mirror of
https://github.com/holub/mame
synced 2025-05-29 09:03:08 +03:00

- Fixed ADPCM decoder to remove bad optimization and match YMZ280B. DC offset is fixed and output quality is higher - Improved handling of slot monitor and timers B and C - Simplified interpolation code
1388 lines
33 KiB
C
1388 lines
33 KiB
C
/*
|
|
Sega/Yamaha AICA emulation
|
|
By ElSemi, kingshriek, Deunan Knute, and R. Belmont
|
|
|
|
This is effectively a 64-voice SCSP, with the following differences:
|
|
- No FM mode
|
|
- A third sample format (ADPCM) has been added
|
|
- Some minor other tweeks (no EGHOLD, slighly more capable DSP)
|
|
|
|
init:
|
|
|
|
*/
|
|
|
|
#include "sndintrf.h"
|
|
#include "streams.h"
|
|
#include "cpuintrf.h"
|
|
#include "deprecat.h"
|
|
#include "aica.h"
|
|
#include "aicadsp.h"
|
|
|
|
#define ICLIP16(x) (x<-32768)?-32768:((x>32767)?32767:x)
|
|
|
|
#define SHIFT 12
|
|
#define FIX(v) ((UINT32) ((float) (1<<SHIFT)*(v)))
|
|
|
|
#define EG_SHIFT 16
|
|
|
|
// include the LFO handling code
|
|
#include "aicalfo.c"
|
|
|
|
/*
|
|
AICA features 64 programmable slots
|
|
that can generate PCM and ADPCM (from ROM/RAM) sound
|
|
*/
|
|
|
|
//SLOT PARAMETERS
|
|
#define KEYONEX(slot) ((slot->udata.data[0x0]>>0x0)&0x8000)
|
|
#define KEYONB(slot) ((slot->udata.data[0x0]>>0x0)&0x4000)
|
|
#define SSCTL(slot) ((slot->udata.data[0x0]>>0xA)&0x0001)
|
|
#define LPCTL(slot) ((slot->udata.data[0x0]>>0x9)&0x0001)
|
|
#define PCMS(slot) ((slot->udata.data[0x0]>>0x7)&0x0003)
|
|
|
|
#define SA(slot) (((slot->udata.data[0x0]&0x3F)<<16)|(slot->udata.data[0x4/2]))
|
|
|
|
#define LSA(slot) (slot->udata.data[0x8/2])
|
|
|
|
#define LEA(slot) (slot->udata.data[0xc/2])
|
|
|
|
#define D2R(slot) ((slot->udata.data[0x10/2]>>0xB)&0x001F)
|
|
#define D1R(slot) ((slot->udata.data[0x10/2]>>0x6)&0x001F)
|
|
#define AR(slot) ((slot->udata.data[0x10/2]>>0x0)&0x001F)
|
|
|
|
#define LPSLNK(slot) ((slot->udata.data[0x14/2]>>0x0)&0x4000)
|
|
#define KRS(slot) ((slot->udata.data[0x14/2]>>0xA)&0x000F)
|
|
#define DL(slot) ((slot->udata.data[0x14/2]>>0x5)&0x001F)
|
|
#define RR(slot) ((slot->udata.data[0x14/2]>>0x0)&0x001F)
|
|
|
|
#define TL(slot) ((slot->udata.data[0x28/2]>>0x8)&0x00FF)
|
|
|
|
#define OCT(slot) ((slot->udata.data[0x18/2]>>0xB)&0x000F)
|
|
#define FNS(slot) ((slot->udata.data[0x18/2]>>0x0)&0x03FF)
|
|
|
|
#define LFORE(slot) ((slot->udata.data[0x1c/2]>>0x0)&0x8000)
|
|
#define LFOF(slot) ((slot->udata.data[0x1c/2]>>0xA)&0x001F)
|
|
#define PLFOWS(slot) ((slot->udata.data[0x1c/2]>>0x8)&0x0003)
|
|
#define PLFOS(slot) ((slot->udata.data[0x1c/2]>>0x5)&0x0007)
|
|
#define ALFOWS(slot) ((slot->udata.data[0x1c/2]>>0x3)&0x0003)
|
|
#define ALFOS(slot) ((slot->udata.data[0x1c/2]>>0x0)&0x0007)
|
|
|
|
#define ISEL(slot) ((slot->udata.data[0x20/2]>>0x0)&0x000F)
|
|
#define IMXL(slot) ((slot->udata.data[0x20/2]>>0x4)&0x000F)
|
|
|
|
#define DISDL(slot) ((slot->udata.data[0x24/2]>>0x8)&0x000F)
|
|
#define DIPAN(slot) ((slot->udata.data[0x24/2]>>0x0)&0x001F)
|
|
|
|
#define EFSDL(slot) ((AICA->EFSPAN[slot*4]>>8)&0x000f)
|
|
#define EFPAN(slot) ((AICA->EFSPAN[slot*4]>>0)&0x001f)
|
|
|
|
//Envelope times in ms
|
|
static const double ARTimes[64]={100000/*infinity*/,100000/*infinity*/,8100.0,6900.0,6000.0,4800.0,4000.0,3400.0,3000.0,2400.0,2000.0,1700.0,1500.0,
|
|
1200.0,1000.0,860.0,760.0,600.0,500.0,430.0,380.0,300.0,250.0,220.0,190.0,150.0,130.0,110.0,95.0,
|
|
76.0,63.0,55.0,47.0,38.0,31.0,27.0,24.0,19.0,15.0,13.0,12.0,9.4,7.9,6.8,6.0,4.7,3.8,3.4,3.0,2.4,
|
|
2.0,1.8,1.6,1.3,1.1,0.93,0.85,0.65,0.53,0.44,0.40,0.35,0.0,0.0};
|
|
static const double DRTimes[64]={100000/*infinity*/,100000/*infinity*/,118200.0,101300.0,88600.0,70900.0,59100.0,50700.0,44300.0,35500.0,29600.0,25300.0,22200.0,17700.0,
|
|
14800.0,12700.0,11100.0,8900.0,7400.0,6300.0,5500.0,4400.0,3700.0,3200.0,2800.0,2200.0,1800.0,1600.0,1400.0,1100.0,
|
|
920.0,790.0,690.0,550.0,460.0,390.0,340.0,270.0,230.0,200.0,170.0,140.0,110.0,98.0,85.0,68.0,57.0,49.0,43.0,34.0,
|
|
28.0,25.0,22.0,18.0,14.0,12.0,11.0,8.5,7.1,6.1,5.4,4.3,3.6,3.1};
|
|
static UINT32 FNS_Table[0x400];
|
|
static INT32 EG_TABLE[0x400];
|
|
|
|
typedef enum {ATTACK,DECAY1,DECAY2,RELEASE} _STATE;
|
|
struct _EG
|
|
{
|
|
int volume; //
|
|
_STATE state;
|
|
int step;
|
|
//step vals
|
|
int AR; //Attack
|
|
int D1R; //Decay1
|
|
int D2R; //Decay2
|
|
int RR; //Release
|
|
|
|
int DL; //Decay level
|
|
UINT8 LPLINK;
|
|
};
|
|
|
|
struct _SLOT
|
|
{
|
|
union
|
|
{
|
|
UINT16 data[0x40]; //only 0x1a bytes used
|
|
UINT8 datab[0x80];
|
|
} udata;
|
|
UINT8 active; //this slot is currently playing
|
|
UINT8 *base; //samples base address
|
|
UINT32 prv_addr; // previous play address (for ADPCM)
|
|
UINT32 cur_addr; //current play address (24.8)
|
|
UINT32 nxt_addr; //next play address
|
|
UINT32 step; //pitch step (24.8)
|
|
UINT8 Backwards; //the wave is playing backwards
|
|
struct _EG EG; //Envelope
|
|
struct _LFO PLFO; //Phase LFO
|
|
struct _LFO ALFO; //Amplitude LFO
|
|
int slot;
|
|
int cur_sample; //current ADPCM sample
|
|
int cur_quant; //current ADPCM step
|
|
int curstep;
|
|
int cur_lpquant, cur_lpsample, cur_lpstep;
|
|
UINT8 *adbase, *adlpbase;
|
|
UINT8 mslc; // monitored?
