mame/src/devices/cpu/drcuml.cpp
Julian Sikorski 65b0df8761
Fix non-x86 build and try to make sure it does not break silently again (#7041)
* Do not build x64 DRC backend when C backend is forced
* New CI target (mametiny + kinst)
* Switch travis to CI target
* Switch appveyor to CI target
2020-08-12 12:54:22 -04:00

1129 lines
39 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
drcuml.c
Universal machine language for dynamic recompiling CPU cores.
****************************************************************************
Future improvements/changes:
* UML optimizer:
- constant folding
* Write a back-end validator:
- checks all combinations of memory/register/immediate on all params
- checks behavior of all opcodes
* Extend registers to 16? Depends on if PPC can use them
* Support for FPU exceptions
* New instructions?
- VALID opcode_desc,handle,param
checksum/compare code referenced by opcode_desc; if not
matching, generate exception with handle,param
- RECALL handle
change code at caller to call handle in the future
***************************************************************************/
#include "emu.h"
#include "drcuml.h"
#include "emuopts.h"
#include "drcbec.h"
#ifdef NATIVE_DRC
#include "drcbex86.h"
#include "drcbex64.h"
#endif
#include <fstream>
//**************************************************************************
// DEBUGGING
//**************************************************************************
#define VALIDATE_BACKEND (0)
#define LOG_SIMPLIFICATIONS (0)
//**************************************************************************
// TYPE DEFINITIONS
//**************************************************************************
// determine the type of the native DRC, falling back to C
#ifndef NATIVE_DRC
typedef drcbe_c drcbe_native;
#else
typedef NATIVE_DRC drcbe_native;
#endif
// structure describing back-end validation test
struct bevalidate_test
{
uml::opcode_t opcode;
u8 size;
u8 iflags;
u8 flags;
u64 param[4];
};
//**************************************************************************
// DRC BACKEND INTERFACE
//**************************************************************************
//-------------------------------------------------
// drcbe_interface - constructor
//-------------------------------------------------
drcbe_interface::drcbe_interface(drcuml_state &drcuml, drc_cache &cache, device_t &device)
: m_drcuml(drcuml)
, m_cache(cache)
, m_device(device)
, m_space()
, m_state(*reinterpret_cast<drcuml_machine_state *>(cache.alloc_near(sizeof(m_state))))
, m_accessors(nullptr)
{
// reset the machine state
memset(&m_state, 0, sizeof(m_state));
// find the spaces and fetch memory accessors
device_memory_interface *memory;
if (device.interface(memory))
{
int const count = memory->max_space_count();
m_accessors = reinterpret_cast<data_accessors *>(cache.alloc_near(sizeof(*m_accessors) * count));
memset(m_accessors, 0, sizeof(*m_accessors) * count);
m_space.resize(count, nullptr);
for (int spacenum = 0; spacenum < count; ++spacenum)
{
if (memory->has_space(spacenum))
{
m_space[spacenum] = &memory->space(spacenum);
m_space[spacenum]->accessors(m_accessors[spacenum]);
}
}
}
}
//-------------------------------------------------
// ~drcbe_interface - destructor
//-------------------------------------------------
drcbe_interface::~drcbe_interface()
{
}
//**************************************************************************
// DRCUML STATE
//**************************************************************************
//-------------------------------------------------
// drcuml_state - constructor
//-------------------------------------------------
drcuml_state::drcuml_state(device_t &device, drc_cache &cache, u32 flags, int modes, int addrbits, int ignorebits)
: m_device(device)
, m_cache(cache)
, m_beintf(device.machine().options().drc_use_c()
? std::unique_ptr<drcbe_interface>{ new drcbe_c(*this, device, cache, flags, modes, addrbits, ignorebits) }
: std::unique_ptr<drcbe_interface>{ new drcbe_native(*this, device, cache, flags, modes, addrbits, ignorebits) })
, m_umllog(device.machine().options().drc_log_uml()
? new std::ofstream(util::string_format("drcuml_%s.asm", device.shortname()))
: nullptr)
, m_blocklist()
, m_handlelist()
, m_symlist()
{
}
//-------------------------------------------------
// ~drcuml_state - destructor
//-------------------------------------------------
drcuml_state::~drcuml_state()
{
}
//-------------------------------------------------
// reset - reset the state completely, flushing
// the cache and all information
//-------------------------------------------------
void drcuml_state::reset()
{
// if we error here, we are screwed
try
{
// flush the cache
m_cache.flush();
// reset all handle code pointers
