mame/src/devices/machine/s3c44b0.cpp

2055 lines
53 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Tim Schuerewegen
/*******************************************************************************
Samsung S3C44B0
(c) 2011 Tim Schuerewegen
*******************************************************************************/
#include "emu.h"
#include "cpu/arm7/arm7.h"
#include "cpu/arm7/arm7core.h"
#include "machine/s3c44b0.h"
#include "sound/dac.h"
#include "coreutil.h"
#define VERBOSE_LEVEL ( 0 )
static inline void ATTR_PRINTF(3,4) verboselog( device_t &device, int n_level, const char *s_fmt, ...)
{
if (VERBOSE_LEVEL >= n_level)
{
va_list v;
char buf[32768];
va_start( v, s_fmt);
vsprintf( buf, s_fmt, v);
va_end( v);
device.logerror( "%s: %s", device.machine().describe_context( ), buf);
}
}
const device_type S3C44B0 = &device_creator<s3c44b0_device>;
s3c44b0_device::s3c44b0_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
: device_t(mconfig, S3C44B0, "Samsung S3C44B0", tag, owner, clock, "s3c44b0", __FILE__), m_cpu(nullptr),
m_port_r_cb(*this),
m_port_w_cb(*this),
m_scl_w_cb(*this),
m_sda_r_cb(*this),
m_sda_w_cb(*this),
m_data_r_cb(*this),
m_data_w_cb(*this)
{
memset(&m_irq, 0, sizeof(s3c44b0_irq_t));
memset(m_zdma, 0, sizeof(s3c44b0_dma_t)*2);
memset(m_bdma, 0, sizeof(s3c44b0_dma_t)*2);
memset(&m_clkpow, 0, sizeof(s3c44b0_clkpow_t));
memset(&m_lcd, 0, sizeof(s3c44b0_lcd_t));
memset(m_uart, 0, sizeof(s3c44b0_uart_t)*2);
memset(&m_sio, 0, sizeof(s3c44b0_sio_t));
memset(&m_pwm, 0, sizeof(s3c44b0_pwm_t));
memset(&m_wdt, 0, sizeof(s3c44b0_wdt_t));
memset(&m_iic, 0, sizeof(s3c44b0_iic_t));
memset(&m_iis, 0, sizeof(s3c44b0_iis_t));
memset(&m_gpio, 0, sizeof(s3c44b0_gpio_t));
memset(&m_adc, 0, sizeof(s3c44b0_adc_t));
memset(&m_cpuwrap, 0, sizeof(s3c44b0_cpuwrap_t));
}
//-------------------------------------------------
// device_start - device-specific startup
//-------------------------------------------------
void s3c44b0_device::device_start()
{
m_cpu = machine().device<cpu_device>("maincpu");
m_port_r_cb.resolve();
m_port_w_cb.resolve();
m_scl_w_cb.resolve();
m_sda_r_cb.resolve();
m_sda_w_cb.resolve();
m_data_r_cb.resolve_safe(0);
m_data_w_cb.resolve();
for (int i = 0; i < 6; i++) m_pwm.timer[i] = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::pwm_timer_exp),this));
for (auto & elem : m_uart) elem.timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::uart_timer_exp),this));
for (auto & elem : m_zdma) elem.timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::zdma_timer_exp),this));
for (auto & elem : m_bdma) elem.timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::bdma_timer_exp),this));
m_lcd.timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::lcd_timer_exp),this));
m_wdt.timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::wdt_timer_exp),this));
m_sio.timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::sio_timer_exp),this));
m_adc.timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::adc_timer_exp),this));
m_iic.timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::iic_timer_exp),this));
m_iis.timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(s3c44b0_device::iis_timer_exp),this));
video_start();
save_item(NAME(m_irq.regs.intcon));
save_item(NAME(m_irq.regs.intpnd));
save_item(NAME(m_irq.regs.intmod));
save_item(NAME(m_irq.regs.intmsk));
save_item(NAME(m_irq.regs.i_pslv));
save_item(NAME(m_irq.regs.i_pmst));
save_item(NAME(m_irq.regs.i_cslv));
save_item(NAME(m_irq.regs.i_cmst));
save_item(NAME(m_irq.regs.i_ispr));
save_item(NAME(m_irq.regs.i_ispc));
save_item(NAME(m_irq.regs.reserved));
save_item(NAME(m_irq.regs.f_ispr));
save_item(NAME(m_irq.regs.f_ispc));
save_item(NAME(m_irq.line_irq));
save_item(NAME(m_irq.line_fiq));
save_item(NAME(m_clkpow.regs.pllcon));
save_item(NAME(m_clkpow.regs.clkcon));
save_item(NAME(m_clkpow.regs.clkslow));
save_item(NAME(m_clkpow.regs.locktime));
// FIXME: how to save m_lcd.bitmap which gets allocated/freed during emulation?