|
|
};
|
|
|
|
|
|
#define MEM4B(aica) ((aica->udata.data[0]>>0x0)&0x0200)
|
|
#define DAC18B(aica) ((aica->udata.data[0]>>0x0)&0x0100)
|
|
#define MVOL(aica) ((aica->udata.data[0]>>0x0)&0x000F)
|
|
#define RBL(aica) ((aica->udata.data[2]>>0xD)&0x0003)
|
|
#define RBP(aica) ((aica->udata.data[2]>>0x0)&0x0fff)
|
|
#define MOFULL(aica) ((aica->udata.data[4]>>0x0)&0x1000)
|
|
#define MOEMPTY(aica) ((aica->udata.data[4]>>0x0)&0x0800)
|
|
#define MIOVF(aica) ((aica->udata.data[4]>>0x0)&0x0400)
|
|
#define MIFULL(aica) ((aica->udata.data[4]>>0x0)&0x0200)
|
|
#define MIEMPTY(aica) ((aica->udata.data[4]>>0x0)&0x0100)
|
|
|
|
#define AFSEL(aica) ((aica->udata.data[6]>>0x0)&0x4000)
|
|
#define MSLC(aica) ((aica->udata.data[6]>>0x8)&0x3F)
|
|
|
|
#define SCILV0(aica) ((aica->udata.data[0xa8/2]>>0x0)&0xff)
|
|
#define SCILV1(aica) ((aica->udata.data[0xac/2]>>0x0)&0xff)
|
|
#define SCILV2(aica) ((aica->udata.data[0xb0/2]>>0x0)&0xff)
|
|
|
|
#define SCIEX0 0
|
|
#define SCIEX1 1
|
|
#define SCIEX2 2
|
|
#define SCIMID 3
|
|
#define SCIDMA 4
|
|
#define SCIIRQ 5
|
|
#define SCITMA 6
|
|
#define SCITMB 7
|
|
|
|
struct _AICA
|
|
{
|
|
union
|
|
{
|
|
UINT16 data[0xc0/2];
|
|
UINT8 datab[0xc0];
|
|
} udata;
|
|
UINT16 IRQL, IRQR;
|
|
UINT16 EFSPAN[0x48];
|
|
struct _SLOT Slots[64];
|
|
signed short RINGBUF[64];
|
|
unsigned char BUFPTR;
|
|
unsigned char *AICARAM;
|
|
UINT32 AICARAM_LENGTH, RAM_MASK, RAM_MASK16;
|
|
char Master;
|
|
void (*IntARMCB)(running_machine *machine, int irq);
|
|
sound_stream * stream;
|
|
|
|
INT32 *buffertmpl, *buffertmpr;
|
|
|
|
UINT32 IrqTimA;
|
|
UINT32 IrqTimBC;
|
|
UINT32 IrqMidi;
|
|
|
|
UINT8 MidiOutW,MidiOutR;
|
|
UINT8 MidiStack[16];
|
|
UINT8 MidiW,MidiR;
|
|
|
|
int LPANTABLE[0x20000];
|
|
int RPANTABLE[0x20000];
|
|
|
|
int TimPris[3];
|
|
int TimCnt[3];
|
|
|
|
// timers
|
|
emu_timer *timerA, *timerB, *timerC;
|
|
|
|
// DMA stuff
|
|
UINT32 aica_dmea;
|
|
UINT16 aica_drga;
|
|
UINT16 aica_dtlg;
|
|
|
|
int ARTABLE[64], DRTABLE[64];
|
|
|
|
struct _AICADSP DSP;
|
|
};
|
|
|
|
static const float SDLT[16]={-1000000.0,-42.0,-39.0,-36.0,-33.0,-30.0,-27.0,-24.0,-21.0,-18.0,-15.0,-12.0,-9.0,-6.0,-3.0,0.0};
|
|
|
|
static stream_sample_t *bufferl;
|
|
static stream_sample_t *bufferr;
|
|
|
|
static int length;
|
|
|
|
static signed short *RBUFDST; //this points to where the sample will be stored in the RingBuf
|
|
|
|
static unsigned char DecodeSCI(struct _AICA *AICA, unsigned char irq)
|
|
{
|
|
unsigned char SCI=0;
|
|
unsigned char v;
|
|
v=(SCILV0((AICA))&(1<<irq))?1:0;
|
|
SCI|=v;
|
|
v=(SCILV1((AICA))&(1<<irq))?1:0;
|
|
SCI|=v<<1;
|
|
v=(SCILV2((AICA))&(1<<irq))?1:0;
|
|
SCI|=v<<2;
|
|
return SCI;
|
|
}
|
|
|
|
static void ResetInterrupts(struct _AICA *AICA)
|
|
{
|
|
#if 0
|
|
UINT32 reset = AICA->udata.data[0xa4/2];
|
|
running_machine *machine = Machine;
|
|
|
|
if (reset & 0x40)
|
|
AICA->IntARMCB(machine, -AICA->IrqTimA);
|
|
if (reset & 0x180)
|
|
AICA->IntARMCB(machine, -AICA->IrqTimBC);
|
|
#endif
|
|
}
|
|
|
|
static void CheckPendingIRQ(struct _AICA *AICA)
|
|
{
|
|
UINT32 pend=AICA->udata.data[0xa0/2];
|
|
UINT32 en=AICA->udata.data[0x9c/2];
|
|
running_machine *machine = Machine;
|
|
|
|
if(AICA->MidiW!=AICA->MidiR)
|
|
{
|
|
AICA->IRQL = AICA->IrqMidi;
|
|
AICA->IntARMCB(machine, 1);
|
|
return;
|
|
}
|
|
if(!pend)
|
|
return;
|
|
if(pend&0x40)
|
|
if(en&0x40)
|
|
{
|
|
AICA->IRQL = AICA->IrqTimA;
|
|
AICA->IntARMCB(machine, 1);
|
|
return;
|
|
}
|
|
if(pend&0x80)
|
|
if(en&0x80)
|
|
{
|
|
AICA->IRQL = AICA->IrqTimBC;
|
|
AICA->IntARMCB(machine, 1);
|
|
return;
|
|
}
|
|
if(pend&0x100)
|
|
if(en&0x100)
|
|
{
|
|
AICA->IRQL = AICA->IrqTimBC;
|
|
AICA->IntARMCB(machine, 1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static TIMER_CALLBACK( timerA_cb )
|
|
{
|
|
struct _AICA *AICA = (struct _AICA *)ptr;
|
|
|
|
AICA->TimCnt[0] = 0xFFFF;
|
|
AICA->udata.data[0xa0/2]|=0x40;
|
|
AICA->udata.data[0x90/2]&=0xff00;
|
|
AICA->udata.data[0x90/2]|=AICA->TimCnt[0]>>8;
|
|
|
|
CheckPendingIRQ(AICA);
|
|
}
|
|
|
|
static TIMER_CALLBACK( timerB_cb )
|
|
{
|
|
struct _AICA *AICA = (struct _AICA *)ptr;
|
|
|
|
AICA->TimCnt[1] = 0xFFFF;
|
|
AICA->udata.data[0xa0/2]|=0x80;
|
|
AICA->udata.data[0x94/2]&=0xff00;
|
|
AICA->udata.data[0x94/2]|=AICA->TimCnt[1]>>8;
|
|
|
|
CheckPendingIRQ(AICA);
|
|
}
|
|
|
|
static TIMER_CALLBACK( timerC_cb )
|
|
{
|
|
struct _AICA *AICA = (struct _AICA *)ptr;
|
|
|
|
AICA->TimCnt[2] = 0xFFFF;
|
|
AICA->udata.data[0xa0/2]|=0x100;
|
|
AICA->udata.data[0x98/2]&=0xff00;
|
|
AICA->udata.data[0x98/2]|=AICA->TimCnt[2]>>8;
|
|
|
|
CheckPendingIRQ(AICA);
|
|
}
|
|
|
|
static int Get_AR(struct _AICA *AICA,int base,int R)
