mame/src/emu/validity.c
2007-12-17 16:41:39 +00:00

1465 lines
48 KiB
C

/***************************************************************************
validity.c
Validity checks on internal data structures.
Copyright (c) 1996-2007, Nicola Salmoria and the MAME Team.
Visit http://mamedev.org for licensing and usage restrictions.
***************************************************************************/
#include "osdepend.h"
#include "eminline.h"
#include "driver.h"
#include "hash.h"
#include <ctype.h>
#include <stdarg.h>
#include "uitext.h"
#include "unicode.h"
#include <zlib.h>
/*************************************
*
* Debugging
*
*************************************/
#define REPORT_TIMES (0)
/*************************************
*
* Constants
*
*************************************/
#define QUARK_HASH_SIZE 389
/*************************************
*
* Type definitions
*
*************************************/
typedef struct _quark_entry quark_entry;
struct _quark_entry
{
UINT32 crc;
struct _quark_entry *next;
};
typedef struct _quark_table quark_table;
struct _quark_table
{
UINT32 entries;
UINT32 hashsize;
quark_entry *entry;
quark_entry **hash;
};
/*************************************
*
* Local variables
*
*************************************/
static quark_table *source_table;
static quark_table *name_table;
static quark_table *description_table;
static quark_table *roms_table;
static quark_table *inputs_table;
static quark_table *defstr_table;
/*************************************
*
* Allocate an array of quark
* entries and a hash table
*
*************************************/
static quark_table *allocate_quark_table(UINT32 entries, UINT32 hashsize)
{
quark_table *table;
UINT32 total_bytes;
/* determine how many total bytes we need */
total_bytes = sizeof(*table) + entries * sizeof(table->entry[0]) + hashsize * sizeof(table->hash[0]);
table = auto_malloc(total_bytes);
/* fill in the details */
table->entries = entries;
table->hashsize = hashsize;
/* compute the pointers */
table->entry = (quark_entry *)((UINT8 *)table + sizeof(*table));
table->hash = (quark_entry **)((UINT8 *)table->entry + entries * sizeof(table->entry[0]));
/* reset the hash table */
memset(table->hash, 0, hashsize * sizeof(table->hash[0]));
return table;
}
/*************************************
*
* Compute the CRC of a string
*
*************************************/
INLINE UINT32 quark_string_crc(const char *string)
{
return crc32(0, (UINT8 *)string, (UINT32)strlen(string));
}
/*************************************
*
* Add a quark to the table and
* connect it to the hash tables
*
*************************************/
INLINE void add_quark(quark_table *table, int index, UINT32 crc)
{
quark_entry *entry = &table->entry[index];
int hash = crc % table->hashsize;
entry->crc = crc;
entry->next = table->hash[hash];
table->hash[hash] = entry;
}
/*************************************
*
* Return a pointer to the first
* hash entry connected to a CRC
*
*************************************/
INLINE quark_entry *first_hash_entry(quark_table *table, UINT32 crc)
{
return table->hash[crc % table->hashsize];
}
/*************************************
*
* Build "quarks" for fast string
* operations
*
*************************************/
static void build_quarks(void)
{
int drivnum, strnum;
/* first count drivers */
for (drivnum = 0; drivers[drivnum]; drivnum++)
;
/* allocate memory for the quark tables */
source_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE);
name_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE);
description_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE);
roms_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE);
inputs_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE);
/* build the quarks and the hash tables */
for (drivnum = 0; drivers[drivnum]; drivnum++)
{
const game_driver *driver = drivers[drivnum];
/* fill in the quark with hashes of the strings */
add_quark(source_table, drivnum, quark_string_crc(driver->source_file));
add_quark(name_table, drivnum, quark_string_crc(driver->name));
add_quark(description_table, drivnum, quark_string_crc(driver->description));
/* only track actual driver ROM entries */
if (driver->rom && (driver->flags & GAME_NO_STANDALONE) == 0)
add_quark(roms_table, drivnum, (FPTR)driver->rom);
}
/* allocate memory for a quark table of strings */
defstr_table = allocate_quark_table(INPUT_STRING_COUNT, 97);
/* add all the default strings */
for (strnum = 1; strnum < INPUT_STRING_COUNT; strnum++)
{
const char *string = input_port_string_from_token(INPUT_PORT_UINT32(strnum));
if (string != NULL)
add_quark(defstr_table, strnum, quark_string_crc(string));
}
}
/*************************************
*
* Validate inline functions
*
*************************************/
static int validate_inlines(void)
{
#undef rand
volatile UINT64 testu64a = rand() ^ (rand() << 15) ^ ((UINT64)rand() << 30) ^ ((UINT64)rand() << 45);
volatile INT64 testi64a = rand() ^ (rand() << 15) ^ ((INT64)rand() << 30) ^ ((INT64)rand() << 45);
#ifdef PTR64
volatile INT64 testi64b = rand() ^ (rand() << 15) ^ ((INT64)rand() << 30) ^ ((INT64)rand() << 45);
#endif
volatile UINT32 testu32a = rand() ^ (rand() << 15);
volatile UINT32 testu32b = rand() ^ (rand() << 15);
volatile INT32 testi32a = rand() ^ (rand() << 15);
volatile INT32 testi32b = rand() ^ (rand() << 15);
INT32 resulti32, expectedi32;
UINT32 resultu32, expectedu32;
INT64 resulti64, expectedi64;
UINT64 resultu64, expectedu64;
INT32 remainder, expremainder;
UINT32 uremainder, expuremainder;
int error = FALSE;
/* use only non-zero, positive numbers */
if (testu64a == 0) testu64a++;
if (testi64a == 0) testi64a++;
else if (testi64a < 0) testi64a = -testi64a;
#ifdef PTR64
if (testi64b == 0) testi64b++;