for (uml::code_handle &handle : m_handlelist)
*handle.codeptr_addr() = nullptr;
// call the backend to reset
m_beintf->reset();
// do a one-time validation if requested
#if 0
if (VALIDATE_BACKEND)
{
static bool validated = false;
if (!validated)
{
validated = true;
validate_backend(this);
}
}
#endif
}
catch (drcuml_block::abort_compilation &)
{
fatalerror("Out of cache space in drcuml_state::reset\n");
}
}
//-------------------------------------------------
// begin_block - begin a new code block
//-------------------------------------------------
drcuml_block &drcuml_state::begin_block(uint32_t maxinst)
{
// find an inactive block that matches our qualifications
drcuml_block *bestblock(nullptr);
for (drcuml_block &block : m_blocklist)
{
if (!block.inuse() && (block.maxinst() >= maxinst) && (!bestblock || (block.maxinst() < bestblock->maxinst())))
bestblock = &block;
}
// if we failed to find one, allocate a new one
if (!bestblock)
bestblock = &*m_blocklist.emplace(m_blocklist.end(), *this, maxinst * 3 / 2);
// start the block
bestblock->begin();
return *bestblock;
}
//-------------------------------------------------
// handle_alloc - allocate a new handle
//-------------------------------------------------
uml::code_handle *drcuml_state::handle_alloc(char const *name)
{
// allocate the handle, add it to our list, and return it
return &*m_handlelist.emplace(m_handlelist.end(), *this, name);
}
//-------------------------------------------------
// symbol_add - add a symbol to the internal
// symbol table
//-------------------------------------------------
void drcuml_state::symbol_add(void *base, u32 length, char const *name)
{
m_symlist.emplace_back(base, length, name);
}
//-------------------------------------------------
// symbol_find - look up a symbol from the
// internal symbol table or return nullptr if not
// found
//-------------------------------------------------
const char *drcuml_state::symbol_find(void *base, u32 *offset)
{
drccodeptr const search(reinterpret_cast<drccodeptr>(base));
// simple linear search
for (symbol const &cursym : m_symlist)
{
// if no offset pointer, only match perfectly
if (cursym.includes(search) && (offset || (cursym.base() == search)))
{
// return the offset and name
if (offset)
*offset = search - cursym.base();
return cursym.name().c_str();
}
}
// not found; return nullptr
return nullptr;
}
//-------------------------------------------------
// log_vprintf - directly printf to the UML log
// if generated
//-------------------------------------------------
void drcuml_state::log_vprintf(util::format_argument_pack<std::ostream> const &args)
{
// if we have a file, print to it
if (m_umllog)
{
util::stream_format(*m_umllog, args);
m_umllog->flush();
}
}
//**************************************************************************
// DRCUML BLOCK
//**************************************************************************
//-------------------------------------------------
// drcuml_block - constructor
//-------------------------------------------------
drcuml_block::drcuml_block(drcuml_state &drcuml, u32 maxinst)
: m_drcuml(drcuml)
, m_nextinst(0)
, m_maxinst(maxinst * 3/2)
, m_inst(m_maxinst)
, m_inuse(false)
{
}
//-------------------------------------------------
// ~drcuml_block - destructor
//-------------------------------------------------
drcuml_block::~drcuml_block()
{
}
//-------------------------------------------------
// begin - begin code generation
//-------------------------------------------------
void drcuml_block::begin()
{
// set up the block information and return it
m_inuse = true;
m_nextinst = 0;
}
//-------------------------------------------------
// end - complete a code block and commit it to
// the cache via the back-end
//-------------------------------------------------
void drcuml_block::end()
{
assert(m_inuse);
// optimize the resulting code first
optimize();
// if we have a logfile, generate a disassembly of the block
if (m_drcuml.logging())
disassemble();
// generate the code via the back-end
m_drcuml.generate(*this, &m_inst[0], m_nextinst);
// block is no longer in use
m_inuse = false;
}
//-------------------------------------------------
// abort - abort a code block in progress
//-------------------------------------------------
void drcuml_block::abort()
{
assert(m_inuse);
// block is no longer in use
m_inuse = false;
// unwind
throw abort_compilation();
}
//-------------------------------------------------
// append - append an opcode to the block
//-------------------------------------------------
uml::instruction &drcuml_block::append()
{
// get a pointer to the next instruction
uml::instruction &curinst(m_inst[m_nextinst++]);
if (m_nextinst > m_maxinst)