|
|
{
|
|
int Rate=base+(R<<1);
|
|
if(Rate>63) Rate=63;
|
|
if(Rate<0) Rate=0;
|
|
return AICA->ARTABLE[Rate];
|
|
}
|
|
|
|
static int Get_DR(struct _AICA *AICA,int base,int R)
|
|
{
|
|
int Rate=base+(R<<1);
|
|
if(Rate>63) Rate=63;
|
|
if(Rate<0) Rate=0;
|
|
return AICA->DRTABLE[Rate];
|
|
}
|
|
|
|
static int Get_RR(struct _AICA *AICA,int base,int R)
|
|
{
|
|
int Rate=base+(R<<1);
|
|
if(Rate>63) Rate=63;
|
|
if(Rate<0) Rate=0;
|
|
return AICA->DRTABLE[Rate];
|
|
}
|
|
|
|
static void Compute_EG(struct _AICA *AICA,struct _SLOT *slot)
|
|
{
|
|
int octave=OCT(slot);
|
|
int rate;
|
|
if(octave&8) octave=octave-16;
|
|
if(KRS(slot)!=0xf)
|
|
rate=octave+2*KRS(slot)+((FNS(slot)>>9)&1);
|
|
else
|
|
rate=0; //rate=((FNS(slot)>>9)&1);
|
|
|
|
slot->EG.volume=0x17f<<EG_SHIFT;
|
|
slot->EG.AR=Get_AR(AICA,rate,AR(slot));
|
|
slot->EG.D1R=Get_DR(AICA,rate,D1R(slot));
|
|
slot->EG.D2R=Get_DR(AICA,rate,D2R(slot));
|
|
slot->EG.RR=Get_RR(AICA,rate,RR(slot));
|
|
slot->EG.DL=0x1f-DL(slot);
|
|
}
|
|
|
|
static void AICA_StopSlot(struct _SLOT *slot,int keyoff);
|
|
|
|
static int EG_Update(struct _SLOT *slot)
|
|
{
|
|
switch(slot->EG.state)
|
|
{
|
|
case ATTACK:
|
|
slot->EG.volume+=slot->EG.AR;
|
|
if(slot->EG.volume>=(0x3ff<<EG_SHIFT))
|
|
{
|
|
if (!LPSLNK(slot))
|
|
{
|
|
slot->EG.state=DECAY1;
|
|
if(slot->EG.D1R>=(1024<<EG_SHIFT)) //Skip DECAY1, go directly to DECAY2
|
|
slot->EG.state=DECAY2;
|
|
}
|
|
slot->EG.volume=0x3ff<<EG_SHIFT;
|
|
}
|
|
break;
|
|
case DECAY1:
|
|
slot->EG.volume-=slot->EG.D1R;
|
|
if(slot->EG.volume<=0)
|
|
slot->EG.volume=0;
|
|
if(slot->EG.volume>>(EG_SHIFT+5)<=slot->EG.DL)
|
|
slot->EG.state=DECAY2;
|
|
break;
|
|
case DECAY2:
|
|
if(D2R(slot)==0)
|
|
return (slot->EG.volume>>EG_SHIFT)<<(SHIFT-10);
|
|
slot->EG.volume-=slot->EG.D2R;
|
|
if(slot->EG.volume<=0)
|
|
slot->EG.volume=0;
|
|
|
|
break;
|
|
case RELEASE:
|
|
slot->EG.volume-=slot->EG.RR;
|
|
if(slot->EG.volume<=0)
|
|
{
|
|
slot->EG.volume=0;
|
|
AICA_StopSlot(slot,0);
|
|
// slot->EG.volume=0x17f<<EG_SHIFT;
|
|
// slot->EG.state=ATTACK;
|
|
}
|
|
break;
|
|
default:
|
|
return 1<<SHIFT;
|
|
}
|
|
return (slot->EG.volume>>EG_SHIFT)<<(SHIFT-10);
|
|
}
|
|
|
|
static UINT32 AICA_Step(struct _SLOT *slot)
|
|
{
|
|
int octave=OCT(slot);
|
|
UINT32 Fn;
|
|
|
|
Fn=(FNS_Table[FNS(slot)]); //24.8
|
|
if(octave&8)
|
|
Fn>>=(16-octave);
|
|
else
|
|
Fn<<=octave;
|
|
|
|
return Fn/(44100);
|
|
}
|
|
|
|
|
|
static void Compute_LFO(struct _SLOT *slot)
|
|
{
|
|
if(PLFOS(slot)!=0)
|
|
AICALFO_ComputeStep(&(slot->PLFO),LFOF(slot),PLFOWS(slot),PLFOS(slot),0);
|
|
if(ALFOS(slot)!=0)
|
|
AICALFO_ComputeStep(&(slot->ALFO),LFOF(slot),ALFOWS(slot),ALFOS(slot),1);
|
|
}
|
|
|
|
#define ADPCMSHIFT 8
|
|
#define ADFIX(f) (int) ((float) f*(float) (1<<ADPCMSHIFT))
|
|
|
|
static const int TableQuant[8]={ADFIX(0.8984375),ADFIX(0.8984375),ADFIX(0.8984375),ADFIX(0.8984375),ADFIX(1.19921875),ADFIX(1.59765625),ADFIX(2.0),ADFIX(2.3984375)};
|
|
static const int quant_mul[16]= { 1, 3, 5, 7, 9, 11, 13, 15, -1, -3, -5, -7, -9, -11, -13, -15};
|
|
|
|
static void InitADPCM(int *PrevSignal, int *PrevQuant)
|
|
{
|
|
*PrevSignal=0;
|
|
*PrevQuant=0x7f;
|
|
}
|
|
|
|
INLINE signed short inline DecodeADPCM(int *PrevSignal, unsigned char Delta, int *PrevQuant)
|
|
{
|
|
int x = *PrevQuant * quant_mul [Delta & 15];
|
|
x = *PrevSignal + ((int)(x + ((UINT32)x >> 29)) >> 3);
|
|
*PrevSignal=ICLIP16(x);
|
|
*PrevQuant=(*PrevQuant*TableQuant[Delta&7])>>ADPCMSHIFT;
|
|
*PrevQuant=(*PrevQuant<0x7f)?0x7f:((*PrevQuant>0x6000)?0x6000:*PrevQuant);
|
|
return *PrevSignal;
|
|
}
|
|
|
|
static void AICA_StartSlot(struct _AICA *AICA, struct _SLOT *slot)
|
|
{
|
|
UINT64 start_offset;
|
|
|
|
slot->active=1;
|
|
slot->Backwards=0;
|
|
slot->cur_addr=0; slot->nxt_addr=1<<SHIFT; slot->prv_addr=-1;
|
|
start_offset = SA(slot); // AICA can play 16-bit samples from any boundry
|
|
slot->base=&AICA->AICARAM[start_offset];
|
|
slot->step=AICA_Step(slot);
|
|
Compute_EG(AICA,slot);
|
|
slot->EG.state=ATTACK;
|
|
slot->EG.volume=0x17f<<EG_SHIFT;
|
|
Compute_LFO(slot);
|
|
|
|
if (PCMS(slot) >= 2)
|
|
{
|
|
UINT8 *base;
|
|
UINT32 curstep, steps_to_go;
|
|
|
|
slot->curstep = 0;
|
|
slot->adbase = (unsigned char *) (AICA->AICARAM+((SA(slot))&0x7fffff));
|
|
InitADPCM(&(slot->cur_sample), &(slot->cur_quant));
|
|
InitADPCM(&(slot->cur_lpsample), &(slot->cur_lpquant));
|
|
|
|
// walk to the ADPCM state at LSA
|
|
curstep = 0;
|
|
base = slot->adbase;
|
|
steps_to_go = LSA(slot);
|
|
|
|
while (curstep < steps_to_go)
|
|
{
|
|
int shift1, delta1;
|
|
shift1 = 4*((curstep&1));
|
|
delta1 = (*base>>shift1)&0xf;
|
|