else if (testi64b < 0) testi64b = -testi64b;
#endif
if (testu32a == 0) testu32a++;
if (testu32b == 0) testu32b++;
if (testi32a == 0) testi32a++;
else if (testi32a < 0) testi32a = -testi32a;
if (testi32b == 0) testi32b++;
else if (testi32b < 0) testi32b = -testi32b;
resulti64 = mul_32x32(testi32a, testi32b);
expectedi64 = (INT64)testi32a * (INT64)testi32b;
if (resulti64 != expectedi64)
{ mame_printf_error("Error testing mul_32x32 (%08X x %08X) = %08X%08X (expected %08X%08X)\n", testi32a, testi32b, (UINT32)(resulti64 >> 32), (UINT32)resulti64, (UINT32)(expectedi64 >> 32), (UINT32)expectedi64); error = TRUE; }
resultu64 = mulu_32x32(testu32a, testu32b);
expectedu64 = (UINT64)testu32a * (UINT64)testu32b;
if (resultu64 != expectedu64)
{ mame_printf_error("Error testing mulu_32x32 (%08X x %08X) = %08X%08X (expected %08X%08X)\n", testu32a, testu32b, (UINT32)(resultu64 >> 32), (UINT32)resultu64, (UINT32)(expectedu64 >> 32), (UINT32)expectedu64); error = TRUE; }
resulti32 = mul_32x32_hi(testi32a, testi32b);
expectedi32 = ((INT64)testi32a * (INT64)testi32b) >> 32;
if (resulti32 != expectedi32)
{ mame_printf_error("Error testing mul_32x32_hi (%08X x %08X) = %08X (expected %08X)\n", testi32a, testi32b, resulti32, expectedi32); error = TRUE; }
resultu32 = mulu_32x32_hi(testu32a, testu32b);
expectedu32 = ((INT64)testu32a * (INT64)testu32b) >> 32;
if (resultu32 != expectedu32)
{ mame_printf_error("Error testing mulu_32x32_hi (%08X x %08X) = %08X (expected %08X)\n", testu32a, testu32b, resultu32, expectedu32); error = TRUE; }
resulti32 = mul_32x32_shift(testi32a, testi32b, 7);
expectedi32 = ((INT64)testi32a * (INT64)testi32b) >> 7;
if (resulti32 != expectedi32)
{ mame_printf_error("Error testing mul_32x32_shift (%08X x %08X) >> 7 = %08X (expected %08X)\n", testi32a, testi32b, resulti32, expectedi32); error = TRUE; }
resultu32 = mulu_32x32_shift(testu32a, testu32b, 7);
expectedu32 = ((INT64)testu32a * (INT64)testu32b) >> 7;
if (resultu32 != expectedu32)
{ mame_printf_error("Error testing mulu_32x32_shift (%08X x %08X) >> 7 = %08X (expected %08X)\n", testu32a, testu32b, resultu32, expectedu32); error = TRUE; }
while ((INT64)testi32a * (INT64)0x7fffffff < testi64a)
testi64a /= 2;
while ((UINT64)testu32a * (UINT64)0xffffffff < testu64a)
testu64a /= 2;
resulti32 = div_64x32(testi64a, testi32a);
expectedi32 = testi64a / (INT64)testi32a;
if (resulti32 != expectedi32)
{ mame_printf_error("Error testing div_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", (UINT32)(testi64a >> 32), (UINT32)testi64a, testi32a, resulti32, expectedi32); error = TRUE; }
resultu32 = divu_64x32(testu64a, testu32a);
expectedu32 = testu64a / (UINT64)testu32a;
if (resultu32 != expectedu32)
{ mame_printf_error("Error testing divu_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", (UINT32)(testu64a >> 32), (UINT32)testu64a, testu32a, resultu32, expectedu32); error = TRUE; }
resulti32 = div_64x32_rem(testi64a, testi32a, &remainder);
expectedi32 = testi64a / (INT64)testi32a;
expremainder = testi64a % (INT64)testi32a;
if (resulti32 != expectedi32 || remainder != expremainder)
{ mame_printf_error("Error testing div_64x32_rem (%08X%08X / %08X) = %08X,%08X (expected %08X,%08X)\n", (UINT32)(testi64a >> 32), (UINT32)testi64a, testi32a, resulti32, remainder, expectedi32, expremainder); error = TRUE; }
resultu32 = divu_64x32_rem(testu64a, testu32a, &uremainder);
expectedu32 = testu64a / (UINT64)testu32a;
expuremainder = testu64a % (UINT64)testu32a;
if (resultu32 != expectedu32 || uremainder != expuremainder)
{ mame_printf_error("Error testing divu_64x32_rem (%08X%08X / %08X) = %08X,%08X (expected %08X,%08X)\n", (UINT32)(testu64a >> 32), (UINT32)testu64a, testu32a, resultu32, uremainder, expectedu32, expuremainder); error = TRUE; }
resulti32 = mod_64x32(testi64a, testi32a);
expectedi32 = testi64a % (INT64)testi32a;
if (resulti32 != expectedi32)
{ mame_printf_error("Error testing mod_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", (UINT32)(testi64a >> 32), (UINT32)testi64a, testi32a, resulti32, expectedi32); error = TRUE; }
resultu32 = modu_64x32(testu64a, testu32a);
expectedu32 = testu64a % (UINT64)testu32a;
if (resultu32 != expectedu32)
{ mame_printf_error("Error testing modu_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", (UINT32)(testu64a >> 32), (UINT32)testu64a, testu32a, resultu32, expectedu32); error = TRUE; }
while ((INT64)testi32a * (INT64)0x7fffffff < ((INT32)testi64a << 3))
testi64a /= 2;
while ((UINT64)testu32a * (UINT64)0xffffffff < ((UINT32)testu64a << 3))
testu64a /= 2;
resulti32 = div_32x32_shift((INT32)testi64a, testi32a, 3);
expectedi32 = ((INT64)(INT32)testi64a << 3) / (INT64)testi32a;
if (resulti32 != expectedi32)
{ mame_printf_error("Error testing div_32x32_shift (%08X << 3) / %08X = %08X (expected %08X)\n", (INT32)testi64a, testi32a, resulti32, expectedi32); error = TRUE; }
resultu32 = divu_32x32_shift((UINT32)testu64a, testu32a, 3);
expectedu32 = ((UINT64)(UINT32)testu64a << 3) / (UINT64)testu32a;
if (resultu32 != expectedu32)
{ mame_printf_error("Error testing divu_32x32_shift (%08X << 3) / %08X = %08X (expected %08X)\n", (UINT32)testu64a, testu32a, resultu32, expectedu32); error = TRUE; }
if (fabs(recip_approx(100.0) - 0.01) > 0.0001)
{ mame_printf_error("Error testing recip_approx\n"); error = TRUE; }
testi32a = (testi32a & 0x0000ffff) | 0x400000;
if (count_leading_zeros(testi32a) != 9)
{ mame_printf_error("Error testing count_leading_zeros\n"); error = TRUE; }
testi32a = (testi32a | 0xffff0000) & ~0x400000;
if (count_leading_ones(testi32a) != 9)
{ mame_printf_error("Error testing count_leading_ones\n"); error = TRUE; }
testi32b = testi32a;
if (compare_exchange32(&testi32a, testi32b, 1000) != testi32b || testi32a != 1000)