fatalerror("Overran maxinst in drcuml_block_append\n");
return curinst;
}
//-------------------------------------------------
// optimize - apply various optimizations to a
// block of code
//-------------------------------------------------
void drcuml_block::optimize()
{
u32 mapvar[uml::MAPVAR_COUNT] = { 0 };
// iterate over instructions
for (int instnum = 0; instnum < m_nextinst; instnum++)
{
uml::instruction &inst(m_inst[instnum]);
// first compute what flags we need
u8 accumflags(0);
u8 remainingflags(inst.output_flags());
// scan ahead until we run out of possible remaining flags
for (int scannum = instnum + 1; remainingflags != 0 && scannum < m_nextinst; scannum++)
{
// any input flags are required
uml::instruction const &scan(m_inst[scannum]);
accumflags |= scan.input_flags();
// if the scanahead instruction is unconditional, assume his flags are modified
if (scan.condition() == uml::COND_ALWAYS)
remainingflags &= ~scan.modified_flags();
}
inst.set_flags(accumflags);
// track mapvars
if (inst.opcode() == uml::OP_MAPVAR)
mapvar[inst.param(0).mapvar() - uml::MAPVAR_M0] = inst.param(1).immediate();
// convert all mapvar parameters to immediates
else if (inst.opcode() != uml::OP_RECOVER)
for (int pnum = 0; pnum < inst.numparams(); pnum++)
if (inst.param(pnum).is_mapvar())
inst.set_mapvar(pnum, mapvar[inst.param(pnum).mapvar() - uml::MAPVAR_M0]);
// now that flags are correct, simplify the instruction
inst.simplify();
}
}
//-------------------------------------------------
// disassemble - disassemble a block of
// instructions to the log
//-------------------------------------------------
void drcuml_block::disassemble()
{
std::string comment;
// iterate over instructions and output
int firstcomment(-1);
for (int instnum = 0; instnum < m_nextinst; instnum++)
{
uml::instruction const &inst(m_inst[instnum]);
bool flushcomments(false);
// remember comments and mapvars for later
if (inst.opcode() == uml::OP_COMMENT || inst.opcode() == uml::OP_MAPVAR)
{
if (firstcomment == -1)
firstcomment = instnum;
}
// print labels, handles, and hashes left justified
else if (inst.opcode() == uml::OP_LABEL)
m_drcuml.log_printf("$%X:\n", u32(inst.param(0).label()));
else if (inst.opcode() == uml::OP_HANDLE)
m_drcuml.log_printf("%s:\n", inst.param(0).handle().string());
else if (inst.opcode() == uml::OP_HASH)
m_drcuml.log_printf("(%X,%X):\n", u32(inst.param(0).immediate()), u32(inst.param(1).immediate()));
// indent everything else with a tab
else
{
std::string const dasm(m_inst[instnum].disasm(&m_drcuml));
// include the first accumulated comment with this line
if (firstcomment != -1)
{
m_drcuml.log_printf("\t%-50.50s; %s\n", dasm, get_comment_text(m_inst[firstcomment], comment));
firstcomment++;
flushcomments = true;
}
else
{
m_drcuml.log_printf("\t%s\n", dasm);
}
}
// flush any comments pending
if (firstcomment != -1 && (flushcomments || instnum == m_nextinst - 1))
{
while (firstcomment <= instnum)
{
char const *const text(get_comment_text(m_inst[firstcomment++], comment));
if (text)
m_drcuml.log_printf("\t%50s; %s\n", "", text);
}
firstcomment = -1;
}
}
m_drcuml.log_printf("\n\n");
m_drcuml.log_flush();
}
//-------------------------------------------------
// get_comment_text - determine the text
// associated with a comment or mapvar
//-------------------------------------------------
char const *drcuml_block::get_comment_text(uml::instruction const &inst, std::string &comment)
{
if (inst.opcode() == uml::OP_COMMENT)
{
// comments return their strings
return comment.assign(inst.param(0).string()).c_str();
}
else if (inst.opcode() == uml::OP_MAPVAR)
{
// mapvars comment about their values
comment = string_format("m%d = $%X", int(inst.param(0).mapvar() - uml::MAPVAR_M0), u32(inst.param(1).immediate()));
return comment.c_str();
}
else
{
// everything else is nullptr
return nullptr;
}
}
#if 0
/***************************************************************************
BACK-END VALIDATION
***************************************************************************/
//-------------------------------------------------
// effective_test_psize - return the effective
// parameter size based on the size and fixed
// array of parameter values
//-------------------------------------------------
inline uint8_t effective_test_psize(const opcode_info &opinfo, int pnum, int instsize, const uint64_t *params)
{
switch (opinfo.param[pnum].size)
{
case PSIZE_4: return 4;
case PSIZE_8: return 8;
case PSIZE_OP: return instsize;
case PSIZE_P1: return 1 << (params[0] & 3);
case PSIZE_P2: return 1 << (params[1] & 3);
case PSIZE_P3: return 1 << (params[2] & 3);
case PSIZE_P4: return 1 << (params[3] & 3);
}
return instsize;
}
#define TEST_ENTRY_2(op, size, p1, p2, flags) { OP_##op, size, 0, flags, { u64(p1), u64(p2) } },