DecodeADPCM(&(slot->cur_lpsample),delta1,&(slot->cur_lpquant));
|
|
curstep++;
|
|
if (!(curstep & 1))
|
|
{
|
|
base++;
|
|
}
|
|
}
|
|
|
|
slot->cur_lpstep = curstep;
|
|
slot->adlpbase = base;
|
|
}
|
|
}
|
|
|
|
static void AICA_StopSlot(struct _SLOT *slot,int keyoff)
|
|
{
|
|
if(keyoff /*&& slot->EG.state!=RELEASE*/)
|
|
{
|
|
slot->EG.state=RELEASE;
|
|
}
|
|
else
|
|
{
|
|
slot->active=0;
|
|
}
|
|
slot->udata.data[0]&=~0x4000;
|
|
}
|
|
|
|
#define log_base_2(n) (log((float) n)/log((float) 2))
|
|
|
|
static void AICA_Init(struct _AICA *AICA, const struct AICAinterface *intf, int sndindex)
|
|
{
|
|
int i;
|
|
|
|
AICA->IrqTimA = AICA->IrqTimBC = AICA->IrqMidi = 0;
|
|
AICA->MidiR=AICA->MidiW=0;
|
|
AICA->MidiOutR=AICA->MidiOutW=0;
|
|
|
|
// get AICA RAM
|
|
{
|
|
memset(AICA,0,sizeof(*AICA));
|
|
|
|
if (sndindex == 0)
|
|
{
|
|
AICA->Master=1;
|
|
}
|
|
else
|
|
{
|
|
AICA->Master=0;
|
|
}
|
|
|
|
if (intf->region)
|
|
{
|
|
AICA->AICARAM = memory_region(Machine, intf->region);
|
|
AICA->AICARAM += intf->roffset;
|
|
AICA->AICARAM_LENGTH = memory_region_length(Machine, intf->region);
|
|
AICA->RAM_MASK = AICA->AICARAM_LENGTH-1;
|
|
AICA->RAM_MASK16 = AICA->RAM_MASK & 0x7ffffe;
|
|
AICA->DSP.AICARAM = (UINT16 *)AICA->AICARAM;
|
|
AICA->DSP.AICARAM_LENGTH = AICA->AICARAM_LENGTH/2;
|
|
}
|
|
}
|
|
|
|
AICA->timerA = timer_alloc(timerA_cb, AICA);
|
|
AICA->timerB = timer_alloc(timerB_cb, AICA);
|
|
AICA->timerC = timer_alloc(timerC_cb, AICA);
|
|
|
|
for(i=0;i<0x400;++i)
|
|
{
|
|
float fcent=(double) 1200.0*log_base_2((double)(((double) 1024.0+(double)i)/(double)1024.0));
|
|
fcent=(double) 44100.0*pow(2.0,fcent/1200.0);
|
|
FNS_Table[i]=(float) (1<<SHIFT) *fcent;
|
|
}
|
|
|
|
for(i=0;i<0x400;++i)
|
|
{
|
|
float envDB=((float)(3*(i-0x3ff)))/32.0;
|
|
float scale=(float)(1<<SHIFT);
|
|
EG_TABLE[i]=(INT32)(pow(10.0,envDB/20.0)*scale);
|
|
}
|
|
|
|
for(i=0;i<0x20000;++i)
|
|
{
|
|
int iTL =(i>>0x0)&0xff;
|
|
int iPAN=(i>>0x8)&0x1f;
|
|
int iSDL=(i>>0xD)&0x0F;
|
|
float TL=1.0;
|
|
float SegaDB=0;
|
|
float fSDL=1.0;
|
|
float PAN=1.0;
|
|
float LPAN,RPAN;
|
|
|
|
if(iTL&0x01) SegaDB-=0.4f;
|
|
if(iTL&0x02) SegaDB-=0.8f;
|
|
if(iTL&0x04) SegaDB-=1.5f;
|
|
if(iTL&0x08) SegaDB-=3.0f;
|
|
if(iTL&0x10) SegaDB-=6.0f;
|
|
if(iTL&0x20) SegaDB-=12.0f;
|
|
if(iTL&0x40) SegaDB-=24.0f;
|
|
if(iTL&0x80) SegaDB-=48.0f;
|
|
|
|
TL=pow(10.0,SegaDB/20.0);
|
|
|
|
SegaDB=0;
|
|
if(iPAN&0x1) SegaDB-=3.0f;
|
|
if(iPAN&0x2) SegaDB-=6.0f;
|
|
if(iPAN&0x4) SegaDB-=12.0f;
|
|
if(iPAN&0x8) SegaDB-=24.0f;
|
|
|
|
if((iPAN&0xf)==0xf) PAN=0.0;
|
|
else PAN=pow(10.0,SegaDB/20.0);
|
|
|
|
if(iPAN<0x10)
|
|
{
|
|
LPAN=PAN;
|
|
RPAN=1.0;
|
|
}
|
|
else
|
|
{
|
|
RPAN=PAN;
|
|
LPAN=1.0;
|
|
}
|
|
|
|
if(iSDL)
|
|
fSDL=pow(10.0,(SDLT[iSDL])/20.0);
|
|
else
|
|
fSDL=0.0;
|
|
|
|
AICA->LPANTABLE[i]=FIX((4.0*LPAN*TL*fSDL));
|
|
AICA->RPANTABLE[i]=FIX((4.0*RPAN*TL*fSDL));
|
|
}
|
|
|
|
AICA->ARTABLE[0]=AICA->DRTABLE[0]=0; //Infinite time
|
|
AICA->ARTABLE[1]=AICA->DRTABLE[1]=0; //Infinite time
|
|
for(i=2;i<64;++i)
|
|
{
|
|
double t,step,scale;
|
|
t=ARTimes[i]; //In ms
|
|
if(t!=0.0)
|
|
{
|
|
step=(1023*1000.0)/((float) 44100.0f*t);
|
|
scale=(double) (1<<EG_SHIFT);
|
|
AICA->ARTABLE[i]=(int) (step*scale);
|
|
}
|
|
else
|
|
AICA->ARTABLE[i]=1024<<EG_SHIFT;
|
|
|
|
t=DRTimes[i]; //In ms
|
|
step=(1023*1000.0)/((float) 44100.0f*t);
|
|
scale=(double) (1<<EG_SHIFT);
|
|
AICA->DRTABLE[i]=(int) (step*scale);
|
|
}
|
|
|
|
// make sure all the slots are off
|
|
for(i=0;i<64;++i)
|
|
{
|
|
AICA->Slots[i].slot=i;
|
|
AICA->Slots[i].active=0;
|
|
AICA->Slots[i].base=NULL;
|
|
AICA->Slots[i].EG.state=RELEASE;
|
|
AICA->Slots[i].mslc=0;
|
|
}
|
|
|
|
AICALFO_Init();
|
|
AICA->buffertmpl=(signed int*) auto_malloc(44100*sizeof(signed int));
|
|
AICA->buffertmpr=(signed int*) auto_malloc(44100*sizeof(signed int));
|
|
memset(AICA->buffertmpl,0,44100*sizeof(signed int));
|
|
memset(AICA->buffertmpr,0,44100*sizeof(signed int));
|
|
|
|
// no "pend"
|
|
AICA[0].udata.data[0xa0/2] = 0;
|
|
//AICA[1].udata.data[0x20/2] = 0;
|
|
AICA->TimCnt[0] = 0xffff;
|
|
AICA->TimCnt[1] = 0xffff;
|
|
AICA->TimCnt[2] = 0xffff;
|
|
}
|
|
|
|
static void AICA_UpdateSlotReg(struct _AICA *AICA,int s,int r)
|
|
{
|
|
struct _SLOT *slot=AICA->Slots+s;
|
|
int sl;
|
|
switch(r&0x7f)
|
|
{
|
|
case 0:
|
|
case 1:
|
|
if(KEYONEX(slot))
|
|
{
|
|
for(sl=0;sl<64;++sl)
|
|
{
|
|
struct _SLOT *s2=AICA->Slots+sl;
|
|
{
|
|
if(KEYONB(s2) && s2->EG.state==RELEASE/*&& !s2->active*/)
|
|
{
|
|
if(s2->mslc) AICA->udata.data[0x10] &= 0x7FFF; // reset LP at KEY_ON
|
|
AICA_StartSlot(AICA, s2);
|
|
#if 0
|
|
