mame/src/lib/netlist/solver/nld_solver.cpp

438 lines
11 KiB
C++

// license:GPL-2.0+
// copyright-holders:Couriersud
/*
* nld_solver.c
*
*/
/* Commented out for now. Relatively low number of terminals / nets make
* the vectorizations fast-math enables pretty expensive
*/
#if 0
#pragma GCC optimize "fast-math"
#pragma GCC optimize "strict-aliasing"
#pragma GCC optimize "tree-vectorize"
#pragma GCC optimize "tree-vectorizer-verbose=7"
#pragma GCC optimize "opt-info-vec"
#pragma GCC optimize "opt-info-vec-missed"
//#pragma GCC optimize "tree-parallelize-loops=4"
#pragma GCC optimize "unroll-loops"
#pragma GCC optimize "unswitch-loops"
#pragma GCC optimize "variable-expansion-in-unroller"
#pragma GCC optimize "unsafe-loop-optimizations"
#pragma GCC optimize "vect-cost-model"
#pragma GCC optimize "variable-expansion-in-unroller"
#pragma GCC optimize "tree-loop-if-convert-stores"
#pragma GCC optimize "tree-loop-distribution"
#pragma GCC optimize "tree-loop-im"
#pragma GCC optimize "tree-loop-ivcanon"
#pragma GCC optimize "ivopts"
#endif
#include <algorithm>
#include <cmath> // <<= needed by windows build
#include "../nl_lists.h"
#if HAS_OPENMP
#include "omp.h"
#endif
#include "../nl_factory.h"
#include "nld_solver.h"
#include "nld_matrix_solver.h"
#if 1
#include "nld_ms_direct.h"
#include "nld_ms_gcr.h"
#else
#include "nld_ms_direct_lu.h"
#endif
#include "nld_ms_w.h"
#include "nld_ms_sm.h"
#include "nld_ms_direct1.h"
#include "nld_ms_direct2.h"
#include "nld_ms_sor.h"
#include "nld_ms_sor_mat.h"
#include "nld_ms_gmres.h"
namespace netlist
{
namespace devices
{
// ----------------------------------------------------------------------------------------
// solver
// ----------------------------------------------------------------------------------------
NETLIB_RESET(solver)
{
for (std::size_t i = 0; i < m_mat_solvers.size(); i++)
m_mat_solvers[i]->do_reset();
}
void NETLIB_NAME(solver)::stop()
{
for (std::size_t i = 0; i < m_mat_solvers.size(); i++)
m_mat_solvers[i]->log_stats();
}
NETLIB_NAME(solver)::~NETLIB_NAME(solver)()
{
}
NETLIB_UPDATE(solver)
{
if (m_params.m_dynamic_ts)
return;
/* force solving during start up if there are no time-step devices */
/* FIXME: Needs a more elegant solution */
bool force_solve = (netlist().time() < netlist_time::from_double(2 * m_params.m_max_timestep));
#if HAS_OPENMP && USE_OPENMP
const std::size_t t_cnt = m_mat_solvers.size();
if (m_parallel())
{
//omp_set_num_threads(3);
//omp_set_dynamic(0);
#pragma omp parallel
{
#pragma omp for
for (int i = 0; i < t_cnt; i++)
if (m_mat_solvers[i]->has_timestep_devices() || force_solve)
{
// Ignore return value
ATTR_UNUSED const netlist_time ts = m_mat_solvers[i]->solve();
}
}
for (auto & solver : m_mat_solvers)
if (solver->has_timestep_devices() || force_solve)
solver->update_inputs();
}
else
for (int i = 0; i < t_cnt; i++)
if (m_mat_solvers[i]->has_timestep_devices() || force_solve)
{
// Ignore return value
ATTR_UNUSED const netlist_time ts = m_mat_solvers[i]->solve();
solver->update_inputs();
}
#else
for (auto & solver : m_mat_solvers)
if (solver->has_timestep_devices() || force_solve)
{
// Ignore return value
ATTR_UNUSED const netlist_time ts = solver->solve();
solver->update_inputs();
}
#endif
/* step circuit */
if (!m_Q_step.net().is_queued())
{
m_Q_step.net().toggle_and_push_to_queue(netlist_time::from_double(m_params.m_max_timestep));
}
}
template <class C>