{ mame_printf_error("Error testing compare_exchange32\n"); error = TRUE; }
#ifdef PTR64
testi64b = testi64a;
if (compare_exchange64(&testi64a, testi64b, 1000) != testi64b || testi64a != 1000)
{ mame_printf_error("Error testing compare_exchange64\n"); error = TRUE; }
#endif
if (atomic_exchange32(&testi32a, testi32b) != 1000)
{ mame_printf_error("Error testing atomic_exchange32\n"); error = TRUE; }
if (atomic_add32(&testi32a, 45) != testi32b + 45)
{ mame_printf_error("Error testing atomic_add32\n"); error = TRUE; }
if (atomic_increment32(&testi32a) != testi32b + 46)
{ mame_printf_error("Error testing atomic_increment32\n"); error = TRUE; }
if (atomic_decrement32(&testi32a) != testi32b + 45)
{ mame_printf_error("Error testing atomic_decrement32\n"); error = TRUE; }
return error;
}
/*************************************
*
* Validate basic driver info
*
*************************************/
static int validate_driver(int drivnum, const machine_config *drv)
{
const game_driver *driver = drivers[drivnum];
const game_driver *clone_of;
quark_entry *entry;
int error = FALSE;
const char *s;
UINT32 crc;
/* determine the clone */
clone_of = driver_get_clone(driver);
/* if we have at least 100 drivers, validate the clone */
/* (100 is arbitrary, but tries to avoid tiny.mak dependencies) */
if (driver_list_get_count(drivers) > 100 && !clone_of && strcmp(driver->parent, "0"))
{
mame_printf_error("%s: %s is a non-existant clone\n", driver->source_file, driver->parent);
error = TRUE;
}
/* look for recursive cloning */
if (clone_of == driver)
{
mame_printf_error("%s: %s is set as a clone of itself\n", driver->source_file, driver->name);
error = TRUE;
}
/* look for clones that are too deep */
if (clone_of != NULL && (clone_of = driver_get_clone(clone_of)) != NULL && (clone_of->flags & GAME_IS_BIOS_ROOT) == 0)
{
mame_printf_error("%s: %s is a clone of a clone\n", driver->source_file, driver->name);
error = TRUE;
}
/* make sure the driver name is 8 chars or less */
if (strlen(driver->name) > 8)
{
mame_printf_error("%s: %s driver name must be 8 characters or less\n", driver->source_file, driver->name);
error = TRUE;
}
/* make sure the year is only digits, '?' or '+' */
for (s = driver->year; *s; s++)
if (!isdigit(*s) && *s != '?' && *s != '+')
{
mame_printf_error("%s: %s has an invalid year '%s'\n", driver->source_file, driver->name, driver->year);
error = TRUE;
break;
}
#ifndef MESS
/* make sure sound-less drivers are flagged */
if ((driver->flags & GAME_IS_BIOS_ROOT) == 0 && drv->sound[0].type == SOUND_DUMMY && (driver->flags & GAME_NO_SOUND) == 0 && strcmp(driver->name, "minivadr"))
{
mame_printf_error("%s: %s missing GAME_NO_SOUND flag\n", driver->source_file, driver->name);
error = TRUE;
}
#endif
/* find duplicate driver names */
crc = quark_string_crc(driver->name);
for (entry = first_hash_entry(name_table, crc); entry; entry = entry->next)
if (entry->crc == crc && entry != &name_table->entry[drivnum])
{
const game_driver *match = drivers[entry - name_table->entry];
if (!strcmp(match->name, driver->name))
{
mame_printf_error("%s: %s is a duplicate name (%s, %s)\n", driver->source_file, driver->name, match->source_file, match->name);
error = TRUE;
}
}
/* find duplicate descriptions */
crc = quark_string_crc(driver->description);
for (entry = first_hash_entry(description_table, crc); entry; entry = entry->next)
if (entry->crc == crc && entry != &description_table->entry[drivnum])
{
const game_driver *match = drivers[entry - description_table->entry];
if (!strcmp(match->description, driver->description))
{
mame_printf_error("%s: %s is a duplicate description (%s, %s)\n", driver->source_file, driver->description, match->source_file, match->name);
error = TRUE;
}
}
/* find shared ROM entries */
#ifndef MESS
if (driver->rom && (driver->flags & GAME_IS_BIOS_ROOT) == 0)
{
crc = (FPTR)driver->rom;
for (entry = first_hash_entry(roms_table, crc); entry; entry = entry->next)
if (entry->crc == crc && entry != &roms_table->entry[drivnum])
{
const game_driver *match = drivers[entry - roms_table->entry];
if (match->rom == driver->rom)
{
mame_printf_error("%s: %s uses the same ROM set as (%s, %s)\n", driver->source_file, driver->description, match->source_file, match->name);
error = TRUE;
}
}
}
#endif /* MESS */
return error;
}
/*************************************
*
* Validate ROM definitions
*
*************************************/
static int validate_roms(int drivnum, const machine_config *drv, UINT32 *region_length)
{
const game_driver *driver = drivers[drivnum];
const rom_entry *romp;
const char *last_name = "???";
int cur_region = -1;
int error = FALSE;
int items_since_region = 1;
int bios_flags = 0, last_bios = 0;
/* reset region info */
memset(region_length, 0, REGION_MAX * sizeof(*region_length));
/* scan the ROM entries */
for (romp = driver->rom; romp && !ROMENTRY_ISEND(romp); romp++)
{
/* if this is a region, make sure it's valid, and record the length */
if (ROMENTRY_ISREGION(romp))
{
int type = ROMREGION_GETTYPE(romp);
/* if we haven't seen any items since the last region, print a warning */
if (items_since_region == 0)
mame_printf_warning("%s: %s has empty ROM region (warning)\n", driver->source_file, driver->name);
items_since_region = (ROMREGION_ISERASE(romp) || ROMREGION_ISDISPOSE(romp)) ? 1 : 0;
/* check for an invalid region */
if (type >= REGION_MAX || type <= REGION_INVALID)
{
mame_printf_error("%s: %s has invalid ROM_REGION type %x\n", driver->source_file, driver->name, type);
error = TRUE;
cur_region = -1;
}
/* check for a duplicate */
else if (region_length[type] != 0)
{
mame_printf_error("%s: %s has duplicate ROM_REGION type %x\n", driver->source_file, driver->name, type);
error = TRUE;
cur_region = -1;
}
/* if all looks good, remember the length and note the region */
else
{
