mame/src/devices/cpu/h8/h8_adc.cpp
2015-11-08 12:56:12 +01:00

502 lines
11 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Olivier Galibert
#include "emu.h"
#include "h8_adc.h"
const device_type H8_ADC_3337 = &device_creator<h8_adc_3337_device>;
const device_type H8_ADC_3006 = &device_creator<h8_adc_3006_device>;
const device_type H8_ADC_2245 = &device_creator<h8_adc_2245_device>;
const device_type H8_ADC_2320 = &device_creator<h8_adc_2320_device>;
const device_type H8_ADC_2357 = &device_creator<h8_adc_2357_device>;
const device_type H8_ADC_2655 = &device_creator<h8_adc_2655_device>;
h8_adc_device::h8_adc_device(const machine_config &mconfig, device_type type, const char *name, const char *tag, device_t *owner, UINT32 clock, const char *shortname, const char *source) :
device_t(mconfig, type, name, tag, owner, clock, shortname, source),
cpu(*this, DEVICE_SELF_OWNER)
{
suspend_on_interrupt = false;
analog_power_control = false;
}
void h8_adc_device::set_info(const char *_intc_tag, int _intc_vector)
{
intc_tag = _intc_tag;
intc_vector = _intc_vector;
}
READ8_MEMBER(h8_adc_device::addr8_r)
{
logerror("%s: addr8_r %d %03x\n", tag(), offset, addr[offset >> 1]);
return offset & 1 ? addr[offset >> 1] >> 2 : addr[offset >> 1] << 6;
}
READ16_MEMBER(h8_adc_device::addr16_r)
{
logerror("%s: addr16_r %d %03x\n", tag(), offset, addr[offset]);
return addr[offset];
}
READ8_MEMBER(h8_adc_device::adcsr_r)
{
logerror("%s: adcsr_r %02x\n", tag(), adcsr);
return adcsr;
}
READ8_MEMBER(h8_adc_device::adcr_r)
{
logerror("%s: adcr_r %02x\n", tag(), adcr);
return adcr;
}
WRITE8_MEMBER(h8_adc_device::adcsr_w)
{
logerror("%s: adcsr_w %02x\n", tag(), data);
UINT8 prev = adcsr;
adcsr = (data & 0x7f) | (adcsr & data & F_ADF);
mode_update();
if((prev & F_ADF) && !(adcsr & F_ADF)) {
if(mode & HALTED) {
mode &= ~HALTED;
if(!(adcsr & F_ADST)) {
sampling();
conversion_wait(false, false);
} else
done();
}
}
if(!(prev & F_ADST) && (adcsr & F_ADST))
start_conversion();
}
WRITE8_MEMBER(h8_adc_device::adcr_w)
{
logerror("%s: adcr_w %02x\n", tag(), data);
adcr = data;
mode_update();
}
WRITE_LINE_MEMBER(h8_adc_device::adtrg_w)
{
if(state != adtrg) {
adtrg = state;
if(!adtrg && (trigger & T_EXT) && !(adcsr & F_ADST)) {
adcsr |= F_ADST;
start_conversion();
}
}
}
void h8_adc_device::set_suspend(bool suspend)
{
}
void h8_adc_device::device_start()
{
io = &cpu->space(AS_IO);
intc = siblingdevice<h8_intc_device>(intc_tag);
save_item(NAME(addr));
save_item(NAME(buf));
save_item(NAME(adcsr));
save_item(NAME(adcr));
save_item(NAME(trigger));
save_item(NAME(start_mode));
save_item(NAME(start_channel));
save_item(NAME(end_channel));
save_item(NAME(start_count));
save_item(NAME(suspend_on_interrupt));
save_item(NAME(analog_power_control));
save_item(NAME(mode));
save_item(NAME(channel));
save_item(NAME(count));
save_item(NAME(analog_powered));
save_item(NAME(next_event));
save_item(NAME(adtrg));
}
void h8_adc_device::device_reset()
{
memset(addr, 0, sizeof(addr));
memset(buf, 0, sizeof(buf));
adcsr = adcr = 0;
trigger = T_SOFT;
start_mode = IDLE;
start_channel = end_channel = 0;
start_count = 1;
mode = IDLE;
channel = 0;
count = 0;
next_event = 0;
mode_update();
analog_powered = !analog_power_control;
adtrg = true;
}
void h8_adc_device::done()
{
mode = IDLE;
adcsr &= ~F_ADST;
if(analog_power_control)
analog_powered = false;
}
UINT64 h8_adc_device::internal_update(UINT64 current_time)
{
if(next_event && next_event <= current_time) {