std::unique_ptr<matrix_solver_t> create_it(netlist_t &nl, pstring name, solver_parameters_t &params, std::size_t size)
{
typedef C solver;
return plib::make_unique<solver>(nl, name, &params, size);
}
template <std::size_t m_N, std::size_t storage_N>
std::unique_ptr<matrix_solver_t> NETLIB_NAME(solver)::create_solver(std::size_t size, const pstring &solvername)
{
if (pstring("SOR_MAT").equals(m_method()))
{
return create_it<matrix_solver_SOR_mat_t<m_N, storage_N>>(netlist(), solvername, m_params, size);
//typedef matrix_solver_SOR_mat_t<m_N,storage_N> solver_sor_mat;
//return plib::make_unique<solver_sor_mat>(netlist(), solvername, &m_params, size);
}
else if (pstring("MAT_CR").equals(m_method()))
{
if (size > 0) // GCR always outperforms MAT solver
{
typedef matrix_solver_GCR_t<m_N,storage_N> solver_mat;
return plib::make_unique<solver_mat>(netlist(), solvername, &m_params, size);
}
else
{
typedef matrix_solver_direct_t<m_N,storage_N> solver_mat;
return plib::make_unique<solver_mat>(netlist(), solvername, &m_params, size);
}
}
else if (pstring("MAT").equals(m_method()))
{
typedef matrix_solver_direct_t<m_N,storage_N> solver_mat;
return plib::make_unique<solver_mat>(netlist(), solvername, &m_params, size);
}
else if (pstring("SM").equals(m_method()))
{
/* Sherman-Morrison Formula */
typedef matrix_solver_sm_t<m_N,storage_N> solver_mat;
return plib::make_unique<solver_mat>(netlist(), solvername, &m_params, size);
}
else if (pstring("W").equals(m_method()))
{
/* Woodbury Formula */
typedef matrix_solver_w_t<m_N,storage_N> solver_mat;
return plib::make_unique<solver_mat>(netlist(), solvername, &m_params, size);
}
else if (pstring("SOR").equals(m_method()))
{
typedef matrix_solver_SOR_t<m_N,storage_N> solver_GS;
return plib::make_unique<solver_GS>(netlist(), solvername, &m_params, size);
}
else if (pstring("GMRES").equals(m_method()))
{
typedef matrix_solver_GMRES_t<m_N,storage_N> solver_GMRES;
return plib::make_unique<solver_GMRES>(netlist(), solvername, &m_params, size);
}
else
{
log().fatal(MF_1_UNKNOWN_SOLVER_TYPE, m_method());
return nullptr;
}
}
struct net_splitter
{
bool already_processed(analog_net_t *n)
{
if (n->isRailNet())
return true;
for (auto & grp : groups)
if (plib::container::contains(grp, n))
return true;
return false;
}
void process_net(analog_net_t *n)
{
if (n->num_cons() == 0)
return;
/* add the net */
groups.back().push_back(n);
for (auto &p : n->m_core_terms)
{
if (p->is_type(detail::terminal_type::TERMINAL))
{
terminal_t *pt = static_cast<terminal_t *>(p);
analog_net_t *other_net = &pt->m_otherterm->net();
if (!already_processed(other_net))
process_net(other_net);
}
}
}
void run(netlist_t &netlist)
{
for (auto & net : netlist.m_nets)
{
netlist.log().debug("processing {1}\n", net->name());
if (!net->isRailNet() && net->num_cons() > 0)
{
netlist.log().debug(" ==> not a rail net\n");
/* Must be an analog net */
analog_net_t *n = static_cast<analog_net_t *>(net.get());
if (!already_processed(n))
{
groups.push_back(analog_net_t::list_t());
process_net(n);
}
}
}
}
std::vector<analog_net_t::list_t> groups;
};
void NETLIB_NAME(solver)::post_start()
{
const bool use_specific = true;
m_params.m_pivot = m_pivot();
m_params.m_accuracy = m_accuracy();
/* FIXME: Throw when negative */
m_params.m_gs_loops = static_cast<unsigned>(m_gs_loops());
m_params.m_nr_loops = static_cast<unsigned>(m_nr_loops());
m_params.m_nr_recalc_delay = netlist_time::from_double(m_nr_recalc_delay());
m_params.m_dynamic_lte = m_dynamic_lte();
m_params.m_gs_sor = m_gs_sor();