cur_region = type;
region_length[type] = ROMREGION_GETLENGTH(romp);
}
}
/* If this is a system bios, make sure it is using the next available bios number */
else if (ROMENTRY_ISSYSTEM_BIOS(romp))
{
bios_flags = ROM_GETBIOSFLAGS(romp);
if (last_bios+1 != bios_flags)
{
const char *name = ROM_GETHASHDATA(romp);
mame_printf_error("%s: %s has non-sequential bios %s\n", driver->source_file, driver->name, name);
error = TRUE;
}
last_bios = bios_flags;
}
/* if this is a file, make sure it is properly formatted */
else if (ROMENTRY_ISFILE(romp))
{
const char *hash;
const char *s;
items_since_region++;
/* track the last filename we found */
last_name = ROM_GETNAME(romp);
/* make sure it's all lowercase */
for (s = last_name; *s; s++)
if (tolower(*s) != *s)
{
mame_printf_error("%s: %s has upper case ROM name %s\n", driver->source_file, driver->name, last_name);
error = TRUE;
break;
}
/* if this is a bios rom, make sure it has the same flags as the last system bios entry */
bios_flags = ROM_GETBIOSFLAGS(romp);
if (bios_flags != 0)
{
if (bios_flags != last_bios)
{
mame_printf_error("%s: %s has bios rom name %s without preceding matching system bios definition\n", driver->source_file, driver->name, last_name);
error = TRUE;
}
}
/* make sure the has is valid */
hash = ROM_GETHASHDATA(romp);
if (!hash_verify_string(hash))
{
mame_printf_error("%s: rom '%s' has an invalid hash string '%s'\n", driver->name, last_name, hash);
error = TRUE;
}
}
/* for any non-region ending entries, make sure they don't extend past the end */
if (!ROMENTRY_ISREGIONEND(romp) && cur_region != -1)
{
items_since_region++;
if (ROM_GETOFFSET(romp) + ROM_GETLENGTH(romp) > region_length[cur_region])
{
mame_printf_error("%s: %s has ROM %s extending past the defined memory region\n", driver->source_file, driver->name, last_name);
error = TRUE;
}
}
}
/* final check for empty regions */
if (items_since_region == 0)
mame_printf_warning("%s: %s has empty ROM region (warning)\n", driver->source_file, driver->name);
return error;
}
/*************************************
*
* Validate CPUs and memory maps
*
*************************************/
static int validate_cpu(int drivnum, const machine_config *drv, const UINT32 *region_length)
{
const game_driver *driver = drivers[drivnum];
int error = FALSE;
int cpunum;
/* loop over all the CPUs */
for (cpunum = 0; cpunum < MAX_CPU; cpunum++)
{
extern void dummy_get_info(UINT32 state, cpuinfo *info);
const cpu_config *cpu = &drv->cpu[cpunum];
int spacenum;
/* skip empty entries */
if (cpu->type == CPU_DUMMY)
continue;
/* checks to see if this driver is using a dummy CPU */
if (cputype_get_interface(cpu->type)->get_info == dummy_get_info)
{
mame_printf_error("%s: %s uses non-present CPU\n", driver->source_file, driver->name);
error = TRUE;
continue;
}
/* check the CPU for incompleteness */
if (!cputype_get_info_fct(cpu->type, CPUINFO_PTR_GET_CONTEXT)
|| !cputype_get_info_fct(cpu->type, CPUINFO_PTR_SET_CONTEXT)
|| !cputype_get_info_fct(cpu->type, CPUINFO_PTR_RESET)
|| !cputype_get_info_fct(cpu->type, CPUINFO_PTR_EXECUTE))
{
mame_printf_error("%s: %s uses an incomplete CPU\n", driver->source_file, driver->name);
error = TRUE;
continue;
}
/* loop over all address spaces */
for (spacenum = 0; spacenum < ADDRESS_SPACES; spacenum++)
{
#define SPACE_SHIFT(a) ((addr_shift < 0) ? ((a) << -addr_shift) : ((a) >> addr_shift))
#define SPACE_SHIFT_END(a) ((addr_shift < 0) ? (((a) << -addr_shift) | ((1 << -addr_shift) - 1)) : ((a) >> addr_shift))
static const char *const spacename[] = { "program", "data", "I/O" };
int databus_width = cputype_databus_width(cpu->type, spacenum);
int addr_shift = cputype_addrbus_shift(cpu->type, spacenum);
int alignunit = databus_width/8;
address_map addrmap[MAX_ADDRESS_MAP_SIZE*2];
address_map *map;
UINT32 flags;
/* check to see that the same map is not used twice */
if (cpu->construct_map[spacenum][0] && cpu->construct_map[spacenum][0] == cpu->construct_map[spacenum][1])
{
mame_printf_error("%s: %s uses identical memory maps for CPU #%d spacenum %d\n", driver->source_file, driver->name, cpunum, spacenum);
error = TRUE;
}
/* reset the address map, resetting the base address to a non-NULL value */
/* because the AM_REGION macro will query non-existant memory regions and */
/* product valid NULL results */
memset(addrmap, 0, sizeof(addrmap));
/* construct the maps */
map = addrmap;
construct_address_map(map, drv, cpunum, spacenum);
/* if this is an empty map, just skip it */
if (IS_AMENTRY_END(map))
continue;
/* make sure we start with a proper entry */
if (!IS_AMENTRY_EXTENDED(map))
{
mame_printf_error("%s: %s wrong MEMORY_READ_START for %s space\n", driver->source_file, driver->name, spacename[spacenum]);
error = TRUE;
}
/* loop over entries and look for errors */
for ( ; !IS_AMENTRY_END(map); map++)
if (!IS_AMENTRY_EXTENDED(map))
{
int ismatchmask = ((map->flags & AM_FLAGS_MATCH_MASK) != 0);
UINT32 start = SPACE_SHIFT(map->start);
UINT32 end = ismatchmask ? SPACE_SHIFT(map->end) : SPACE_SHIFT_END(map->end);
{
/* look for inverted start/end pairs */
if (end < start)
{
mame_printf_error("%s: %s wrong %s memory read handler start = %08x > end = %08x\n", driver->source_file, driver->name, spacename[spacenum], map->start, map->end);
error = TRUE;
}
/* look for misaligned entries */
if ((start & (alignunit-1)) != 0 || (end & (alignunit-1)) != (alignunit-1))
{
mame_printf_error("%s: %s wrong %s memory read handler start = %08x, end = %08x ALIGN = %d\n", driver->source_file, driver->name, spacename[spacenum], map->start, map->end, alignunit);
error = TRUE;
}
/* if this is a program space, auto-assign implicit ROM entries */
if ((FPTR)map->read.handler == STATIC_ROM && !map->region)
{
map->region = REGION_CPU1 + cpunum;
map->region_offs = map->start;
}