#define TEST_ENTRY_2F(op, size, p1, p2, iflags, flags) { OP_##op, size, iflags, flags, { u64(p1), u64(p2) } },
#define TEST_ENTRY_3(op, size, p1, p2, p3, flags) { OP_##op, size, 0, flags, { u64(p1), u64(p2), u64(p3) } },
#define TEST_ENTRY_3F(op, size, p1, p2, p3, iflags, flags) { OP_##op, size, iflags, flags, { u64(p1), u64(p2), u64(p3) } },
#define TEST_ENTRY_4(op, size, p1, p2, p3, p4, flags) { OP_##op, size, 0, flags, { u64(p1), u64(p2), u64(p3), u64(p4) } },
#define TEST_ENTRY_4F(op, size, p1, p2, p3, p4, iflags, flags) { OP_##op, size, iflags, flags, { u64(p1), u64(p2), u64(p3), u64(p4) } },
static const bevalidate_test bevalidate_test_list[] =
{
TEST_ENTRY_3(ADD, 4, 0x7fffffff, 0x12345678, 0x6dcba987, 0)
TEST_ENTRY_3(ADD, 4, 0x80000000, 0x12345678, 0x6dcba988, FLAG_V | FLAG_S)
TEST_ENTRY_3(ADD, 4, 0xffffffff, 0x92345678, 0x6dcba987, FLAG_S)
TEST_ENTRY_3(ADD, 4, 0x00000000, 0x92345678, 0x6dcba988, FLAG_C | FLAG_Z)
TEST_ENTRY_3(ADD, 8, 0x7fffffffffffffff, 0x0123456789abcdef, 0x7edcba9876543210, 0)
TEST_ENTRY_3(ADD, 8, 0x8000000000000000, 0x0123456789abcdef, 0x7edcba9876543211, FLAG_V | FLAG_S)
TEST_ENTRY_3(ADD, 8, 0xffffffffffffffff, 0x8123456789abcdef, 0x7edcba9876543210, FLAG_S)
TEST_ENTRY_3(ADD, 8, 0x0000000000000000, 0x8123456789abcdef, 0x7edcba9876543211, FLAG_C | FLAG_Z)
TEST_ENTRY_3F(ADDC, 4, 0x7fffffff, 0x12345678, 0x6dcba987, 0, 0)
TEST_ENTRY_3F(ADDC, 4, 0x7fffffff, 0x12345678, 0x6dcba986, FLAG_C, 0)
TEST_ENTRY_3F(ADDC, 4, 0x80000000, 0x12345678, 0x6dcba988, 0, FLAG_V | FLAG_S)
TEST_ENTRY_3F(ADDC, 4, 0x80000000, 0x12345678, 0x6dcba987, FLAG_C, FLAG_V | FLAG_S)
TEST_ENTRY_3F(ADDC, 4, 0xffffffff, 0x92345678, 0x6dcba987, 0, FLAG_S)
TEST_ENTRY_3F(ADDC, 4, 0xffffffff, 0x92345678, 0x6dcba986, FLAG_C, FLAG_S)
TEST_ENTRY_3F(ADDC, 4, 0x00000000, 0x92345678, 0x6dcba988, 0, FLAG_C | FLAG_Z)
TEST_ENTRY_3F(ADDC, 4, 0x00000000, 0x92345678, 0x6dcba987, FLAG_C, FLAG_C | FLAG_Z)
TEST_ENTRY_3F(ADDC, 4, 0x12345678, 0x12345678, 0xffffffff, FLAG_C, FLAG_C)
TEST_ENTRY_3F(ADDC, 8, 0x7fffffffffffffff, 0x0123456789abcdef, 0x7edcba9876543210, 0, 0)
TEST_ENTRY_3F(ADDC, 8, 0x7fffffffffffffff, 0x0123456789abcdef, 0x7edcba987654320f, FLAG_C, 0)
TEST_ENTRY_3F(ADDC, 8, 0x8000000000000000, 0x0123456789abcdef, 0x7edcba9876543211, 0, FLAG_V | FLAG_S)
TEST_ENTRY_3F(ADDC, 8, 0x8000000000000000, 0x0123456789abcdef, 0x7edcba9876543210, FLAG_C, FLAG_V | FLAG_S)
TEST_ENTRY_3F(ADDC, 8, 0xffffffffffffffff, 0x8123456789abcdef, 0x7edcba9876543210, 0, FLAG_S)
TEST_ENTRY_3F(ADDC, 8, 0xffffffffffffffff, 0x8123456789abcdef, 0x7edcba987654320f, FLAG_C, FLAG_S)
TEST_ENTRY_3F(ADDC, 8, 0x0000000000000000, 0x8123456789abcdef, 0x7edcba9876543211, 0, FLAG_C | FLAG_Z)
TEST_ENTRY_3F(ADDC, 8, 0x0000000000000000, 0x8123456789abcdef, 0x7edcba9876543210, FLAG_C, FLAG_C | FLAG_Z)
TEST_ENTRY_3F(ADDC, 8, 0x123456789abcdef0, 0x123456789abcdef0, 0xffffffffffffffff, FLAG_C, FLAG_C)
TEST_ENTRY_3(SUB, 4, 0x12345678, 0x7fffffff, 0x6dcba987, 0)
TEST_ENTRY_3(SUB, 4, 0x12345678, 0x80000000, 0x6dcba988, FLAG_V)
TEST_ENTRY_3(SUB, 4, 0x92345678, 0xffffffff, 0x6dcba987, FLAG_S)
TEST_ENTRY_3(SUB, 4, 0x92345678, 0x00000000, 0x6dcba988, FLAG_C | FLAG_S)
TEST_ENTRY_3(SUB, 4, 0x00000000, 0x12345678, 0x12345678, FLAG_Z)
TEST_ENTRY_3(SUB, 8, 0x0123456789abcdef, 0x7fffffffffffffff, 0x7edcba9876543210, 0)
TEST_ENTRY_3(SUB, 8, 0x0123456789abcdef, 0x8000000000000000, 0x7edcba9876543211, FLAG_V)
TEST_ENTRY_3(SUB, 8, 0x8123456789abcdef, 0xffffffffffffffff, 0x7edcba9876543210, FLAG_S)
TEST_ENTRY_3(SUB, 8, 0x8123456789abcdef, 0x0000000000000000, 0x7edcba9876543211, FLAG_C | FLAG_S)
TEST_ENTRY_3(SUB, 8, 0x0000000000000000, 0x0123456789abcdef, 0x0123456789abcdef, FLAG_Z)
TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x7fffffff, 0x6dcba987, 0, 0)
TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x7fffffff, 0x6dcba986, FLAG_C, 0)
TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x80000000, 0x6dcba988, 0, FLAG_V)
TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x80000000, 0x6dcba987, FLAG_C, FLAG_V)
TEST_ENTRY_3F(SUBB, 4, 0x92345678, 0xffffffff, 0x6dcba987, 0, FLAG_S)
TEST_ENTRY_3F(SUBB, 4, 0x92345678, 0xffffffff, 0x6dcba986, FLAG_C, FLAG_S)
TEST_ENTRY_3F(SUBB, 4, 0x92345678, 0x00000000, 0x6dcba988, 0, FLAG_C | FLAG_S)
TEST_ENTRY_3F(SUBB, 4, 0x92345678, 0x00000000, 0x6dcba987, FLAG_C, FLAG_C | FLAG_S)
TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x12345678, 0xffffffff, FLAG_C, FLAG_C)
TEST_ENTRY_3F(SUBB, 4, 0x00000000, 0x12345678, 0x12345677, FLAG_C, FLAG_Z)
TEST_ENTRY_3F(SUBB, 8, 0x0123456789abcdef, 0x7fffffffffffffff, 0x7edcba9876543210, 0, 0)
TEST_ENTRY_3F(SUBB, 8, 0x0123456789abcdef, 0x7fffffffffffffff, 0x7edcba987654320f, FLAG_C, 0)
TEST_ENTRY_3F(SUBB, 8, 0x0123456789abcdef, 0x8000000000000000, 0x7edcba9876543211, 0, FLAG_V)