save_item(NAME(m_lcd.regs.lcdcon1));
save_item(NAME(m_lcd.regs.lcdcon2));
save_item(NAME(m_lcd.regs.lcdsaddr1));
save_item(NAME(m_lcd.regs.lcdsaddr2));
save_item(NAME(m_lcd.regs.lcdsaddr3));
save_item(NAME(m_lcd.regs.redlut));
save_item(NAME(m_lcd.regs.greenlut));
save_item(NAME(m_lcd.regs.bluelut));
save_item(NAME(m_lcd.regs.reserved));
save_item(NAME(m_lcd.regs.lcdcon3));
save_item(NAME(m_lcd.regs.dithmode));
save_item(NAME(m_lcd.vramaddr_cur));
save_item(NAME(m_lcd.vramaddr_max));
save_item(NAME(m_lcd.offsize));
save_item(NAME(m_lcd.pagewidth_cur));
save_item(NAME(m_lcd.pagewidth_max));
save_item(NAME(m_lcd.modesel));
save_item(NAME(m_lcd.bswp));
save_item(NAME(m_lcd.vpos));
save_item(NAME(m_lcd.hpos));
save_item(NAME(m_lcd.framerate));
save_item(NAME(m_lcd.hpos_min));
save_item(NAME(m_lcd.hpos_max));
save_item(NAME(m_lcd.hpos_end));
save_item(NAME(m_lcd.vpos_min));
save_item(NAME(m_lcd.vpos_max));
save_item(NAME(m_lcd.vpos_end));
save_item(NAME(m_lcd.frame_time));
machine().save().register_postload(save_prepost_delegate(FUNC(s3c44b0_device::s3c44b0_postload), this));
for (int i = 0; i < 2; i++)
{
save_item(NAME(m_zdma[i].regs.dcon), i);
save_item(NAME(m_zdma[i].regs.disrc), i);
save_item(NAME(m_zdma[i].regs.didst), i);
save_item(NAME(m_zdma[i].regs.dicnt), i);
save_item(NAME(m_zdma[i].regs.dcsrc), i);
save_item(NAME(m_zdma[i].regs.dcdst), i);
save_item(NAME(m_zdma[i].regs.dccnt), i);
save_item(NAME(m_bdma[i].regs.dcon), i);
save_item(NAME(m_bdma[i].regs.disrc), i);
save_item(NAME(m_bdma[i].regs.didst), i);
save_item(NAME(m_bdma[i].regs.dicnt), i);
save_item(NAME(m_bdma[i].regs.dcsrc), i);
save_item(NAME(m_bdma[i].regs.dcdst), i);
save_item(NAME(m_bdma[i].regs.dccnt), i);
save_item(NAME(m_uart[i].regs.ulcon), i);
save_item(NAME(m_uart[i].regs.ucon), i);
save_item(NAME(m_uart[i].regs.ufcon), i);
save_item(NAME(m_uart[i].regs.umcon), i);
save_item(NAME(m_uart[i].regs.utrstat), i);
save_item(NAME(m_uart[i].regs.uerstat), i);
save_item(NAME(m_uart[i].regs.ufstat), i);
save_item(NAME(m_uart[i].regs.umstat), i);
save_item(NAME(m_uart[i].regs.utxh), i);
save_item(NAME(m_uart[i].regs.urxh), i);
save_item(NAME(m_uart[i].regs.ubrdiv), i);
}
save_item(NAME(m_sio.regs.siocon));
save_item(NAME(m_sio.regs.siodat));
save_item(NAME(m_sio.regs.sbrdr));
save_item(NAME(m_sio.regs.itvcnt));
save_item(NAME(m_sio.regs.dcntz));
save_item(NAME(m_pwm.regs.tcfg0));
save_item(NAME(m_pwm.regs.tcfg1));