/* if this entry references a memory region, validate it */
if (map->region && map->share == 0)
{
offs_t length = region_length[map->region];
if (length == 0)
{
mame_printf_error("%s: %s CPU %d space %d memory map entry %X-%X references non-existant region %d\n", driver->source_file, driver->name, cpunum, spacenum, map->start, map->end, map->region);
error = TRUE;
}
else if (map->region_offs + (end - start + 1) > length)
{
mame_printf_error("%s: %s CPU %d space %d memory map entry %X-%X extends beyond region %d size (%X)\n", driver->source_file, driver->name, cpunum, spacenum, map->start, map->end, map->region, length);
error = TRUE;
}
}
/* If this is a match/mask, make sure the match bits are present in the mask */
if (ismatchmask && (start & end) != start)
{
mame_printf_error("%s: %s CPU %d space %d memory map entry match %X contains bits not in mask %X for region %d\n", driver->source_file, driver->name, cpunum, spacenum, map->start, map->end, map->region);
error = TRUE;
}
}
}
else
{
flags = AM_EXTENDED_FLAGS(map);
if (flags & AMEF_SPECIFIES_SPACE)
{
int val = (flags & AMEF_SPACE_MASK) >> AMEF_SPACE_SHIFT;
if (val != spacenum)
{
mame_printf_error("%s: %s CPU #%d space %d has address space %d handlers!", driver->source_file, driver->name, cpunum, spacenum, val);
error = TRUE;
}
}
/* verify the type of memory handlers */
if (flags & AMEF_SPECIFIES_DBITS)
{
int val = (flags & AMEF_DBITS_MASK) >> AMEF_DBITS_SHIFT;
val = (val + 1) * 8;
if (val != databus_width)
{
mame_printf_error("%s: %s cpu #%d uses wrong memory handlers for %s space! (width = %d, memory = %08x)\n", driver->source_file, driver->name, cpunum, spacename[spacenum], databus_width, val);
error = TRUE;
}
}
}
}
}
return error;
}
/*************************************
*
* Validate display
*
*************************************/
static int validate_display(int drivnum, const machine_config *drv)
{
const game_driver *driver = drivers[drivnum];
int palette_modes = FALSE;
int error = FALSE;
int scrnum;
/* loop over screens */
for (scrnum = 0; scrnum < MAX_SCREENS; scrnum++)
if (drv->screen[scrnum].tag != NULL)
{
/* sanity check dimensions */
if ((drv->screen[scrnum].defstate.width <= 0) || (drv->screen[scrnum].defstate.height <= 0))
{
mame_printf_error("%s: %s screen %d has invalid display dimensions\n", driver->source_file, driver->name, scrnum);
error = TRUE;
}
/* sanity check screen formats */
if (drv->screen[scrnum].defstate.format != BITMAP_FORMAT_INDEXED16 &&
drv->screen[scrnum].defstate.format != BITMAP_FORMAT_RGB15 &&
drv->screen[scrnum].defstate.format != BITMAP_FORMAT_RGB32)
{
mame_printf_error("%s: %s screen %d has unsupported format\n", driver->source_file, driver->name, scrnum);
error = TRUE;
}
if (drv->screen[scrnum].defstate.format == BITMAP_FORMAT_INDEXED16)
palette_modes = TRUE;
/* sanity check display area */
if (!(drv->video_attributes & VIDEO_TYPE_VECTOR))
{
if ((drv->screen[scrnum].defstate.visarea.max_x < drv->screen[scrnum].defstate.visarea.min_x)
|| (drv->screen[scrnum].defstate.visarea.max_y < drv->screen[scrnum].defstate.visarea.min_y)
|| (drv->screen[scrnum].defstate.visarea.max_x >= drv->screen[scrnum].defstate.width)
|| (drv->screen[scrnum].defstate.visarea.max_y >= drv->screen[scrnum].defstate.height))
{
mame_printf_error("%s: %s screen %d has an invalid display area\n", driver->source_file, driver->name, scrnum);
error = TRUE;
}
}
/* check for zero frame rate */
if (drv->screen[scrnum].defstate.refresh == 0)
{
mame_printf_error("%s: %s screen %d has a zero refresh rate\n", driver->source_file, driver->name, scrnum);
error = TRUE;
}
}
/* check for empty palette */
if (palette_modes && drv->total_colors == 0)
{
mame_printf_error("%s: %s has zero palette entries\n", driver->source_file, driver->name);
error = TRUE;
}
return error;
}
/*************************************
*
* Validate graphics
*
*************************************/
static int validate_gfx(int drivnum, const machine_config *drv, const UINT32 *region_length)
{
const game_driver *driver = drivers[drivnum];
int error = FALSE;
int gfxnum;
/* bail if no gfx */
if (!drv->gfxdecodeinfo)
return FALSE;
/* iterate over graphics decoding entries */
for (gfxnum = 0; gfxnum < MAX_GFX_ELEMENTS && drv->gfxdecodeinfo[gfxnum].memory_region != -1; gfxnum++)
{
const gfx_decode_entry *gfx = &drv->gfxdecodeinfo[gfxnum];
int region = gfx->memory_region;
/* if we have a valid region, and we're not using auto-sizing, check the decode against the region length */
if (region && !IS_FRAC(gfx->gfxlayout->total))
{
int len, avail, plane, start;
/* determine which plane is the largest */
start = 0;
for (plane = 0; plane < MAX_GFX_PLANES; plane++)
if (gfx->gfxlayout->planeoffset[plane] > start)
start = gfx->gfxlayout->planeoffset[plane];
start &= ~(gfx->gfxlayout->charincrement - 1);
/* determine the total length based on this info */
len = gfx->gfxlayout->total * gfx->gfxlayout->charincrement;
/* do we have enough space in the region to cover the whole decode? */
avail = region_length[region] - (gfx->start & ~(gfx->gfxlayout->charincrement/8-1));
/* if not, this is an error */
if ((start + len) / 8 > avail)
{
mame_printf_error("%s: %s has gfx[%d] extending past allocated memory\n", driver->source_file, driver->name, gfxnum);
error = TRUE;
}
}
}
return error;
}
/*************************************
*
* Display valid coin order
*
*************************************/
static void display_valid_coin_order(int drivnum, const input_port_entry *memory)
{
const game_driver *driver = drivers[drivnum];
const input_port_entry *inp;
int coin_list[1024];
int coin_len = 0;
int i, j;
quark_entry *entry;
for (inp = memory; inp->type != IPT_END; inp++)
{
int strindex = 0;
UINT32 crc;
if ( !inp->name || inp->name == IP_NAME_DEFAULT )
continue;