TEST_ENTRY_3F(SUBB, 8, 0x0123456789abcdef, 0x8000000000000000, 0x7edcba9876543210, FLAG_C, FLAG_V)
TEST_ENTRY_3F(SUBB, 8, 0x8123456789abcdef, 0xffffffffffffffff, 0x7edcba9876543210, 0, FLAG_S)
TEST_ENTRY_3F(SUBB, 8, 0x8123456789abcdef, 0xffffffffffffffff, 0x7edcba987654320f, FLAG_C, FLAG_S)
TEST_ENTRY_3F(SUBB, 8, 0x8123456789abcdef, 0x0000000000000000, 0x7edcba9876543211, 0, FLAG_C | FLAG_S)
TEST_ENTRY_3F(SUBB, 8, 0x8123456789abcdef, 0x0000000000000000, 0x7edcba9876543210, FLAG_C, FLAG_C | FLAG_S)
TEST_ENTRY_3F(SUBB, 8, 0x123456789abcdef0, 0x123456789abcdef0, 0xffffffffffffffff, FLAG_C, FLAG_C)
TEST_ENTRY_3F(SUBB, 8, 0x0000000000000000, 0x123456789abcdef0, 0x123456789abcdeef, FLAG_C, FLAG_Z)
TEST_ENTRY_2(CMP, 4, 0x7fffffff, 0x6dcba987, 0)
TEST_ENTRY_2(CMP, 4, 0x80000000, 0x6dcba988, FLAG_V)
TEST_ENTRY_2(CMP, 4, 0xffffffff, 0x6dcba987, FLAG_S)
TEST_ENTRY_2(CMP, 4, 0x00000000, 0x6dcba988, FLAG_C | FLAG_S)
TEST_ENTRY_2(CMP, 4, 0x12345678, 0x12345678, FLAG_Z)
TEST_ENTRY_2(CMP, 8, 0x7fffffffffffffff, 0x7edcba9876543210, 0)
TEST_ENTRY_2(CMP, 8, 0x8000000000000000, 0x7edcba9876543211, FLAG_V)
TEST_ENTRY_2(CMP, 8, 0xffffffffffffffff, 0x7edcba9876543210, FLAG_S)
TEST_ENTRY_2(CMP, 8, 0x0000000000000000, 0x7edcba9876543211, FLAG_C | FLAG_S)
TEST_ENTRY_2(CMP, 8, 0x0123456789abcdef, 0x0123456789abcdef, FLAG_Z)
TEST_ENTRY_4(MULU, 4, 0x77777777, 0x00000000, 0x11111111, 0x00000007, 0)
TEST_ENTRY_4(MULU, 4, 0xffffffff, 0x00000000, 0x11111111, 0x0000000f, 0)
TEST_ENTRY_4(MULU, 4, 0x00000000, 0x00000000, 0x11111111, 0x00000000, FLAG_Z)
TEST_ENTRY_4(MULU, 4, 0xea61d951, 0x37c048d0, 0x77777777, 0x77777777, FLAG_V)
TEST_ENTRY_4(MULU, 4, 0x32323233, 0xcdcdcdcc, 0xcdcdcdcd, 0xffffffff, FLAG_V | FLAG_S)
TEST_ENTRY_4(MULU, 8, 0x7777777777777777, 0x0000000000000000, 0x1111111111111111, 0x0000000000000007, 0)
TEST_ENTRY_4(MULU, 8, 0xffffffffffffffff, 0x0000000000000000, 0x1111111111111111, 0x000000000000000f, 0)
TEST_ENTRY_4(MULU, 8, 0x0000000000000000, 0x0000000000000000, 0x1111111111111111, 0x0000000000000000, FLAG_Z)
TEST_ENTRY_4(MULU, 8, 0x0c83fb72ea61d951, 0x37c048d159e26af3, 0x7777777777777777, 0x7777777777777777, FLAG_V)
TEST_ENTRY_4(MULU, 8, 0x3232323232323233, 0xcdcdcdcdcdcdcdcc, 0xcdcdcdcdcdcdcdcd, 0xffffffffffffffff, FLAG_V | FLAG_S)
TEST_ENTRY_4(MULS, 4, 0x77777777, 0x00000000, 0x11111111, 0x00000007, 0)
TEST_ENTRY_4(MULS, 4, 0xffffffff, 0x00000000, 0x11111111, 0x0000000f, FLAG_V)
TEST_ENTRY_4(MULS, 4, 0x00000000, 0x00000000, 0x11111111, 0x00000000, FLAG_Z)
TEST_ENTRY_4(MULS, 4, 0x9e26af38, 0xc83fb72e, 0x77777777, 0x88888888, FLAG_V | FLAG_S)
TEST_ENTRY_4(MULS, 4, 0x32323233, 0x00000000, 0xcdcdcdcd, 0xffffffff, 0)
TEST_ENTRY_4(MULS, 8, 0x7777777777777777, 0x0000000000000000, 0x1111111111111111, 0x0000000000000007, 0)
TEST_ENTRY_4(MULS, 8, 0xffffffffffffffff, 0x0000000000000000, 0x1111111111111111, 0x000000000000000f, FLAG_V)
TEST_ENTRY_4(MULS, 8, 0x0000000000000000, 0x0000000000000000, 0x1111111111111111, 0x0000000000000000, FLAG_Z)
TEST_ENTRY_4(MULS, 8, 0x7c048d159e26af38, 0xc83fb72ea61d950c, 0x7777777777777777, 0x8888888888888888, FLAG_V | FLAG_S)
TEST_ENTRY_4(MULS, 8, 0x3232323232323233, 0x0000000000000000, 0xcdcdcdcdcdcdcdcd, 0xffffffffffffffff, 0)
TEST_ENTRY_4(DIVU, 4, 0x02702702, 0x00000003, 0x11111111, 0x00000007, 0)
TEST_ENTRY_4(DIVU, 4, 0x00000000, 0x11111111, 0x11111111, 0x11111112, FLAG_Z)
TEST_ENTRY_4(DIVU, 4, 0x7fffffff, 0x00000000, 0xfffffffe, 0x00000002, 0)
TEST_ENTRY_4(DIVU, 4, 0xfffffffe, 0x00000000, 0xfffffffe, 0x00000001, FLAG_S)
TEST_ENTRY_4(DIVU, 4, UNDEFINED, UNDEFINED, 0xffffffff, 0x00000000, FLAG_V)
TEST_ENTRY_4(DIVU, 8, 0x0270270270270270, 0x0000000000000001, 0x1111111111111111, 0x0000000000000007, 0)
TEST_ENTRY_4(DIVU, 8, 0x0000000000000000, 0x1111111111111111, 0x1111111111111111, 0x1111111111111112, FLAG_Z)
TEST_ENTRY_4(DIVU, 8, 0x7fffffffffffffff, 0x0000000000000000, 0xfffffffffffffffe, 0x0000000000000002, 0)
TEST_ENTRY_4(DIVU, 8, 0xfffffffffffffffe, 0x0000000000000000, 0xfffffffffffffffe, 0x0000000000000001, FLAG_S)
TEST_ENTRY_4(DIVU, 8, UNDEFINED, UNDEFINED, 0xffffffffffffffff, 0x0000000000000000, FLAG_V)
TEST_ENTRY_4(DIVS, 4, 0x02702702, 0x00000003, 0x11111111, 0x00000007, 0)
TEST_ENTRY_4(DIVS, 4, 0x00000000, 0x11111111, 0x11111111, 0x11111112, FLAG_Z)
TEST_ENTRY_4(DIVS, 4, 0xffffffff, 0x00000000, 0xfffffffe, 0x00000002, FLAG_S)
TEST_ENTRY_4(DIVS, 4, UNDEFINED, UNDEFINED, 0xffffffff, 0x00000000, FLAG_V)
TEST_ENTRY_4(DIVS, 8, 0x0270270270270270, 0x0000000000000001, 0x1111111111111111, 0x0000000000000007, 0)
TEST_ENTRY_4(DIVS, 8, 0x0000000000000000, 0x1111111111111111, 0x1111111111111111, 0x1111111111111112, FLAG_Z)
TEST_ENTRY_4(DIVS, 8, 0xffffffffffffffff, 0x0000000000000000, 0xfffffffffffffffe, 0x0000000000000002, FLAG_S)