save_item(NAME(m_pwm.regs.tcon));
save_item(NAME(m_pwm.regs.tcntb0));
save_item(NAME(m_pwm.regs.tcmpb0));
save_item(NAME(m_pwm.regs.tcnto0));
save_item(NAME(m_pwm.regs.tcntb1));
save_item(NAME(m_pwm.regs.tcmpb1));
save_item(NAME(m_pwm.regs.tcnto1));
save_item(NAME(m_pwm.regs.tcntb2));
save_item(NAME(m_pwm.regs.tcmpb2));
save_item(NAME(m_pwm.regs.tcnto2));
save_item(NAME(m_pwm.regs.tcntb3));
save_item(NAME(m_pwm.regs.tcmpb3));
save_item(NAME(m_pwm.regs.tcnto3));
save_item(NAME(m_pwm.regs.tcntb4));
save_item(NAME(m_pwm.regs.tcmpb4));
save_item(NAME(m_pwm.regs.tcnto4));
save_item(NAME(m_pwm.regs.tcntb5));
save_item(NAME(m_pwm.regs.tcnto5));
save_item(NAME(m_pwm.cnt));
save_item(NAME(m_pwm.cmp));
save_item(NAME(m_pwm.freq));
save_item(NAME(m_wdt.regs.wtcon));
save_item(NAME(m_wdt.regs.wtdat));
save_item(NAME(m_wdt.regs.wtcnt));
save_item(NAME(m_iic.regs.iiccon));
save_item(NAME(m_iic.regs.iicstat));
save_item(NAME(m_iic.regs.iicadd));
save_item(NAME(m_iic.regs.iicds));
save_item(NAME(m_iic.count));
save_item(NAME(m_iis.regs.iiscon));
save_item(NAME(m_iis.regs.iismod));
save_item(NAME(m_iis.regs.iispsr));
save_item(NAME(m_iis.regs.iisfcon));
save_item(NAME(m_iis.regs.iisfifo));
save_item(NAME(m_iis.fifo));
save_item(NAME(m_iis.fifo_index));
save_item(NAME(m_gpio.regs.gpacon));
save_item(NAME(m_gpio.regs.gpadat));
save_item(NAME(m_gpio.regs.gpbcon));
save_item(NAME(m_gpio.regs.gpbdat));
save_item(NAME(m_gpio.regs.gpccon));
save_item(NAME(m_gpio.regs.gpcdat));
save_item(NAME(m_gpio.regs.gpcup));
save_item(NAME(m_gpio.regs.gpdcon));
save_item(NAME(m_gpio.regs.gpddat));
save_item(NAME(m_gpio.regs.gpdup));
save_item(NAME(m_gpio.regs.gpecon));
save_item(NAME(m_gpio.regs.gpedat));
save_item(NAME(m_gpio.regs.gpeup));
save_item(NAME(m_gpio.regs.gpfcon));
save_item(NAME(m_gpio.regs.gpfdat));
save_item(NAME(m_gpio.regs.gpfup));
save_item(NAME(m_gpio.regs.gpgcon));
save_item(NAME(m_gpio.regs.gpgdat));
save_item(NAME(m_gpio.regs.gpgup));
save_item(NAME(m_gpio.regs.spucr));
save_item(NAME(m_gpio.regs.extint));
save_item(NAME(m_gpio.regs.extintpnd));
save_item(NAME(m_adc.regs.adccon));
save_item(NAME(m_adc.regs.adcpsr));
save_item(NAME(m_adc.regs.adcdat));
save_item(NAME(m_cpuwrap.regs.syscfg));
save_item(NAME(m_cpuwrap.regs.ncachbe0));
save_item(NAME(m_cpuwrap.regs.ncachbe1));
}
void s3c44b0_device::s3c44b0_postload()
{
m_lcd.frame_period = HZ_TO_ATTOSECONDS(m_lcd.framerate);