/* hash the string and look it up in the string table */
crc = quark_string_crc(inp->name);
for (entry = first_hash_entry(defstr_table, crc); entry; entry = entry->next)
if (entry->crc == crc && !strcmp(inp->name, input_port_string_from_token(INPUT_PORT_UINT32(entry - defstr_table->entry))))
{
strindex = entry - defstr_table->entry;
break;
}
/* if its a coin entry, add it to our list, avoiding repetitions */
if ( strindex >= INPUT_STRING_9C_1C && strindex <= INPUT_STRING_1C_9C )
{
j = 1;
for( i = 0; i < coin_len; i++ )
{
if ( coin_list[i] == strindex )
{
j = 0;
break;
}
}
if ( j )
coin_list[coin_len++] = strindex;
}
}
/* now display the proper coin entry list */
mame_printf_error( "%s: %s proper coin sort order should be:\n", driver->source_file, driver->name );
for (i = INPUT_STRING_9C_1C; i <= INPUT_STRING_1C_9C; i++)
for (j = 0; j < coin_len; j++)
/* if it's on our list, display it */
if (coin_list[j] == i)
mame_printf_error("%s\n", input_port_string_from_token(INPUT_PORT_UINT32(i)));
}
/*************************************
*
* Validate input ports
*
*************************************/
static int validate_inputs(int drivnum, const machine_config *drv, input_port_entry **memory)
{
const char *demo_sounds = input_port_string_from_token(INPUT_PORT_UINT32(INPUT_STRING_Demo_Sounds));
const char *flipscreen = input_port_string_from_token(INPUT_PORT_UINT32(INPUT_STRING_Flip_Screen));
const input_port_entry *inp, *last_dipname_entry = NULL;
const game_driver *driver = drivers[drivnum];
int empty_string_found = FALSE;
int last_strindex = 0;
quark_entry *entry;
int error = FALSE;
int coin_error = FALSE;
UINT32 crc;
/* skip if no ports */
if (!driver->ipt)
return FALSE;
/* skip if we already validated these ports */
crc = (FPTR)driver->ipt;
for (entry = first_hash_entry(inputs_table, crc); entry; entry = entry->next)
if (entry->crc == crc && driver->ipt == drivers[entry - inputs_table->entry]->ipt)
return FALSE;
/* otherwise, add ourself to the list */
add_quark(inputs_table, drivnum, crc);
/* allocate the input ports */
*memory = input_port_allocate(driver->ipt, *memory);
/* iterate over the results */
for (inp = *memory; inp->type != IPT_END; inp++)
{
int strindex = 0;
if (port_type_is_analog(inp->type))
{
INT32 analog_max = inp->analog.max;
INT32 analog_min = inp->analog.min;
int shift;
if (inp->type == IPT_POSITIONAL || inp->type == IPT_POSITIONAL_V)
{
for (shift = 0; (shift <= 31) && (~inp->mask & (1 << shift)); shift++);
/* convert the positional max value to be in the bitmask for testing */
analog_max = (analog_max - 1) << shift;
/* positional port size must fit in bits used */
if (((inp->mask >> shift) + 1) < inp->analog.max)
{
mame_printf_error("%s: %s has an analog port with a positional port size bigger then the mask size\n", driver->source_file, driver->name);
error = TRUE;
}
}
else
{
/* only positional controls use PORT_WRAPS */
if (inp->analog.wraps)
{
mame_printf_error("%s: %s only positional analog ports use PORT_WRAPS\n", driver->source_file, driver->name);
error = TRUE;
}
}
/* analog ports must have a valid sensitivity */
if (inp->analog.sensitivity == 0)
{
mame_printf_error("%s: %s has an analog port with zero sensitivity\n", driver->source_file, driver->name);
error = TRUE;
}
/* check that the default falls in the bitmask range */
if (inp->default_value & ~inp->mask)
{
mame_printf_error("%s: %s has an analog port with a default value out of the bitmask range\n", driver->source_file, driver->name);
error = TRUE;
}
/* tests for absolute devices */
if (port_type_is_analog_absolute(inp->type))
{
INT32 default_value = inp->default_value;
/* adjust for signed values */
if (analog_min > analog_max)
{
analog_min = -analog_min;
if (default_value > analog_max)
default_value = -default_value;
}
/* check that the default falls in the MINMAX range */
if (default_value < analog_min || default_value > analog_max)
{
mame_printf_error("%s: %s has an analog port with a default value out PORT_MINMAX range\n", driver->source_file, driver->name);
error = TRUE;
}
/* check that the MINMAX falls in the bitmask range */
/* we use the unadjusted min for testing */
if (inp->analog.min & ~inp->mask || analog_max & ~inp->mask)
{
mame_printf_error("%s: %s has an analog port with a PORT_MINMAX value out of the bitmask range\n", driver->source_file, driver->name);
error = TRUE;
}
/* absolute analog ports do not use PORT_RESET */
if (inp->analog.reset)
{
mame_printf_error("%s: %s - absolute analog ports do not use PORT_RESET\n", driver->source_file, driver->name);
error = TRUE;
}
}
else
/* tests for relative devices */
{
/* tests for non IPT_POSITIONAL relative devices */
if (inp->type != IPT_POSITIONAL && inp->type != IPT_POSITIONAL_V)
{
/* relative devices do not use PORT_MINMAX */
if (inp->analog.min || inp->analog.max != inp->mask)
{
mame_printf_error("%s: %s - relative ports do not use PORT_MINMAX\n", driver->source_file, driver->name);
error = TRUE;
}
/* relative devices do not use a default value */
/* the counter is at 0 on power up */
if (inp->default_value)
{
mame_printf_error("%s: %s - relative ports do not use a default value other then 0\n", driver->source_file, driver->name);
error = TRUE;
}
}
}
}
/* clear the DIP switch tracking when we hit the first non-DIP entry */
if (last_dipname_entry && inp->type != IPT_DIPSWITCH_SETTING)
last_dipname_entry = NULL;
/* look for invalid (0) types which should be mapped to IPT_OTHER */
if (inp->type == IPT_INVALID)
{
mame_printf_error("%s: %s has an input port with an invalid type (0); use IPT_OTHER instead\n", driver->source_file, driver->name);
error = TRUE;
}
/* if this entry doesn't have a name, we don't care about the rest of this stuff */
if (!inp->name || inp->name == IP_NAME_DEFAULT)
{