TEST_ENTRY_4(DIVS, 8, UNDEFINED, UNDEFINED, 0xffffffffffffffff, 0x0000000000000000, FLAG_V)
};
/*-------------------------------------------------
validate_backend - execute a number of
generic tests on the backend code generator
-------------------------------------------------*/
static void validate_backend(drcuml_state *drcuml)
{
uml::code_handle *handles[3];
int tnum;
// allocate handles for the code
handles[0] = drcuml->handle_alloc("test_entry");
handles[1] = drcuml->handle_alloc("code_start");
handles[2] = drcuml->handle_alloc("code_end");
// iterate over test entries
printf("Backend validation....\n");
for (tnum = 31; tnum < ARRAY_LENGTH(bevalidate_test_list); tnum++)
{
const bevalidate_test *test = &bevalidate_test_list[tnum];
parameter param[ARRAY_LENGTH(test->param)];
char mnemonic[20], *dst;
const char *src;
// progress
dst = mnemonic;
for (src = opcode_info_table[test->opcode()]->mnemonic; *src != 0; src++)
{
if (*src == '!')
{
if (test->size == 8)
*dst++ = 'd';
}
else if (*src == '#')
*dst++ = (test->size == 8) ? 'd' : 's';
else
*dst++ = *src;
}
*dst = 0;
printf("Executing test %d/%d (%s)", tnum + 1, (int)ARRAY_LENGTH(bevalidate_test_list), mnemonic);
// reset parameter list and iterate
memset(param, 0, sizeof(param));
bevalidate_iterate_over_params(drcuml, handles, test, param, 0);
printf("\n");
}
fatalerror("All tests passed!\n");
}
/*-------------------------------------------------
bevalidate_iterate_over_params - iterate over
all supported types and values of a parameter
and recursively hand off to the next parameter,
or else move on to iterate over the flags
-------------------------------------------------*/
static void bevalidate_iterate_over_params(drcuml_state *drcuml, uml::code_handle **handles, const bevalidate_test *test, parameter *paramlist, int pnum)
{
const opcode_info *opinfo = opcode_info_table[test->opcode()];
drcuml_ptype ptype;
// if no parameters, execute now
if (pnum >= ARRAY_LENGTH(opinfo->param) || opinfo->param[pnum].typemask == PTYPES_NONE)
{
bevalidate_iterate_over_flags(drcuml, handles, test, paramlist);
return;
}
// iterate over valid parameter types
for (ptype = parameter::PTYPE_IMMEDIATE; ptype < parameter::PTYPE_MAX; ptype++)
if (opinfo->param[pnum].typemask & (1 << ptype))
{
int pindex, pcount;
// mapvars can only do 32-bit tests
if (ptype == parameter::PTYPE_MAPVAR && effective_test_psize(opinfo, pnum, test->size, test->param) == 8)
continue;
// for some parameter types, we wish to iterate over all possibilities
switch (ptype)
{
case parameter::PTYPE_INT_REGISTER: pcount = REG_I_END - REG_I0; break;
case parameter::PTYPE_FLOAT_REGISTER: pcount = REG_F_END - REG_F0; break;
default: pcount = 1; break;
}
// iterate over possibilities
for (pindex = 0; pindex < pcount; pindex++)
{
bool skip = false;
int pscannum;
// for param 0, print a dot
if (pnum == 0)
printf(".");
// can't duplicate multiple source parameters unless they are immediates
if (ptype != parameter::PTYPE_IMMEDIATE && (opinfo->param[pnum].output & PIO_IN))
// loop over all parameters we've done before; if the parameter is a source and matches us, skip this case
for (pscannum = 0; pscannum < pnum; pscannum++)
if ((opinfo->param[pscannum].output & PIO_IN) && ptype == paramlist[pscannum].type && pindex == paramlist[pscannum].value)
skip = true;
// can't duplicate multiple dest parameters
if (opinfo->param[pnum].output & PIO_OUT)
// loop over all parameters we've done before; if the parameter is a source and matches us, skip this case
for (pscannum = 0; pscannum < pnum; pscannum++)
if ((opinfo->param[pscannum].output & PIO_OUT) && ptype == paramlist[pscannum].type && pindex == paramlist[pscannum].value)
skip = true;
// iterate over the next parameter in line
if (!skip)
{
paramlist[pnum].type = ptype;
paramlist[pnum].value = pindex;
bevalidate_iterate_over_params(drcuml, handles, test, paramlist, pnum + 1);
}
}
}
}
/*-------------------------------------------------
bevalidate_iterate_over_flags - iterate over
all supported flag masks
-------------------------------------------------*/
static void bevalidate_iterate_over_flags(drcuml_state *drcuml, uml::code_handle **handles, const bevalidate_test *test, parameter *paramlist)
{
const opcode_info *opinfo = opcode_info_table[test->opcode()];
uint8_t flagmask = opinfo->outflags;
uint8_t curmask;
// iterate over all possible flag combinations
for (curmask = 0; curmask <= flagmask; curmask++)
if ((curmask & flagmask) == curmask)
bevalidate_execute(drcuml, handles, test, paramlist, curmask);
}
/*-------------------------------------------------
bevalidate_execute - execute a single instance
of a test, generating code and verifying the
results
-------------------------------------------------*/