printf("StartSlot[%02X]: SSCTL %01X SA %06X LSA %04X LEA %04X PCMS %01X LPCTL %01X\n",sl,SSCTL(s2),SA(s2),LSA(s2),LEA(s2),PCMS(s2),LPCTL(s2));
|
|
printf(" AR %02X D1R %02X D2R %02X RR %02X DL %02X KRS %01X LPSLNK %01X\n",AR(s2),D1R(s2),D2R(s2),RR(s2),DL(s2),KRS(s2),LPSLNK(s2)>>14);
|
|
printf(" TL %02X OCT %01X FNS %03X\n",TL(s2),OCT(s2),FNS(s2));
|
|
printf(" LFORE %01X LFOF %02X ALFOWS %01X ALFOS %01X PLFOWS %01X PLFOS %01X\n",LFORE(s2),LFOF(s2),ALFOWS(s2),ALFOS(s2),PLFOWS(s2),PLFOS(s2));
|
|
printf(" IMXL %01X ISEL %01X DISDL %01X DIPAN %02X\n",IMXL(s2),ISEL(s2),DISDL(s2),DIPAN(s2));
|
|
printf("\n");
|
|
fflush(stdout);
|
|
#endif
|
|
}
|
|
if(!KEYONB(s2) /*&& s2->active*/)
|
|
{
|
|
AICA_StopSlot(s2,1);
|
|
}
|
|
}
|
|
}
|
|
slot->udata.data[0]&=~0x8000;
|
|
}
|
|
break;
|
|
case 0x18:
|
|
case 0x19:
|
|
slot->step=AICA_Step(slot);
|
|
break;
|
|
case 0x14:
|
|
case 0x15:
|
|
slot->EG.RR=Get_RR(AICA,0,RR(slot));
|
|
slot->EG.DL=0x1f-DL(slot);
|
|
break;
|
|
case 0x1c:
|
|
case 0x1d:
|
|
Compute_LFO(slot);
|
|
break;
|
|
case 0x24:
|
|
// printf("[%02d]: %x to DISDL/DIPAN (PC=%x)\n", s, slot->udata.data[0x24/2], arm7_get_register(15));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void AICA_UpdateReg(struct _AICA *AICA, int reg)
|
|
{
|
|
switch(reg&0xff)
|
|
{
|
|
case 0x4:
|
|
case 0x5:
|
|
{
|
|
unsigned int v=RBL(AICA);
|
|
AICA->DSP.RBP=RBP(AICA);
|
|
if(v==0)
|
|
AICA->DSP.RBL=8*1024;
|
|
else if(v==1)
|
|
AICA->DSP.RBL=16*1024;
|
|
else if(v==2)
|
|
AICA->DSP.RBL=32*1024;
|
|
else if(v==3)
|
|
AICA->DSP.RBL=64*1024;
|
|
}
|
|
break;
|
|
case 0x8:
|
|
case 0x9:
|
|
AICA_MidiIn(Machine, 0, AICA->udata.data[0x8/2]&0xff, 0);
|
|
break;
|
|
case 0x12:
|
|
case 0x13:
|
|
case 0x14:
|
|
case 0x15:
|
|
case 0x16:
|
|
case 0x17:
|
|
break;
|
|
case 0x90:
|
|
case 0x91:
|
|
if(AICA->Master)
|
|
{
|
|
UINT32 time;
|
|
|
|
AICA->TimPris[0]=1<<((AICA->udata.data[0x90/2]>>8)&0x7);
|
|
AICA->TimCnt[0]=(AICA->udata.data[0x90/2]&0xff)<<8;
|
|
|
|
if ((AICA->udata.data[0x90/2]&0xff) != 255)
|
|
{
|
|
time = (44100 / AICA->TimPris[0]) / (255-(AICA->udata.data[0x90/2]&0xff));
|
|
if (time)
|
|
{
|
|
timer_adjust_oneshot(AICA->timerA, ATTOTIME_IN_HZ(time), 0);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 0x94:
|
|
case 0x95:
|
|
if(AICA->Master)
|
|
{
|
|
UINT32 time;
|
|
|
|
AICA->TimPris[1]=1<<((AICA->udata.data[0x94/2]>>8)&0x7);
|
|
AICA->TimCnt[1]=(AICA->udata.data[0x94/2]&0xff)<<8;
|
|
|
|
if ((AICA->udata.data[0x94/2]&0xff) != 255)
|
|
{
|
|
time = (44100 / AICA->TimPris[1]) / (255-(AICA->udata.data[0x94/2]&0xff));
|
|
if (time)
|
|
{
|
|
timer_adjust_oneshot(AICA->timerB, ATTOTIME_IN_HZ(time), 0);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 0x98:
|
|
case 0x99:
|
|
if(AICA->Master)
|
|
{
|
|
UINT32 time;
|
|
|
|
AICA->TimPris[2]=1<<((AICA->udata.data[0x98/2]>>8)&0x7);
|
|
AICA->TimCnt[2]=(AICA->udata.data[0x98/2]&0xff)<<8;
|
|
|
|
if ((AICA->udata.data[0x98/2]&0xff) != 255)
|
|
{
|
|
time = (44100 / AICA->TimPris[2]) / (255-(AICA->udata.data[0x98/2]&0xff));
|
|
if (time)
|
|
{
|
|
timer_adjust_oneshot(AICA->timerC, ATTOTIME_IN_HZ(time), 0);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 0xa4: //SCIRE
|
|
case 0xa5:
|
|
|
|
if(AICA->Master)
|
|
{
|
|
AICA->udata.data[0xa0/2] &= ~AICA->udata.data[0xa4/2];
|
|
ResetInterrupts(AICA);
|
|
|
|
// behavior from real hardware (SCSP, assumed to carry over): if you SCIRE a timer that's expired,
|
|
// it'll immediately pop up again
|
|
if (AICA->TimCnt[0] >= 0xff00)
|
|
{
|
|
AICA->udata.data[0xa0/2] |= 0x40;
|
|
}
|
|
if (AICA->TimCnt[1] >= 0xff00)
|
|
{
|
|
AICA->udata.data[0xa0/2] |= 0x80;
|
|
}
|
|
if (AICA->TimCnt[2] >= 0xff00)
|
|
{
|
|
AICA->udata.data[0xa0/2] |= 0x100;
|
|
}
|
|
}
|
|
break;
|
|
case 0xa8:
|
|
case 0xa9:
|
|
case 0xac:
|
|
case 0xad:
|
|
case 0xb0:
|
|
case 0xb1:
|
|
if(AICA->Master)
|
|
{
|
|
AICA->IrqTimA=DecodeSCI(AICA,SCITMA);
|
|
AICA->IrqTimBC=DecodeSCI(AICA,SCITMB);
|
|
AICA->IrqMidi=DecodeSCI(AICA,SCIMID);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void AICA_UpdateSlotRegR(struct _AICA *AICA, int slot,int reg)
|
|
{
|
|
|
|
}
|
|
|
|
static void AICA_UpdateRegR(struct _AICA *AICA, int reg)
|
|
{
|
|
switch(reg&0xff)
|
|
{
|
|
case 8:
|
|
case 9:
|
|
{
|
|
unsigned short v=AICA->udata.data[0x8/2];
|
|
v&=0xff00;
|
|
v|=AICA->MidiStack[AICA->MidiR];
|
|
AICA->IntARMCB(Machine, 0); // cancel the IRQ
|
|
if(AICA->MidiR!=AICA->MidiW)
|
|
{
|
|
++AICA->MidiR;
|
|
AICA->MidiR&=15;
|
|
}
|
|
AICA->udata.data[0x8/2]=v;
|
|
}
|
|
break;
|
|
|
|
case 0x10: // LP check
|
|
case 0x11:
|
|
{
|
|
//int MSLC = (AICA->udata.data[0xc/2]>>8) & 0x3f; // which slot are we monitoring?
