mame/nl_examples/opamp_amplification_curve.cpp

95 lines
1.9 KiB
C++

// license:GPL-2.0+
// copyright-holders:Couriersud
/*
* Script to analyze opamp amplification as a function of frequency.
*
* ./nltool -t 0.5 -f nl_examples/opamp_amplification_curve.cpp
*
* t=0.0: 10 Hz
* t=0.1: 100 Hz
* t=0.2: 1000 Hz
* t=0.3: 10000 Hz
* t=0.4: 100000 Hz
* ....
*
* ./plot_nl.sh --log Y Z
*/
#include "netlist/devices/net_lib.h"
#define OPAMP_TEST "MB3614(DAB=0.0015)"
NETLIST_START(main)
/* Standard stuff */
//VARCLOCK(clk, "0.5 / pow(10, 1 + T * 4)")
//CLOCK(clk, 1000)
SOLVER(Solver, 48000)
PARAM(Solver.ACCURACY, 1e-7)
PARAM(Solver.NR_LOOPS, 300)
PARAM(Solver.DYNAMIC_TS, 1)
PARAM(Solver.DYNAMIC_MIN_TIMESTEP, 1e-7)
VS(vs, 0)
/*
* Having f(t)=sin(g(t)*t) the derivative becomes
*
* f'(t) = d/dt(g(t)*t) * cos(g(t)*t)
*
* w(t) = d/dt(g(t)*t) = 2*pi*freq(t) is the angular frequency at time t
*
* choosing freq(t) = pow(10, a+b*t) and integrating we get
*
* g(t)*t = 2 * pi /(b*ln(10)) * (pow(10, a+b*t)-pow(10,a))
*/
PARAM(vs.FUNC, "0.001 * sin(0.2728752708 * (pow(10, 1 + 10*T) - 10))")
/*
* Stepwise ... same as above
*/
//PARAM(vs.FUNC, "0.001 * sin(6.28 * pow(10, trunc((1 + T * 10)*10)/10) * T)")
/*
* Fixed Frequency:
* PARAM(vs.FUNC, "1.001 * sin(6.28 * 100 * T)")
*/
PARAM(vs.R, 0.001)
ALIAS(clk, vs.1)
NET_C(vs.2, GND)
ANALOG_INPUT(V12, 12)
ANALOG_INPUT(VM12, -12)
OPAMP(op, OPAMP_TEST)
NET_C(op.GND, VM12)
NET_C(op.VCC, V12)
/* Opamp B wired as inverting amplifier connected to output of first opamp */
RES(R1, 100)
RES(RP, 100)
RES(R2, 10000000)
NET_C(op.PLUS, RP.1)
NET_C(RP.2, GND)
NET_C(op.MINUS, R2.2)
NET_C(op.MINUS, R1.2)
NET_C(clk, R1.1)
NET_C(op.OUT, R2.1)
RES(RL, 2000)
NET_C(RL.2, GND)
NET_C(RL.1, op.OUT)
AFUNC(f, 1, "A0 * 1000")
NET_C(f.A0, op.OUT)
#if 1
LOG(log_Y, R1.1)
LOG(log_Z, f)
#endif
NETLIST_END()