blit.alpha >= 0xff)
scanline_draw_masked_rgb32(reinterpret_cast<UINT32 *>(dest0), source0, mask0, blit.mask, blit.value, x_end - x_start, machine().pens, pmap0, blit.tilemap_priority_code);
else if (sizeof(*dest0) == 4)
scanline_draw_masked_rgb32_alpha(reinterpret_cast<UINT32 *>(dest0), source0, mask0, blit.mask, blit.value, x_end - x_start, machine().pens, pmap0, blit.tilemap_priority_code, blit.alpha);
dest0 += dest_rowpixels;
source0 += m_pixmap.rowpixels();
mask0 += m_flagsmap.rowpixels();
pmap0 += priority_bitmap.rowpixels();
}
}
}
// the new start is the end
x_start = x_end;
prev_trans = cur_trans;
}
// if this was the last row, stop
if (nexty == y2)
break;
// advance to the next row on all our bitmaps
priority_baseaddr += priority_bitmap.rowpixels() * (nexty - y);
source_baseaddr += m_pixmap.rowpixels() * (nexty - y);
mask_baseaddr += m_flagsmap.rowpixels() * (nexty - y);
dest_baseaddr += dest_rowpixels * (nexty - y);
// increment the Y counter
y = nexty;
nexty += m_tileheight;
nexty = MIN(nexty, y2);
}
}
//-------------------------------------------------
// tilemap_draw_roz_core - render the tilemap's
// pixmap to the destination with rotation
// and zoom
//-------------------------------------------------
#define ROZ_PLOT_PIXEL(INPUT_VAL) \
do { \
if (sizeof(*dest) == 2) \
*dest = (INPUT_VAL) + (priority >> 16); \
else if (sizeof(*dest) == 4 && alpha >= 0xff) \
*dest = clut[INPUT_VAL]; \
else if (sizeof(*dest) == 4) \
*dest = alpha_blend_r32(*dest, clut[INPUT_VAL], alpha); \
} while (0)
template<class _BitmapClass>
void tilemap_t::draw_roz_core(_BitmapClass &destbitmap, const blit_parameters &blit,
UINT32 startx, UINT32 starty, int incxx, int incxy, int incyx, int incyy, bool wraparound)
{
// pre-cache all the inner loop values
const pen_t *clut = &machine().pens[blit.tilemap_priority_code >> 16];
bitmap_ind8 &priority_bitmap = machine().priority_bitmap;
const int xmask = m_pixmap.width() - 1;
const int ymask = m_pixmap.height() - 1;
const int widthshifted = m_pixmap.width() << 16;
const int heightshifted = m_pixmap.height() << 16;
UINT32 priority = blit.tilemap_priority_code;
UINT8 mask = blit.mask;
UINT8 value = blit.value;
UINT8 alpha = blit.alpha;
// pre-advance based on the cliprect
startx += blit.cliprect.min_x * incxx + blit.cliprect.min_y * incyx;
starty += blit.cliprect.min_x * incxy + blit.cliprect.min_y * incyy;
// extract start/end points
int sx = blit.cliprect.min_x;
int sy = blit.cliprect.min_y;
int ex = blit.cliprect.max_x;
int ey = blit.cliprect.max_y;
// optimized loop for the not rotated case
if (incxy == 0 && incyx == 0 && !wraparound)
{
// skip without drawing until we are within the bitmap
while (startx >= widthshifted && sx <= ex)
{
startx += incxx;
sx++;
}
// early exit if we're done already
if (sx > ex)
return;
// loop over rows
while (sy <= ey)
{
// only draw if Y is within range
if (starty < heightshifted)
{
// initialize X counters
int x = sx;
UINT32 cx = startx;
UINT32 cy = starty >> 16;
// get source and priority pointers
UINT8 *pri = &priority_bitmap.pix8(sy, sx);
const UINT16 *src = &m_pixmap.pix16(cy);
const UINT8 *maskptr = &m_flagsmap.pix8(cy);
typename _BitmapClass::pixel_t *dest = &destbitmap.pix(sy, sx);
// loop over columns
while (x <= ex && cx < widthshifted)
{
// plot if we match the mask
if ((maskptr[cx >> 16] & mask) == value)
{
ROZ_PLOT_PIXEL(src[cx >> 16]);
*pri = (*pri & (priority >> 8)) | priority;
}
// advance in X
cx += incxx;
x++;
dest++;
pri++;
}
}
// advance in Y
starty += incyy;
sy++;
}
}
// wraparound case
else if (wraparound)
{
// loop over rows
while (sy <= ey)
{
// initialize X counters
int x = sx;
UINT32 cx = startx;
UINT32 cy = starty;
// get dest and priority pointers
typename _BitmapClass::pixel_t *dest = &destbitmap.pix(sy, sx);
UINT8 *pri = &priority_bitmap.pix8(sy, sx);
// loop over columns
while (x <= ex)
{
// plot if we match the mask
if ((m_flagsmap.pix8((cy >> 16) & ymask, (cx >> 16) & xmask) & mask) == value)