|
|
}
|
|
break;
|
|
|
|
case 0x14: // CA (slot address)
|
|
case 0x15:
|
|
{
|
|
int MSLC = (AICA->udata.data[0xc/2]>>8) & 0x3f; // which slot are we monitoring?
|
|
unsigned int CA = AICA->Slots[MSLC].cur_addr>>(SHIFT+12);
|
|
|
|
AICA->udata.data[0x14/2] = CA;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void AICA_w16(struct _AICA *AICA,unsigned int addr,unsigned short val)
|
|
{
|
|
addr&=0xffff;
|
|
if(addr<0x2000)
|
|
{
|
|
int slot=addr/0x80;
|
|
addr&=0x7f;
|
|
// printf("%x to slot %d offset %x\n", val, slot, addr);
|
|
*((unsigned short *) (AICA->Slots[slot].udata.datab+(addr))) = val;
|
|
AICA_UpdateSlotReg(AICA,slot,addr&0x7f);
|
|
}
|
|
else if (addr < 0x2800)
|
|
{
|
|
if (addr <= 0x2044)
|
|
{
|
|
// printf("%x to EFSxx slot %d (addr %x)\n", val, (addr-0x2000)/4, addr&0x7f);
|
|
AICA->EFSPAN[addr&0x7f] = val;
|
|
}
|
|
}
|
|
else if(addr<0x3000)
|
|
{
|
|
if (addr < 0x28be)
|
|
{
|
|
// printf("%x to AICA global @ %x\n", val, addr & 0xff);
|
|
*((unsigned short *) (AICA->udata.datab+((addr&0xff)))) = val;
|
|
AICA_UpdateReg(AICA, addr&0xff);
|
|
}
|
|
else if (addr == 0x2d00)
|
|
{
|
|
AICA->IRQL = val;
|
|
}
|
|
else if (addr == 0x2d04)
|
|
{
|
|
AICA->IRQR = val;
|
|
|
|
if (val)
|
|
{
|
|
AICA->IntARMCB(Machine, 0);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//DSP
|
|
if(addr<0x3200) //COEF
|
|
*((unsigned short *) (AICA->DSP.COEF+(addr-0x3000)/2))=val;
|
|
else if(addr<0x3400)
|
|
*((unsigned short *) (AICA->DSP.MADRS+(addr-0x3200)/2))=val;
|
|
else if(addr<0x3c00)
|
|
{
|
|
*((unsigned short *) (AICA->DSP.MPRO+(addr-0x3400)/2))=val;
|
|
|
|
if (addr == 0x3bfe)
|
|
{
|
|
AICADSP_Start(&AICA->DSP);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned short AICA_r16(struct _AICA *AICA, unsigned int addr)
|
|
{
|
|
unsigned short v=0;
|
|
addr&=0xffff;
|
|
if(addr<0x2000)
|
|
{
|
|
int slot=addr/0x80;
|
|
addr&=0x7f;
|
|
AICA_UpdateSlotRegR(AICA, slot,addr&0x7f);
|
|
v=*((unsigned short *) (AICA->Slots[slot].udata.datab+(addr)));
|
|
}
|
|
else if(addr<0x3000)
|
|
{
|
|
if (addr <= 0x2044)
|
|
{
|
|
v = AICA->EFSPAN[addr&0x7f];
|
|
}
|
|
else if (addr < 0x28be)
|
|
{
|
|
AICA_UpdateRegR(AICA, addr&0xff);
|
|
v= *((unsigned short *) (AICA->udata.datab+((addr&0xff))));
|
|
if((addr&0xfe)==0x10) AICA->udata.data[0x10/2] &= 0x7FFF; // reset LP on read
|
|
}
|
|
else if (addr == 0x2d00)
|
|
{
|
|
return AICA->IRQL;
|
|
}
|
|
else if (addr == 0x2d04)
|
|
{
|
|
return AICA->IRQR;
|
|
}
|
|
}
|
|
// else if (addr<0x700)
|
|
// v=AICA->RINGBUF[(addr-0x600)/2];
|
|
return v;
|
|
}
|
|
|
|
|
|
#define REVSIGN(v) ((~v)+1)
|
|
|
|
#ifdef UNUSED_FUNCTION
|
|
static void AICA_TimersAddTicks(struct _AICA *AICA, int ticks)
|
|
{
|
|
if(AICA->TimCnt[0]<=0xff00)
|
|
{
|
|
AICA->TimCnt[0] += ticks << (8-((AICA->udata.data[0x18/2]>>8)&0x7));
|
|
if (AICA->TimCnt[0] > 0xFF00)
|
|
{
|
|
AICA->TimCnt[0] = 0xFFFF;
|
|
AICA->udata.data[0xa0/2]|=0x40;
|
|
}
|
|
AICA->udata.data[0x90/2]&=0xff00;
|
|
AICA->udata.data[0x90/2]|=AICA->TimCnt[0]>>8;
|
|
}
|
|
|
|
if(AICA->TimCnt[1]<=0xff00)
|
|
{
|
|
AICA->TimCnt[1] += ticks << (8-((AICA->udata.data[0x1a/2]>>8)&0x7));
|
|
if (AICA->TimCnt[1] > 0xFF00)
|
|
{
|
|
AICA->TimCnt[1] = 0xFFFF;
|
|
AICA->udata.data[0xa0/2]|=0x80;
|
|
}
|
|
AICA->udata.data[0x94/2]&=0xff00;
|
|
AICA->udata.data[0x94/2]|=AICA->TimCnt[1]>>8;
|
|
}
|
|
|
|
if(AICA->TimCnt[2]<=0xff00)
|
|
{
|
|
AICA->TimCnt[2] += ticks << (8-((AICA->udata.data[0x1c/2]>>8)&0x7));
|
|
if (AICA->TimCnt[2] > 0xFF00)
|
|
{
|
|
AICA->TimCnt[2] = 0xFFFF;
|
|
AICA->udata.data[0xa0/2]|=0x100;
|
|
}
|
|
AICA->udata.data[0x98/2]&=0xff00;
|
|
AICA->udata.data[0x98/2]|=AICA->TimCnt[2]>>8;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
INLINE INT32 AICA_UpdateSlot(struct _AICA *AICA, struct _SLOT *slot)
|
|
{
|
|
INT32 sample;
|
|
int step=slot->step;
|
|
UINT32 addr1,addr2,addr_select; // current and next sample addresses
|
|
UINT32 *addr[2] = {&addr1, &addr2}; // used for linear interpolation
|
|
UINT32 *slot_addr[2] = {&(slot->cur_addr), &(slot->nxt_addr)}; //
|
|
|
|
if(SSCTL(slot)!=0) //no FM or noise yet
|
|
return 0;
|
|
|
|
if(PLFOS(slot)!=0)
|
|
{
|
|
step=step*AICAPLFO_Step(&(slot->PLFO));
|
|
step>>=SHIFT;
|
|
}
|
|
|
|
if(PCMS(slot) == 1)
|
|
{
|
|
addr1=slot->cur_addr>>SHIFT;
|
|
addr2=slot->nxt_addr>>SHIFT;
|
|
}
|
|