static void bevalidate_execute(drcuml_state *drcuml, uml::code_handle **handles, const bevalidate_test *test, const parameter *paramlist, uint8_t flagmask)
{
parameter params[ARRAY_LENGTH(test->param)];
drcuml_machine_state istate, fstate;
instruction testinst;
drcuml_block *block;
uint64_t *parammem;
int numparams;
// allocate memory for parameters
parammem = (uint64_t *)drcuml->cache->alloc_near(sizeof(uint64_t) * (ARRAY_LENGTH(test->param) + 1));
// flush the cache
drcuml->reset();
// start a new block
block = drcuml->block_begin(30);
UML_HANDLE(block, handles[0]);
// set up a random initial state
bevalidate_initialize_random_state(drcuml, block, &istate);
// then populate the state with the parameters
numparams = bevalidate_populate_state(block, &istate, test, paramlist, params, parammem);
// generate the code
UML_RESTORE(block, &istate);
UML_HANDLE(block, handles[1]);
switch (numparams)
{
case 0:
block->append(test->opcode(), test->size);
break;
case 1:
block->append(test->opcode(), test->size, params[0]);
break;
case 2:
block->append(test->opcode(), test->size, params[0], params[1]);
break;
case 3:
block->append(test->opcode(), test->size, params[0], params[1], params[2]);
break;
case 4:
block->append(test->opcode(), test->size, params[0], params[1], params[2], params[3]);
break;
}
testinst = block->inst[block->nextinst - 1];
UML_HANDLE(block, handles[2]);
UML_GETFLGS(block, MEM(&parammem[ARRAY_LENGTH(test->param)]), flagmask);
UML_SAVE(block, &fstate);
UML_EXIT(block, IMM(0));
// end the block
block->end();
// execute
drcuml->execute(*handles[0]);
// verify the results
bevalidate_verify_state(drcuml, &istate, &fstate, test, *(uint32_t *)&parammem[ARRAY_LENGTH(test->param)], params, &testinst, handles[1]->code, handles[2]->code, flagmask);
// free memory
drcuml->cache->dealloc(parammem, sizeof(uint64_t) * (ARRAY_LENGTH(test->param) + 1));
}
/*-------------------------------------------------
bevalidate_initialize_random_state -
initialize the machine state to randomness
-------------------------------------------------*/
static void bevalidate_initialize_random_state(drcuml_state *drcuml, drcuml_block *block, drcuml_machine_state *state)
{
running_machine &machine = drcuml->device->machine();
int regnum;
// initialize core state to random values
state->fmod = machine.rand() & 0x03;
state->flags = machine.rand() & 0x1f;
state->exp = machine.rand();
// initialize integer registers to random values
for (regnum = 0; regnum < ARRAY_LENGTH(state->r); regnum++)
{
state->r[regnum].w.h = machine.rand();
state->r[regnum].w.l = machine.rand();
}
// initialize float registers to random values
for (regnum = 0; regnum < ARRAY_LENGTH(state->f); regnum++)
{
*(uint32_t *)&state->f[regnum].s.h = machine.rand();
*(uint32_t *)&state->f[regnum].s.l = machine.rand();
}
// initialize map variables to random values
for (regnum = 0; regnum < MAPVAR_COUNT; regnum++)
UML_MAPVAR(block, MVAR(regnum), machine.rand());
}
/*-------------------------------------------------
bevalidate_populate_state - populate the
machine state with the proper values prior
to executing a test
-------------------------------------------------*/
static int bevalidate_populate_state(drcuml_block *block, drcuml_machine_state *state, const bevalidate_test *test, const parameter *paramlist, parameter *params, uint64_t *parammem)
{
const opcode_info *opinfo = opcode_info_table[test->opcode()];
int numparams = ARRAY_LENGTH(test->param);
int pnum;
// copy flags as-is
state->flags = test->iflags;
// iterate over parameters
for (pnum = 0; pnum < ARRAY_LENGTH(test->param); pnum++)
{
int psize = effective_test_psize(opinfo, pnum, test->size, test->param);
parameter *curparam = &params[pnum];
// start with a copy of the parameter from the list
*curparam = paramlist[pnum];
// switch off the type
switch (curparam->type)
{
// immediate parameters: take the value from the test entry
case parameter::PTYPE_IMMEDIATE:
curparam->value = test->param[pnum];
break;
// register parameters: set the register value in the state and set the parameter value to the register index
case parameter::PTYPE_INT_REGISTER:
state->r[curparam->value].d = test->param[pnum];
curparam->value += REG_I0;
break;
// register parameters: set the register value in the state and set the parameter value to the register index
case parameter::PTYPE_FLOAT_REGISTER:
state->f[curparam->value].d = test->param[pnum];
curparam->value += REG_F0;
break;
// memory parameters: set the memory value in the parameter space and set the parameter value to point to it
case parameter::PTYPE_MEMORY:
curparam->value = (uintptr_t)&parammem[pnum];
if (psize == 4)
*(uint32_t *)(uintptr_t)curparam->value = test->param[pnum];
else
*(uint64_t *)(uintptr_t)curparam->value = test->param[pnum];
break;