{
ROZ_PLOT_PIXEL(m_pixmap.pix16((cy >> 16) & ymask, (cx >> 16) & xmask));
*pri = (*pri & (priority >> 8)) | priority;
}
// advance in X
cx += incxx;
cy += incxy;
x++;
dest++;
pri++;
}
// advance in Y
startx += incyx;
starty += incyy;
sy++;
}
}
// non-wraparound case
else
{
// loop over rows
while (sy <= ey)
{
// initialize X counters
int x = sx;
UINT32 cx = startx;
UINT32 cy = starty;
// get dest and priority pointers
typename _BitmapClass::pixel_t *dest = &destbitmap.pix(sy, sx);
UINT8 *pri = &priority_bitmap.pix8(sy, sx);
// loop over columns
while (x <= ex)
{
// plot if we're within the bitmap and we match the mask
if (cx < widthshifted && cy < heightshifted)
if ((m_flagsmap.pix8(cy >> 16, cx >> 16) & mask) == value)
{
ROZ_PLOT_PIXEL(m_pixmap.pix16(cy >> 16, cx >> 16));
*pri = (*pri & (priority >> 8)) | priority;
}
// advance in X
cx += incxx;
cy += incxy;
x++;
dest++;
pri++;
}
// advance in Y
startx += incyx;
starty += incyy;
sy++;
}
}
}
//-------------------------------------------------
// draw_debug - draw a debug version without any
// rowscroll and with fixed parameters
//-------------------------------------------------
void tilemap_t::draw_debug(bitmap_rgb32 &dest, UINT32 scrollx, UINT32 scrolly)
{
// set up for the blit, using hard-coded parameters (no priority, etc)
blit_parameters blit;
configure_blit_parameters(blit, dest.cliprect(), TILEMAP_DRAW_OPAQUE | TILEMAP_DRAW_ALL_CATEGORIES, 0, 0xff);
// compute the effective scroll positions
scrollx = m_width - scrollx % m_width;
scrolly = m_height - scrolly % m_height;
// flush the dirty state to all tiles as appropriate
realize_all_dirty_tiles();
// iterate to handle wraparound
for (int ypos = scrolly - m_height; ypos <= blit.cliprect.max_y; ypos += m_height)
for (int xpos = scrollx - m_width; xpos <= blit.cliprect.max_x; xpos += m_width)
draw_instance(dest, blit, xpos, ypos);
}
//**************************************************************************
// TILEMAP MANAGER
//**************************************************************************
//-------------------------------------------------
// tilemap_manager - constructor
//-------------------------------------------------
tilemap_manager::tilemap_manager(running_machine &machine)
: m_machine(machine),
m_instance(0)
{
if (machine.primary_screen == NULL || machine.primary_screen->width() == 0)
return;
machine.primary_screen->register_screen_bitmap(machine.priority_bitmap);
}
//-------------------------------------------------
// set_flip_all - set a global flip for all the
// tilemaps
//-------------------------------------------------
tilemap_t &tilemap_manager::create(tilemap_get_info_delegate tile_get_info, tilemap_mapper_delegate mapper, int tilewidth, int tileheight, int cols, int rows)
{
return m_tilemap_list.append(*auto_alloc(machine(), tilemap_t(*this, tile_get_info, mapper, tilewidth, tileheight, cols, rows)));
}
tilemap_t &tilemap_manager::create(tile_get_info_func tile_get_info, tilemap_mapper_func mapper, int tilewidth, int tileheight, int cols, int rows)
{
return m_tilemap_list.append(*auto_alloc(machine(), tilemap_t(*this, tilemap_get_info_delegate(tile_get_info, "", &machine()), tilemap_mapper_delegate(mapper, "", &machine()), tilewidth, tileheight, cols, rows)));
}
//-------------------------------------------------
// set_flip_all - set a global flip for all the
// tilemaps
//-------------------------------------------------
void tilemap_manager::set_flip_all(UINT32 attributes)
{
for (tilemap_t *tmap = m_tilemap_list.first(); tmap != NULL; tmap = tmap->next())
tmap->set_flip(attributes);
}
//-------------------------------------------------
// mark_all_dirty - mark all the tiles in all the
// tilemaps dirty
//-------------------------------------------------
void tilemap_manager::mark_all_dirty()
{
for (tilemap_t *tmap = m_tilemap_list.first(); tmap != NULL; tmap = tmap->next())
tmap->mark_all_dirty();
}