m_lcd.scantime = m_lcd.frame_period / m_lcd.vpos_end;
m_lcd.pixeltime = m_lcd.frame_period / (m_lcd.vpos_end * m_lcd.hpos_end);
}
//-------------------------------------------------
// device_reset - device-specific reset
//-------------------------------------------------
void s3c44b0_device::device_reset()
{
m_iis.fifo_index = 0;
// m_iic.data_index = 0;
#if defined(DEVICE_S3C2410) || defined(DEVICE_S3C2440)
m_gpio.regs.gstatus2 = 0x00000001; // Boot is caused by power on reset
#endif
m_irq.line_irq = m_irq.line_fiq = CLEAR_LINE;
}
/*******************************************************************************
MACROS & CONSTANTS
*******************************************************************************/
#define UART_PRINTF
#define CLOCK_MULTIPLIER 1
#define BITS(x,m,n) (((x)>>(n))&(((UINT32)1<<((m)-(n)+1))-1))
#define CLR_BITS(x,m,n) ((x) & ~((((UINT32)1 << ((m) - (n) + 1)) - 1) << n))
/***************************************************************************
IMPLEMENTATION
***************************************************************************/
/* LCD Controller */
rgb_t s3c44b0_device::lcd_get_color_stn_04(UINT8 data)
{
UINT8 r, g, b;
r = g = b = BITS(data, 3, 0) << 4;
return rgb_t(r, g, b);
}
UINT8 s3c44b0_device::lcd_get_color_stn_08_r(UINT8 data)
{
return ((m_lcd.regs.redlut >> (BITS(data, 7, 5) << 2)) & 0xf) << 4;
}
UINT8 s3c44b0_device::lcd_get_color_stn_08_g(UINT8 data)
{
return ((m_lcd.regs.greenlut >> (BITS(data, 4, 2) << 2)) & 0xf) << 4;
}
UINT8 s3c44b0_device::lcd_get_color_stn_08_b(UINT8 data)
{
return ((m_lcd.regs.bluelut >> (BITS(data, 1, 0) << 2)) & 0xf) << 4;
}
void s3c44b0_device::lcd_dma_reload()
{
int lcdbank, lcdbaseu, lcdbasel;
lcdbank = BITS(m_lcd.regs.lcdsaddr1, 26, 21);
lcdbaseu = BITS(m_lcd.regs.lcdsaddr1, 20, 0);
lcdbasel = BITS(m_lcd.regs.lcdsaddr2, 20, 0);
m_lcd.vramaddr_cur = (lcdbank << 22) | (lcdbaseu << 1);
m_lcd.vramaddr_max = (lcdbank << 22) | (lcdbasel << 1);
if (lcdbasel == 0) m_lcd.vramaddr_max += 1 << 22;
m_lcd.offsize = BITS(m_lcd.regs.lcdsaddr3, 19, 9);
m_lcd.pagewidth_cur = 0;
m_lcd.pagewidth_max = BITS(m_lcd.regs.lcdsaddr3, 8, 0);
m_lcd.bswp = BIT(m_lcd.regs.lcdsaddr2, 29); // note: juicebox changes bswp when video playback starts
// verboselog( *this, 3, "LCD - vramaddr %08X %08X offsize %08X pagewidth %08X\n", m_lcd.vramaddr_cur, m_lcd.vramaddr_max, m_lcd.offsize, m_lcd.pagewidth_max);
}
void s3c44b0_device::lcd_dma_init()
{