m_params.m_min_timestep = m_dynamic_min_ts();
m_params.m_dynamic_ts = (m_dynamic_ts() == 1 ? true : false);
m_params.m_max_timestep = netlist_time::from_double(1.0 / m_freq()).as_double();
if (m_params.m_dynamic_ts)
{
m_params.m_max_timestep *= 1;//NL_FCONST(1000.0);
}
else
{
m_params.m_min_timestep = m_params.m_max_timestep;
}
//m_params.m_max_timestep = std::max(m_params.m_max_timestep, m_params.m_max_timestep::)
// Override log statistics
pstring p = plib::util::environment("NL_STATS", "");
if (p != "")
m_params.m_log_stats = p.as_long();
else
m_params.m_log_stats = m_log_stats();
log().verbose("Scanning net groups ...");
// determine net groups
net_splitter splitter;
splitter.run(netlist());
// setup the solvers
log().verbose("Found {1} net groups in {2} nets\n", splitter.groups.size(), netlist().m_nets.size());
for (auto & grp : splitter.groups)
{
std::unique_ptr<matrix_solver_t> ms;
std::size_t net_count = grp.size();
pstring sname = plib::pfmt("Solver_{1}")(m_mat_solvers.size());
switch (net_count)
{
#if 1
case 1:
if (use_specific)
ms = plib::make_unique<matrix_solver_direct1_t>(netlist(), sname, &m_params);
else
ms = create_solver<1,1>(1, sname);
break;
case 2:
if (use_specific)
ms = plib::make_unique<matrix_solver_direct2_t>(netlist(), sname, &m_params);
else
ms = create_solver<2,2>(2, sname);
break;
case 3:
ms = create_solver<3,3>(3, sname);
break;
case 4:
ms = create_solver<4,4>(4, sname);
break;
case 5:
ms = create_solver<5,5>(5, sname);
break;
case 6:
ms = create_solver<6,6>(6, sname);
break;
case 7:
ms = create_solver<7,7>(7, sname);
break;
case 8:
ms = create_solver<8,8>(8, sname);
break;
case 9:
ms = create_solver<9,9>(9, sname);
break;
case 10:
ms = create_solver<10,10>(10, sname);
break;
case 11:
ms = create_solver<11,11>(11, sname);
break;
case 12:
ms = create_solver<12,12>(12, sname);
break;
case 15:
ms = create_solver<15,15>(15, sname);
break;
case 31:
ms = create_solver<31,31>(31, sname);
break;
case 35:
ms = create_solver<31,31>(31, sname);
break;
case 49:
ms = create_solver<49,49>(49, sname);
break;
#if 0
case 87:
ms = create_solver<87,87>(87, sname);
break;
#endif
#endif
default:
log().warning(MW_1_NO_SPECIFIC_SOLVER, net_count);
if (net_count <= 8)
{
ms = create_solver<0, 8>(net_count, sname);
}
else if (net_count <= 16)
{
ms = create_solver<0,16>(net_count, sname);
}
else if (net_count <= 32)
{
ms = create_solver<0,32>(net_count, sname);
}
else
if (net_count <= 64)
{
ms = create_solver<0,64>(net_count, sname);
}
else
if (net_count <= 128)
{
ms = create_solver<0,128>(net_count, sname);
}
else
{
log().fatal(MF_1_NETGROUP_SIZE_EXCEEDED_1, 128);
ms = nullptr; /* tease compilers */
}
break;
}
// FIXME ...
ms->setup(grp);
log().verbose("Solver {1}", ms->name());
log().verbose(" ==> {2} nets", grp.size());
log().verbose(" has {1} elements", ms->has_dynamic_devices() ? "dynamic" : "no dynamic");
log().verbose(" has {1} elements", ms->has_timestep_devices() ? "timestep" : "no timestep");
for (auto &n : grp)
{
log().verbose("Net {1}", n->name());
for (const auto &pcore : n->m_core_terms)
{
log().verbose(" {1}", pcore->name());
}
}
m_mat_solvers.push_back(std::move(ms));
}
}
void NETLIB_NAME(solver)::create_solver_code(std::map<pstring, pstring> &mp)
{
for (auto & s : m_mat_solvers)
{
auto r = s->create_solver_code();
mp[r.first] = r.second; // automatically overwrites identical names
}
}
NETLIB_DEVICE_IMPL(solver)
} //namespace devices
} // namespace netlist