next_event = 0;
timeout(current_time);
}
return next_event;
}
void h8_adc_device::conversion_wait(bool first, bool poweron, UINT64 current_time)
{
if(current_time)
next_event = current_time + conversion_time(first, poweron);
else {
next_event = cpu->total_cycles() + conversion_time(first, poweron);
cpu->internal_update();
}
}
void h8_adc_device::buffer_value(int port, int buffer)
{
buf[buffer] = io->read_word(2*(h8_device::ADC_0 + port));
logerror("%s: adc buffer %d -> %d:%03x\n", tag(), port, buffer, buf[buffer]);
}
void h8_adc_device::commit_value(int reg, int buffer)
{
reg &= register_mask;
logerror("%s: adc commit %d -> %d:%03x\n", tag(), buffer, reg, buf[buffer]);
addr[reg] = buf[buffer];
}
void h8_adc_device::sampling()
{
if(mode & COUNTED)
channel = get_channel_index(start_count - count);
if(mode & DUAL) {
buffer_value(channel, 0);
buffer_value(channel+1, 1);
} else
buffer_value(channel);
}
void h8_adc_device::start_conversion()
{
mode = start_mode;
channel = start_channel;
count = start_count;
sampling();
conversion_wait(true, !analog_powered);
analog_powered = true;
}
void h8_adc_device::timeout(UINT64 current_time)
{
if(mode & BUFFER) {
do_buffering((mode & DUAL) && (channel & 1));
if((mode & DUAL) && !(channel & 1)) {
channel++;
conversion_wait(false, false, current_time);
return;
}
} else {
if(mode & DUAL) {
if(channel & 1)
commit_value(channel, 1);
else {
commit_value(channel, 0);
channel++;
conversion_wait(false, false, current_time);
return;
}
} else
commit_value(channel);
}
if(mode & ROTATE) {
if(channel != end_channel) {
channel++;
sampling();
conversion_wait(false, false, current_time);
return;
}
channel = start_channel;
}
if(mode & COUNTED) {
count--;
if(count) {
sampling();
conversion_wait(false, false, current_time);
return;
}
}
adcsr |= F_ADF;
if(adcsr & F_ADIE)
intc->internal_interrupt(intc_vector);
if(mode & REPEAT) {
if(suspend_on_interrupt && (adcsr & F_ADIE)) {
mode |= HALTED;
return;
}
channel = start_channel;
count = start_count;
sampling();
conversion_wait(false, false, current_time);
return;
}
done();
}
void h8_adc_device::do_buffering(int buffer)
{
throw emu_fatalerror("%s: Buffering requested but unimplemented for this device\n", tag());
}
int h8_adc_device::get_channel_index(int count)
{
throw emu_fatalerror("%s: Indexing requested but unimplemented for this device\n", tag());
}
h8_adc_3337_device::h8_adc_3337_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) :
h8_adc_device(mconfig, H8_ADC_3337, "H8 ADC 3337", tag, owner, clock, "h8_adc_3337", __FILE__)
{
register_mask = 3;
}
int h8_adc_3337_device::conversion_time(bool first, bool poweron)
{
int tm;
if(first)
tm = adcsr & 0x08 ? 134 : 266;
else
tm = adcsr & 0x08 ? 128 : 256;
return tm;
}
void h8_adc_3337_device::mode_update()
{
trigger = adcr & 0x80 ? T_EXT : T_SOFT;
if(adcsr & 0x10) {
start_mode = ACTIVE | ROTATE;
start_channel = adcsr & 4;
end_channel = adcsr & 7;
} else {
start_mode = ACTIVE;
start_channel = end_channel = adcsr & 7;
}
}
h8_adc_3006_device::h8_adc_3006_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) :
h8_adc_device(mconfig, H8_ADC_3006, "H8 ADC 3006", tag, owner, clock, "h8_adc_3006", __FILE__)
{
register_mask = 3;
}
int h8_adc_3006_device::conversion_time(bool first, bool poweron)
{
int tm;
if(first)
tm = adcsr & 0x08 ? 70 : 134;
else
tm = adcsr & 0x08 ? 66 : 128;
return tm;
}
void h8_adc_3006_device::mode_update()
{
trigger = adcr & 0x80 ? T_EXT|T_TIMER : T_SOFT;