m_lcd.modesel = BITS(m_lcd.regs.lcdsaddr1, 28, 27);
// verboselog( *this, 3, "LCD - modesel %d bswp %d\n", m_lcd.modesel, m_lcd.bswp);
lcd_dma_reload();
}
void s3c44b0_device::lcd_dma_read(int count, UINT8 *data)
{
address_space &space = m_cpu->space(AS_PROGRAM);
UINT8 *vram = (UINT8 *)space.get_read_ptr(m_lcd.vramaddr_cur);
for (int i = 0; i < count / 2; i++)
{
if (m_lcd.bswp == 0)
{
if ((m_lcd.vramaddr_cur & 2) == 0)
{
data[0] = *(vram + 3);
data[1] = *(vram + 2);
}
else
{
data[0] = *(vram - 1);
data[1] = *(vram - 2);
}
}
else
{
data[0] = *(vram + 0);
data[1] = *(vram + 1);
}
m_lcd.vramaddr_cur += 2;
m_lcd.pagewidth_cur++;
if (m_lcd.pagewidth_cur >= m_lcd.pagewidth_max)
{
m_lcd.vramaddr_cur += m_lcd.offsize << 1;
if (m_lcd.vramaddr_cur >= m_lcd.vramaddr_max)
{
lcd_dma_reload();
}
m_lcd.pagewidth_cur = 0;
vram = (UINT8 *)space.get_read_ptr(m_lcd.vramaddr_cur);
}
else
{
vram += 2;
}
data += 2;
}
}
void s3c44b0_device::lcd_render_stn_04()
{
UINT8 *bitmap = m_lcd.bitmap.get() + ((m_lcd.vpos - m_lcd.vpos_min) * (m_lcd.hpos_max - m_lcd.hpos_min + 1)) + (m_lcd.hpos - m_lcd.hpos_min);
UINT8 data[16];
lcd_dma_read(16, data);
for (auto & elem : data)
{
for (int j = 0; j < 2; j++)
{
*bitmap++ = lcd_get_color_stn_04((elem >> 4) & 0x0F);
elem = elem << 4;
m_lcd.hpos++;
if (m_lcd.hpos >= m_lcd.hpos_min + (m_lcd.pagewidth_max << 2))
{
m_lcd.vpos++;
if (m_lcd.vpos > m_lcd.vpos_max)
{
m_lcd.vpos = m_lcd.vpos_min;
bitmap = m_lcd.bitmap.get();
}
m_lcd.hpos = m_lcd.hpos_min;
}
}
}
}
void s3c44b0_device::lcd_render_stn_08()
{
UINT8 *bitmap = m_lcd.bitmap.get() + ((m_lcd.vpos - m_lcd.vpos_min) * (m_lcd.hpos_max - m_lcd.hpos_min + 1)) + (m_lcd.hpos - m_lcd.hpos_min);
UINT8 data[16];
lcd_dma_read(16, data);
for (auto & elem : data)
{
UINT8 xxx[3];
xxx[0] = lcd_get_color_stn_08_r(elem);
xxx[1] = lcd_get_color_stn_08_g(elem);
xxx[2] = lcd_get_color_stn_08_b(elem);
for (auto & xxx_j : xxx)
{
*bitmap++ = xxx_j;
m_lcd.hpos++;
if (m_lcd.hpos >= m_lcd.hpos_min + (m_lcd.pagewidth_max * 6))
{
m_lcd.vpos++;
if (m_lcd.vpos > m_lcd.vpos_max)
{
m_lcd.vpos = m_lcd.vpos_min;
bitmap = m_lcd.bitmap.get();
}
m_lcd.hpos = m_lcd.hpos_min;
}
}
}
}
attotime s3c44b0_device::time_until_pos(int vpos, int hpos)
{
attoseconds_t time1, time2;
attotime retval;
verboselog( *this, 3, "s3c44b0_time_until_pos - vpos %d hpos %d\n", vpos, hpos);
time1 = (attoseconds_t)vpos * m_lcd.scantime + (attoseconds_t)hpos * m_lcd.pixeltime;