/* not allowed for dipswitches */
if (inp->type == IPT_DIPSWITCH_NAME || inp->type == IPT_DIPSWITCH_SETTING)
{
mame_printf_error("%s: %s has a DIP switch name or setting with no name\n", driver->source_file, driver->name);
error = TRUE;
}
last_strindex = 0;
continue;
}
/* check for empty string */
if (!inp->name[0] && !empty_string_found)
{
mame_printf_error("%s: %s has an input with an empty string\n", driver->source_file, driver->name);
error = TRUE;
empty_string_found = TRUE;
}
/* check for trailing spaces */
if (inp->name[0] && inp->name[strlen(inp->name) - 1] == ' ')
{
mame_printf_error("%s: %s input '%s' has trailing spaces\n", driver->source_file, driver->name, inp->name);
error = TRUE;
}
/* check for invalid UTF-8 */
if (!utf8_is_valid_string(inp->name))
{
mame_printf_error("%s: %s input '%s' has invalid characters\n", driver->source_file, driver->name, inp->name);
error = TRUE;
}
/* hash the string and look it up in the string table */
crc = quark_string_crc(inp->name);
for (entry = first_hash_entry(defstr_table, crc); entry; entry = entry->next)
if (entry->crc == crc && !strcmp(inp->name, input_port_string_from_token(INPUT_PORT_UINT32(entry - defstr_table->entry))))
{
strindex = entry - defstr_table->entry;
break;
}
/* check for strings that should be DEF_STR */
if (strindex != 0 && inp->name != input_port_string_from_token(INPUT_PORT_UINT32(strindex)))
{
mame_printf_error("%s: %s must use DEF_STR( %s )\n", driver->source_file, driver->name, inp->name);
error = TRUE;
}
/* track the last dipswitch we encountered */
if (inp->type == IPT_DIPSWITCH_NAME)
last_dipname_entry = inp;
/* check for dipswitch ordering against the last entry */
if (inp[0].type == IPT_DIPSWITCH_SETTING && inp[-1].type == IPT_DIPSWITCH_SETTING && last_strindex != 0 && strindex != 0)
{
/* check for inverted off/on dispswitch order */
if (last_strindex == INPUT_STRING_On && strindex == INPUT_STRING_Off)
{
mame_printf_error("%s: %s has inverted Off/On dipswitch order\n", driver->source_file, driver->name);
error = TRUE;
}
/* check for inverted yes/no dispswitch order */
else if (last_strindex == INPUT_STRING_Yes && strindex == INPUT_STRING_No)
{
mame_printf_error("%s: %s has inverted No/Yes dipswitch order\n", driver->source_file, driver->name);
error = TRUE;
}
/* check for inverted upright/cocktail dispswitch order */
else if (last_strindex == INPUT_STRING_Cocktail && strindex == INPUT_STRING_Upright)
{
mame_printf_error("%s: %s has inverted Upright/Cocktail dipswitch order\n", driver->source_file, driver->name);
error = TRUE;
}
/* check for proper coin ordering */
else if (last_strindex >= INPUT_STRING_9C_1C && last_strindex <= INPUT_STRING_1C_9C && strindex >= INPUT_STRING_9C_1C && strindex <= INPUT_STRING_1C_9C &&
last_strindex >= strindex && !memcmp(&inp[-1].condition, &inp[0].condition, sizeof(inp[-1].condition)))
{
mame_printf_error("%s: %s has unsorted coinage %s > %s\n", driver->source_file, driver->name, inp[-1].name, inp[0].name);
error = TRUE;
coin_error = TRUE;
}
}
/* check for invalid DIP switch entries */
if (last_dipname_entry && inp->type == IPT_DIPSWITCH_SETTING)
{
/* make sure demo sounds default to on */
if (last_dipname_entry->name == demo_sounds && strindex == INPUT_STRING_On &&
last_dipname_entry->default_value != inp->default_value)
{
mame_printf_error("%s: %s Demo Sounds must default to On\n", driver->source_file, driver->name);
error = TRUE;
}
/* check for bad flip screen options */
if (last_dipname_entry->name == flipscreen && (strindex == INPUT_STRING_Yes || strindex == INPUT_STRING_No))
{
mame_printf_error("%s: %s has wrong Flip Screen option %s (must be Off/On)\n", driver->source_file, driver->name, inp->name);
error = TRUE;
}
/* check for bad demo sounds options */
if (last_dipname_entry->name == demo_sounds && (strindex == INPUT_STRING_Yes || strindex == INPUT_STRING_No))
{
mame_printf_error("%s: %s has wrong Demo Sounds option %s (must be Off/On)\n", driver->source_file, driver->name, inp->name);
error = TRUE;
}
}
/* remember the last string index */
last_strindex = strindex;
}
if ( coin_error )
display_valid_coin_order(drivnum, *memory);
return error;
}
/*************************************
*
* Validate sound and speakers
*
*************************************/
static int validate_sound(int drivnum, const machine_config *drv)
{
const game_driver *driver = drivers[drivnum];
int speaknum, sndnum;
int error = FALSE;
/* make sure the speaker layout makes sense */
for (speaknum = 0; speaknum < MAX_SPEAKER && drv->speaker[speaknum].tag; speaknum++)
{
int check;
/* check for duplicate tags */
for (check = 0; check < MAX_SPEAKER && drv->speaker[check].tag; check++)
if (speaknum != check && drv->speaker[check].tag && !strcmp(drv->speaker[speaknum].tag, drv->speaker[check].tag))
{
mame_printf_error("%s: %s has multiple speakers tagged as '%s'\n", driver->source_file, driver->name, drv->speaker[speaknum].tag);
error = TRUE;
}
/* make sure there are no sound chips with the same tag */
for (check = 0; check < MAX_SOUND && drv->sound[check].type != SOUND_DUMMY; check++)
if (drv->sound[check].tag && !strcmp(drv->speaker[speaknum].tag, drv->sound[check].tag))
{
mame_printf_error("%s: %s has both a speaker and a sound chip tagged as '%s'\n", driver->source_file, driver->name, drv->speaker[speaknum].tag);
error = TRUE;
}
}
/* make sure the sounds are wired to the speakers correctly */
for (sndnum = 0; sndnum < MAX_SOUND && drv->sound[sndnum].type != SOUND_DUMMY; sndnum++)
{
int routenum;
/* loop over all the routes */
for (routenum = 0; routenum < drv->sound[sndnum].routes; routenum++)
{
/* find a speaker with the requested tag */
for (speaknum = 0; speaknum < MAX_SPEAKER && drv->speaker[speaknum].tag; speaknum++)
if (!strcmp(drv->sound[sndnum].route[routenum].target, drv->speaker[speaknum].tag))