// map variables: issue a MAPVAR instruction to set the value and set the parameter value to the mapvar index
case parameter::PTYPE_MAPVAR:
UML_MAPVAR(block, MVAR(curparam->value), test->param[pnum]);
curparam->value += MAPVAR_M0;
break;
// use anything else to count the number of parameters
default:
numparams = MIN(numparams, pnum);
break;
}
}
// return the total number of parameters
return numparams;
}
/*-------------------------------------------------
bevalidate_verify_state - verify the final
state after executing a test, and report any
discrepancies
-------------------------------------------------*/
static int bevalidate_verify_state(drcuml_state *drcuml, const drcuml_machine_state *istate, drcuml_machine_state *state, const bevalidate_test *test, uint32_t flags, const parameter *params, const instruction *testinst, drccodeptr codestart, drccodeptr codeend, uint8_t flagmask)
{
const opcode_info *opinfo = opcode_info_table[test->opcode()];
uint8_t ireg[REG_I_END - REG_I0] = { 0 };
uint8_t freg[REG_F_END - REG_F0] = { 0 };
char errorbuf[1024];
char *errend = errorbuf;
int pnum, regnum;
*errend = 0;
// check flags
if (flags != (test->flags & flagmask))
{
errend += sprintf(errend, " Flags ... result:%c%c%c%c%c expected:%c%c%c%c%c\n",
(flagmask & FLAG_U) ? ((flags & FLAG_U) ? 'U' : '.') : '-',
(flagmask & FLAG_S) ? ((flags & FLAG_S) ? 'S' : '.') : '-',
(flagmask & FLAG_Z) ? ((flags & FLAG_Z) ? 'Z' : '.') : '-',
(flagmask & FLAG_V) ? ((flags & FLAG_V) ? 'V' : '.') : '-',
(flagmask & FLAG_C) ? ((flags & FLAG_C) ? 'C' : '.') : '-',
(flagmask & FLAG_U) ? ((test->flags & FLAG_U) ? 'U' : '.') : '-',
(flagmask & FLAG_S) ? ((test->flags & FLAG_S) ? 'S' : '.') : '-',
(flagmask & FLAG_Z) ? ((test->flags & FLAG_Z) ? 'Z' : '.') : '-',
(flagmask & FLAG_V) ? ((test->flags & FLAG_V) ? 'V' : '.') : '-',
(flagmask & FLAG_C) ? ((test->flags & FLAG_C) ? 'C' : '.') : '-');
}
// check destination parameters
for (pnum = 0; pnum < ARRAY_LENGTH(test->param); pnum++)
if (opinfo->param[pnum].output & PIO_OUT)
{
int psize = effective_test_psize(opinfo, pnum, test->size, test->param);
uint64_t mask = u64(0xffffffffffffffff) >> (64 - 8 * psize);
uint64_t result = 0;
// fetch the result from the parameters
switch (params[pnum].type)
{
// integer registers fetch from the state
case parameter::PTYPE_INT_REGISTER:
ireg[params[pnum].value - REG_I0] = 1;
result = state->r[params[pnum].value - REG_I0].d;
break;
// float registers fetch from the state
case parameter::PTYPE_FLOAT_REGISTER:
freg[params[pnum].value - REG_I0] = 1;
result = state->f[params[pnum].value - REG_F0].d;
break;
// memory registers fetch from the memory address
case parameter::PTYPE_MEMORY:
if (psize == 4)
result = *(uint32_t *)(uintptr_t)params[pnum].value;
else
result = *(uint64_t *)(uintptr_t)params[pnum].value;
break;
default:
break;
}
// check against the mask
if (test->param[pnum] != UNDEFINED_U64 && (result & mask) != (test->param[pnum] & mask))
{
if ((uint32_t)mask == mask)
errend += sprintf(errend, " Parameter %d ... result:%08X expected:%08X\n", pnum,
(uint32_t)(result & mask), (uint32_t)(test->param[pnum] & mask));
else
errend += sprintf(errend, " Parameter %d ... result:%08X%08X expected:%08X%08X\n", pnum,
(uint32_t)((result & mask) >> 32), (uint32_t)(result & mask),
(uint32_t)((test->param[pnum] & mask) >> 32), (uint32_t)(test->param[pnum] & mask));
}
}
// check source integer parameters for unexpected alterations
for (regnum = 0; regnum < ARRAY_LENGTH(state->r); regnum++)
if (ireg[regnum] == 0 && istate->r[regnum].d != state->r[regnum].d)
errend += sprintf(errend, " Register i%d ... result:%08X%08X originally:%08X%08X\n", regnum,
(uint32_t)(state->r[regnum].d >> 32), (uint32_t)state->r[regnum].d,
(uint32_t)(istate->r[regnum].d >> 32), (uint32_t)istate->r[regnum].d);
// check source float parameters for unexpected alterations
for (regnum = 0; regnum < ARRAY_LENGTH(state->f); regnum++)
if (freg[regnum] == 0 && *(uint64_t *)&istate->f[regnum].d != *(uint64_t *)&state->f[regnum].d)
errend += sprintf(errend, " Register f%d ... result:%08X%08X originally:%08X%08X\n", regnum,
(uint32_t)(*(uint64_t *)&state->f[regnum].d >> 32), (uint32_t)*(uint64_t *)&state->f[regnum].d,
(uint32_t)(*(uint64_t *)&istate->f[regnum].d >> 32), (uint32_t)*(uint64_t *)&istate->f[regnum].d);
// output the error if we have one
if (errend != errorbuf)
{
// disassemble the test instruction
std::string disasm = testinst->disasm(drcuml);
// output a description of what went wrong
printf("\n");
printf("----------------------------------------------\n");
printf("Backend validation error:\n");
printf(" %s\n", disasm.c_str());
printf("\n");
printf("Errors:\n");
printf("%s\n", errorbuf);
fatalerror("Error during validation\n");
}
return errend != errorbuf;
}
#endif