else if(PCMS(slot) == 0)
|
|
{
|
|
addr1=(slot->cur_addr>>(SHIFT-1))&AICA->RAM_MASK16;
|
|
addr2=(slot->nxt_addr>>(SHIFT-1))&AICA->RAM_MASK16;
|
|
}
|
|
else
|
|
{
|
|
addr1=slot->cur_addr>>SHIFT;
|
|
addr2=slot->nxt_addr>>SHIFT;
|
|
}
|
|
|
|
if(PCMS(slot) == 1) // 8-bit signed
|
|
{
|
|
INT8 *p1=(signed char *) (AICA->AICARAM+(((SA(slot)+addr1))&AICA->RAM_MASK));
|
|
INT8 *p2=(signed char *) (AICA->AICARAM+(((SA(slot)+addr2))&AICA->RAM_MASK));
|
|
INT32 s;
|
|
INT32 fpart=slot->cur_addr&((1<<SHIFT)-1);
|
|
s=(int) (p1[0]<<8)*((1<<SHIFT)-fpart)+(int) (p2[0]<<8)*fpart;
|
|
sample=(s>>SHIFT);
|
|
}
|
|
else if (PCMS(slot) == 0) //16 bit signed
|
|
{
|
|
UINT8 *p1=(UINT8 *) (AICA->AICARAM+((SA(slot)+addr1)&AICA->RAM_MASK));
|
|
UINT8 *p2=(UINT8 *) (AICA->AICARAM+((SA(slot)+addr2)&AICA->RAM_MASK));
|
|
INT32 s;
|
|
INT32 fpart=slot->cur_addr&((1<<SHIFT)-1);
|
|
s=(int) ((INT16)(p1[0] | (p1[1]<<8)))*((1<<SHIFT)-fpart)+(int) ((INT16)(p2[0] | (p2[1]<<8)))*fpart;
|
|
sample=(s>>SHIFT);
|
|
}
|
|
else // 4-bit ADPCM
|
|
{
|
|
UINT8 *base= slot->adbase;
|
|
INT32 s;
|
|
int cur_sample; //current ADPCM sample
|
|
int nxt_sample; //next ADPCM sample
|
|
INT32 fpart=slot->cur_addr&((1<<SHIFT)-1);
|
|
UINT32 steps_to_go = addr2, curstep = slot->curstep;
|
|
|
|
if (slot->adbase)
|
|
{
|
|
cur_sample = slot->cur_sample; // may already contains current decoded sample
|
|
|
|
// seek to the interpolation sample
|
|
while (curstep < steps_to_go)
|
|
{
|
|
int shift1, delta1;
|
|
shift1 = 4*((curstep&1));
|
|
delta1 = (*base>>shift1)&0xf;
|
|
DecodeADPCM(&(slot->cur_sample),delta1,&(slot->cur_quant));
|
|
curstep++;
|
|
if (!(curstep & 1))
|
|
{
|
|
base++;
|
|
}
|
|
if (curstep == addr1)
|
|
cur_sample = slot->cur_sample;
|
|
}
|
|
nxt_sample = slot->cur_sample;
|
|
|
|
slot->adbase = base;
|
|
slot->curstep = curstep;
|
|
|
|
s=(int)cur_sample*((1<<SHIFT)-fpart)+(int)nxt_sample*fpart;
|
|
}
|
|
else
|
|
{
|
|
s = 0;
|
|
}
|
|
|
|
sample=(s>>SHIFT);
|
|
}
|
|
|
|
slot->prv_addr=slot->cur_addr;
|
|
slot->cur_addr+=step;
|
|
slot->nxt_addr=slot->cur_addr+(1<<SHIFT);
|
|
|
|
addr1=slot->cur_addr>>SHIFT;
|
|
addr2=slot->nxt_addr>>SHIFT;
|
|
|
|
if(addr1>=LSA(slot))
|
|
{
|
|
if(LPSLNK(slot) && slot->EG.state==ATTACK)
|
|
slot->EG.state = DECAY1;
|
|
}
|
|
|
|
for (addr_select=0; addr_select<2; addr_select++)
|
|
{
|
|
INT32 rem_addr;
|
|
switch(LPCTL(slot))
|
|
{
|
|
case 0: //no loop
|
|
if(*addr[addr_select]>=LSA(slot) && *addr[addr_select]>=LEA(slot))
|
|
{
|
|
//slot->active=0;
|
|
if(slot->mslc) AICA->udata.data[8] |= 0x8000;
|
|
AICA_StopSlot(slot,0);
|
|
}
|
|
break;
|
|
case 1: //normal loop
|
|
if(*addr[addr_select]>=LEA(slot))
|
|
{
|
|
if(slot->mslc) AICA->udata.data[8] |= 0x8000;
|
|
rem_addr = *slot_addr[addr_select] - (LEA(slot)<<SHIFT);
|
|
*slot_addr[addr_select]=(LSA(slot)<<SHIFT) + rem_addr;
|
|
|
|
if(PCMS(slot)>=2)
|
|
{
|
|
// restore the state @ LSA - the sampler will naturally walk to (LSA + remainder)
|
|
slot->adbase = &AICA->AICARAM[SA(slot)+(LSA(slot)/2)];
|
|
slot->curstep = LSA(slot);
|
|
if (PCMS(slot) == 2)
|
|
{
|
|
slot->cur_sample = slot->cur_lpsample;
|
|
slot->cur_quant = slot->cur_lpquant;
|
|
}
|
|
|
|
// printf("Looping: slot_addr %x LSA %x LEA %x step %x base %x\n", *slot_addr[addr_select]>>SHIFT, LSA(slot), LEA(slot), slot->curstep, slot->adbase);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(ALFOS(slot)!=0)
|
|
{
|
|
sample=sample*AICAALFO_Step(&(slot->ALFO));
|
|
sample>>=SHIFT;
|
|
}
|
|
|
|
if(slot->EG.state==ATTACK)
|
|
sample=(sample*EG_Update(slot))>>SHIFT;
|
|
else
|
|
sample=(sample*EG_TABLE[EG_Update(slot)>>(SHIFT-10)])>>SHIFT;
|
|
|
|
if(slot->mslc)
|
|
{
|
|
AICA->udata.data[0x14/2] = addr1;
|
|
if (!(AFSEL(AICA)))
|
|
{
|
|
AICA->udata.data[0x10/2] |= slot->EG.state<<13;
|
|
AICA->udata.data[0x10/2] |= 0x3FF - (slot->EG.volume>>EG_SHIFT);
|
|
}
|
|
}
|
|
|
|
return sample;
|
|
}
|
|
|
|
static void AICA_DoMasterSamples(struct _AICA *AICA, int nsamples)
|
|
{
|
|
stream_sample_t *bufr,*bufl;
|
|
int sl, s, i;
|
|
|
|
bufr=bufferr;
|
|
bufl=bufferl;
|
|
|
|
for(s=0;s<nsamples;++s)
|
|
{
|
|
INT32 smpl, smpr;
|
|
|
|
smpl = smpr = 0;
|
|
|
|
// mix slots' direct output
|
|
for(sl=0;sl<64;++sl)
|
|
{
|
|
struct _SLOT *slot=AICA->Slots+sl;
|
|
slot->mslc = (MSLC(AICA)==sl);
|
|
RBUFDST=AICA->RINGBUF+AICA->BUFPTR;