break;
/* if we didn't find one, look for another sound chip with the tag */
if (speaknum >= MAX_SPEAKER || !drv->speaker[speaknum].tag)
{
int check;
for (check = 0; check < MAX_SOUND && drv->sound[check].type != SOUND_DUMMY; check++)
if (check != sndnum && drv->sound[check].tag && !strcmp(drv->sound[check].tag, drv->sound[sndnum].route[routenum].target))
break;
/* if we didn't find one, it's an error */
if (check >= MAX_SOUND || drv->sound[check].type == SOUND_DUMMY)
{
mame_printf_error("%s: %s attempting to route sound to non-existant speaker '%s'\n", driver->source_file, driver->name, drv->sound[sndnum].route[routenum].target);
error = TRUE;
}
}
}
}
return error;
}
/*************************************
*
* Master validity checker
*
*************************************/
int mame_validitychecks(const game_driver *curdriver)
{
osd_ticks_t prep = 0;
osd_ticks_t expansion = 0;
osd_ticks_t driver_checks = 0;
osd_ticks_t rom_checks = 0;
osd_ticks_t cpu_checks = 0;
osd_ticks_t gfx_checks = 0;
osd_ticks_t display_checks = 0;
osd_ticks_t input_checks = 0;
osd_ticks_t sound_checks = 0;
#ifdef MESS
osd_ticks_t mess_checks = 0;
#endif
input_port_entry *inputports = NULL;
int drivnum;
int error = FALSE;
UINT16 lsbtest;
UINT8 a, b;
/* basic system checks */
a = 0xff;
b = a + 1;
if (b > a) { mame_printf_error("UINT8 must be 8 bits\n"); error = TRUE; }
if (sizeof(INT8) != 1) { mame_printf_error("INT8 must be 8 bits\n"); error = TRUE; }
if (sizeof(UINT8) != 1) { mame_printf_error("UINT8 must be 8 bits\n"); error = TRUE; }
if (sizeof(INT16) != 2) { mame_printf_error("INT16 must be 16 bits\n"); error = TRUE; }
if (sizeof(UINT16) != 2) { mame_printf_error("UINT16 must be 16 bits\n"); error = TRUE; }
if (sizeof(INT32) != 4) { mame_printf_error("INT32 must be 32 bits\n"); error = TRUE; }
if (sizeof(UINT32) != 4) { mame_printf_error("UINT32 must be 32 bits\n"); error = TRUE; }
if (sizeof(INT64) != 8) { mame_printf_error("INT64 must be 64 bits\n"); error = TRUE; }
if (sizeof(UINT64) != 8) { mame_printf_error("UINT64 must be 64 bits\n"); error = TRUE; }
#ifdef PTR64
if (sizeof(void *) != 8) { mame_printf_error("PTR64 flag enabled, but was compiled for 32-bit target\n"); error = TRUE; }
#else
if (sizeof(void *) != 4) { mame_printf_error("PTR64 flag not enabled, but was compiled for 64-bit target\n"); error = TRUE; }
#endif
lsbtest = 0;
*(UINT8 *)&lsbtest = 0xff;
#ifdef LSB_FIRST
if (lsbtest == 0xff00) { mame_printf_error("LSB_FIRST specified, but running on a big-endian machine\n"); error = TRUE; }
#else
if (lsbtest == 0x00ff) { mame_printf_error("LSB_FIRST not specified, but running on a little-endian machine\n"); error = TRUE; }
#endif
/* validate inline function behavior */
error = validate_inlines() || error;
/* make sure the CPU and sound interfaces are up and running */
cpuintrf_init(NULL);
sndintrf_init(NULL);
init_resource_tracking();
begin_resource_tracking();
osd_profiling_ticks();
/* prepare by pre-scanning all the drivers and adding their info to hash tables */
prep -= osd_profiling_ticks();
build_quarks();
prep += osd_profiling_ticks();
/* iterate over all drivers */
for (drivnum = 0; drivers[drivnum]; drivnum++)
{
const game_driver *driver = drivers[drivnum];
UINT32 region_length[REGION_MAX];
machine_config drv;
/* ASG -- trying this for a while to see if submission failures increase */
#if 1
/* non-debug builds only care about games in the same driver */
if (curdriver != NULL && strcmp(curdriver->source_file, driver->source_file) != 0)
continue;
#endif
/* expand the machine driver */
expansion -= osd_profiling_ticks();
expand_machine_driver(driver->drv, &drv);
expansion += osd_profiling_ticks();
/* validate the driver entry */
driver_checks -= osd_profiling_ticks();
error = validate_driver(drivnum, &drv) || error;
driver_checks += osd_profiling_ticks();
/* validate the ROM information */
rom_checks -= osd_profiling_ticks();
error = validate_roms(drivnum, &drv, region_length) || error;
rom_checks += osd_profiling_ticks();
/* validate the CPU information */
cpu_checks -= osd_profiling_ticks();
error = validate_cpu(drivnum, &drv, region_length) || error;
cpu_checks += osd_profiling_ticks();
/* validate the display */
display_checks -= osd_profiling_ticks();
error = validate_display(drivnum, &drv) || error;
display_checks += osd_profiling_ticks();
/* validate the graphics decoding */
gfx_checks -= osd_profiling_ticks();
error = validate_gfx(drivnum, &drv, region_length) || error;
gfx_checks += osd_profiling_ticks();
/* validate input ports */
input_checks -= osd_profiling_ticks();
error = validate_inputs(drivnum, &drv, &inputports) || error;
input_checks += osd_profiling_ticks();
/* validate sounds and speakers */
sound_checks -= osd_profiling_ticks();
error = validate_sound(drivnum, &drv) || error;
sound_checks += osd_profiling_ticks();
}
#ifdef MESS
mess_checks -= osd_profiling_ticks();
if (mess_validitychecks())
error = TRUE;
mess_checks += osd_profiling_ticks();
#endif /* MESS */
#if (REPORT_TIMES)
mame_printf_info("Prep: %8dm\n", (int)(prep / 1000000));
mame_printf_info("Expansion: %8dm\n", (int)(expansion / 1000000));
mame_printf_info("Driver: %8dm\n", (int)(driver_checks / 1000000));
mame_printf_info("ROM: %8dm\n", (int)(rom_checks / 1000000));
mame_printf_info("CPU: %8dm\n", (int)(cpu_checks / 1000000));
mame_printf_info("Display: %8dm\n", (int)(display_checks / 1000000));
mame_printf_info("Graphics: %8dm\n", (int)(gfx_checks / 1000000));
mame_printf_info("Input: %8dm\n", (int)(input_checks / 1000000));
mame_printf_info("Sound: %8dm\n", (int)(sound_checks / 1000000));
#ifdef MESS
mame_printf_info("MESS: %8dm\n", (int)(mess_checks / 1000000));
#endif
#endif
end_resource_tracking();
exit_resource_tracking();
return error;
}