if(adcsr & 0x10) {
start_mode = ACTIVE | ROTATE;
start_channel = adcsr & 4;
end_channel = adcsr & 7;
} else {
start_mode = ACTIVE;
start_channel = end_channel = adcsr & 7;
}
}
h8_adc_2245_device::h8_adc_2245_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) :
h8_adc_device(mconfig, H8_ADC_2245, "H8 ADC 2245", tag, owner, clock, "h8_adc_2245", __FILE__)
{
register_mask = 3;
}
int h8_adc_2245_device::conversion_time(bool first, bool poweron)
{
int tm;
if(first)
tm = adcsr & 0x08 ? 134 : 266;
else
tm = adcsr & 0x08 ? 128 : 256;
return tm;
}
void h8_adc_2245_device::mode_update()
{
trigger = 1 << ((adcr >> 6) & 3);
if(adcsr & 0x10) {
start_mode = ACTIVE | ROTATE;
start_channel = 0;
end_channel = adcsr & 3;
} else {
start_mode = ACTIVE;
start_channel = end_channel = adcsr & 3;
}
}
h8_adc_2320_device::h8_adc_2320_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) :
h8_adc_device(mconfig, H8_ADC_2320, "H8 ADC 2320", tag, owner, clock, "h8_adc_2320", __FILE__)
{
register_mask = 3;
}
int h8_adc_2320_device::conversion_time(bool first, bool poweron)
{
int tm;
if(first)
if(adcr & 0x04)
tm = adcsr & 0x08 ? 134 : 266;
else
tm = adcsr & 0x08 ? 68 : 580;
else
if(adcr & 0x04)
tm = adcsr & 0x08 ? 128 : 256;
else
tm = adcsr & 0x08 ? 64 : 512;
return tm;
}
void h8_adc_2320_device::mode_update()
{
trigger = 1 << ((adcr >> 6) & 3);
if(adcsr & 0x10) {
start_mode = ACTIVE | ROTATE;
start_channel = adcsr & 4;
end_channel = adcsr & 7;
} else {
start_mode = ACTIVE;
start_channel = end_channel = adcsr & 7;
}
}
h8_adc_2357_device::h8_adc_2357_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) :
h8_adc_device(mconfig, H8_ADC_2357, "H8 ADC 2357", tag, owner, clock, "h8_adc_2357", __FILE__)
{
register_mask = 3;
}
int h8_adc_2357_device::conversion_time(bool first, bool poweron)
{
int tm;
if(first)
tm = adcsr & 0x08 ? 134 : 266;
else
tm = adcsr & 0x08 ? 128 : 256;
return tm;
}
void h8_adc_2357_device::mode_update()
{
trigger = 1 << ((adcr >> 6) & 3);
if(adcsr & 0x10) {
start_mode = ACTIVE | ROTATE;
start_channel = adcsr & 4;
end_channel = adcsr & 7;
} else {
start_mode = ACTIVE;
start_channel = end_channel = adcsr & 7;
}
}
h8_adc_2655_device::h8_adc_2655_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) :
h8_adc_device(mconfig, H8_ADC_2655, "H8 ADC 2655", tag, owner, clock, "h8_adc_2655", __FILE__)
{
suspend_on_interrupt = true;
register_mask = 7;
}
int h8_adc_2655_device::conversion_time(bool first, bool poweron)
{
int tm = adcsr & 0x10 ? 44 : 24;
if(first)
tm += adcsr & 0x10 ? 20 : 10;
if(poweron)
tm += 200;
return tm;
}
void h8_adc_2655_device::mode_update()
{
trigger = 1 << ((adcr >> 4) & 3);
analog_power_control = !(adcr & 0x40);
mode = ACTIVE | (adcr & 0x08 ? REPEAT : 0);
if(adcsr & 0x03) {
mode |= BUFFER;
}
if(adcsr & 0x08) {
mode |= ROTATE;
start_channel = 0;
if(adcr & 0x04) {
mode |= DUAL;
end_channel = (adcsr & 6)+1;
} else
end_channel = adcsr & 7;
} else
start_channel = end_channel = adcsr & 7;
}
void h8_adc_2655_device::do_buffering(int buffer)
{
if((mode & COUNTED) && channel >= 2) {
commit_value(channel, buffer);
return;
}
switch(adcsr & 3) {
case 0:
commit_value(channel, buffer);
break;
case 1:
addr[1] = addr[0];
commit_value(0, buffer);
break;
case 2:
addr[2+buffer] = addr[buffer];
commit_value(buffer, buffer);
break;
case 3:
addr[3] = addr[2];
addr[2] = addr[1];
addr[1] = addr[0];
commit_value(0, buffer);
break;
}
}
int h8_adc_2655_device::get_channel_index(int count)
{
abort();
}