|
|
if(AICA->Slots[sl].active)
|
|
{
|
|
unsigned int Enc;
|
|
signed int sample;
|
|
|
|
sample=AICA_UpdateSlot(AICA, slot);
|
|
|
|
Enc=((TL(slot))<<0x0)|((IMXL(slot))<<0xd);
|
|
AICADSP_SetSample(&AICA->DSP,(sample*AICA->LPANTABLE[Enc])>>(SHIFT-2),ISEL(slot),IMXL(slot));
|
|
Enc=((TL(slot))<<0x0)|((DIPAN(slot))<<0x8)|((DISDL(slot))<<0xd);
|
|
{
|
|
smpl+=(sample*AICA->LPANTABLE[Enc])>>SHIFT;
|
|
smpr+=(sample*AICA->RPANTABLE[Enc])>>SHIFT;
|
|
}
|
|
}
|
|
|
|
AICA->BUFPTR&=63;
|
|
}
|
|
|
|
// process the DSP
|
|
AICADSP_Step(&AICA->DSP);
|
|
|
|
// mix DSP output
|
|
for(i=0;i<16;++i)
|
|
{
|
|
if(EFSDL(i))
|
|
{
|
|
unsigned int Enc=((EFPAN(i))<<0x8)|((EFSDL(i))<<0xd);
|
|
smpl+=(AICA->DSP.EFREG[i]*AICA->LPANTABLE[Enc])>>SHIFT;
|
|
smpr+=(AICA->DSP.EFREG[i]*AICA->RPANTABLE[Enc])>>SHIFT;
|
|
}
|
|
}
|
|
|
|
*bufl++ = ICLIP16(smpl>>3);
|
|
*bufr++ = ICLIP16(smpr>>3);
|
|
}
|
|
}
|
|
|
|
#ifdef UNUSED_FUNCTION
|
|
static int AICA_IRQCB(void *param)
|
|
{
|
|
CheckPendingIRQ(param);
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
static void AICA_Update(void *param, stream_sample_t **inputs, stream_sample_t **buf, int samples)
|
|
{
|
|
struct _AICA *AICA = param;
|
|
bufferl = buf[0];
|
|
bufferr = buf[1];
|
|
length = samples;
|
|
AICA_DoMasterSamples(AICA, samples);
|
|
}
|
|
|
|
static void *aica_start(int sndindex, int clock, const void *config)
|
|
{
|
|
const struct AICAinterface *intf;
|
|
|
|
struct _AICA *AICA;
|
|
|
|
AICA = auto_malloc(sizeof(*AICA));
|
|
memset(AICA, 0, sizeof(*AICA));
|
|
|
|
intf = config;
|
|
|
|
// init the emulation
|
|
AICA_Init(AICA, intf, sndindex);
|
|
|
|
// set up the IRQ callbacks
|
|
{
|
|
AICA->IntARMCB = intf->irq_callback;
|
|
|
|
AICA->stream = stream_create(0, 2, 44100, AICA, AICA_Update);
|
|
}
|
|
|
|
return AICA;
|
|
}
|
|
|
|
#ifdef UNUSED_FUNCTION
|
|
static void aica_stop(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
void AICA_set_ram_base(int which, void *base, int size)
|
|
{
|
|
struct _AICA *AICA = sndti_token(SOUND_AICA, which);
|
|
if (AICA)
|
|
{
|
|
AICA->AICARAM = base;
|
|
AICA->AICARAM_LENGTH = size;
|
|
AICA->RAM_MASK = AICA->AICARAM_LENGTH-1;
|
|
AICA->RAM_MASK16 = AICA->RAM_MASK & 0x7ffffe;
|
|
AICA->DSP.AICARAM = base;
|
|
AICA->DSP.AICARAM_LENGTH = size;
|
|
}
|
|
}
|
|
|
|
READ16_HANDLER( AICA_0_r )
|
|
{
|
|
struct _AICA *AICA = sndti_token(SOUND_AICA, 0);
|
|
UINT16 res = AICA_r16(AICA, offset*2);
|
|
|
|
return res;
|
|
}
|
|
|
|
WRITE16_HANDLER( AICA_0_w )
|
|
{
|
|
struct _AICA *AICA = sndti_token(SOUND_AICA, 0);
|
|
UINT16 tmp;
|
|
|
|
tmp = AICA_r16(AICA, offset*2);
|
|
COMBINE_DATA(&tmp);
|
|
AICA_w16(AICA,offset*2, tmp);
|
|
}
|
|
|
|
WRITE16_HANDLER( AICA_MidiIn )
|
|
{
|
|
struct _AICA *AICA = sndti_token(SOUND_AICA, 0);
|
|
AICA->MidiStack[AICA->MidiW++]=data;
|
|
AICA->MidiW &= 15;
|
|
}
|
|
|
|
READ16_HANDLER( AICA_MidiOutR )
|
|
{
|
|
struct _AICA *AICA = sndti_token(SOUND_AICA, 0);
|
|
unsigned char val;
|
|
|
|
val=AICA->MidiStack[AICA->MidiR++];
|
|
AICA->MidiR&=7;
|
|
return val;
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Generic get_info
|
|
**************************************************************************/
|
|
|
|
static void aica_set_info(void *token, UINT32 state, sndinfo *info)
|
|
{
|
|
switch (state)
|
|
{
|
|
/* no parameters to set */
|
|
}
|
|
}
|
|
|
|
|
|
void aica_get_info(void *token, UINT32 state, sndinfo *info)
|
|
{
|
|
switch (state)
|
|
{
|
|
/* --- the following bits of info are returned as 64-bit signed integers --- */
|
|
|
|
/* --- the following bits of info are returned as pointers to data or functions --- */
|
|
case SNDINFO_PTR_SET_INFO: info->set_info = aica_set_info; break;
|
|
case SNDINFO_PTR_START: info->start = aica_start; break;
|
|
case SNDINFO_PTR_STOP: /* Nothing */ break;
|
|
case SNDINFO_PTR_RESET: /* Nothing */ break;
|
|
|
|
/* --- the following bits of info are returned as NULL-terminated strings --- */
|
|
case SNDINFO_STR_NAME: info->s = "AICA"; break;
|
|
case SNDINFO_STR_CORE_FAMILY: info->s = "Sega/Yamaha custom"; break;
|
|
case SNDINFO_STR_CORE_VERSION: info->s = "1.0.1"; break;
|
|
case SNDINFO_STR_CORE_FILE: info->s = __FILE__; break;
|
|
case SNDINFO_STR_CORE_CREDITS: info->s = "Copyright Nicola Salmoria and the MAME Team"; break;
|
|
}
|
|
}
|
|
|