time2 = (machine().time() - m_lcd.frame_time).as_attoseconds();
verboselog( *this, 3, "machine %f frametime %f time1 %f time2 %f\n", machine().time().as_double(), m_lcd.frame_time.as_double(), attotime(0, time1).as_double(), attotime(0, time2).as_double());
while (time1 <= time2) time1 += m_lcd.frame_period;
retval = attotime( 0, time1 - time2);
verboselog( *this, 3, "result %f\n", retval.as_double());
return retval;
}
int s3c44b0_device::lcd_get_vpos()
{
attoseconds_t delta;
int vpos;
delta = (machine().time() - m_lcd.frame_time).as_attoseconds();
delta = delta + (m_lcd.pixeltime / 2);
vpos = delta / m_lcd.scantime;
return (m_lcd.vpos_min + vpos) % m_lcd.vpos_end;
}
int s3c44b0_device::lcd_get_hpos()
{
attoseconds_t delta;
int vpos;
delta = (machine().time() - m_lcd.frame_time).as_attoseconds();
delta = delta + (m_lcd.pixeltime / 2);
vpos = delta / m_lcd.scantime;
delta = delta - (vpos * m_lcd.scantime);
return delta / m_lcd.pixeltime;
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::lcd_timer_exp )
{
int vpos = m_lcd.vpos;
verboselog( *this, 2, "LCD timer callback (%f)\n", machine().time().as_double());
verboselog( *this, 3, "LCD - (1) vramaddr %08X vpos %d hpos %d\n", m_lcd.vramaddr_cur, m_lcd.vpos, m_lcd.hpos);
switch (m_lcd.modesel)
{
case S3C44B0_MODESEL_04 : lcd_render_stn_04(); break;
case S3C44B0_MODESEL_08 : lcd_render_stn_08(); break;
default : verboselog( *this, 0, "s3c44b0_lcd_timer_exp: modesel %d not supported\n", m_lcd.modesel); break;
}
verboselog( *this, 3, "LCD - (2) vramaddr %08X vpos %d hpos %d\n", m_lcd.vramaddr_cur, m_lcd.vpos, m_lcd.hpos);
if (m_lcd.vpos < vpos)
{
// verboselog( *this, 3, "LCD - (1) frame_time %f\n", attotime_to_double(m_lcd.frame_time));
m_lcd.frame_time = machine().time() + time_until_pos(m_lcd.vpos_min, m_lcd.hpos_min);
// verboselog( *this, 3, "LCD - (2) frame_time %f\n", attotime_to_double(m_lcd.frame_time));
}
m_lcd.timer->adjust(time_until_pos(m_lcd.vpos, m_lcd.hpos), 0);
}
void s3c44b0_device::video_start()
{
// do nothing
}
UINT32 s3c44b0_device::video_update(screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect)
{
if (m_lcd.regs.lcdcon1 & (1 << 0))
{
if (m_lcd.bitmap)
{
for (int y = 0; y < screen.height(); y++)
{
UINT32 *scanline = &bitmap.pix32(y);
UINT8 *vram = m_lcd.bitmap.get() + y * (m_lcd.hpos_max - m_lcd.hpos_min + 1);
for (int x = 0; x < screen.width(); x++)
{
*scanline++ = rgb_t(vram[0], vram[1], vram[2]);
vram += 3;
}
}
}
}
else
{
for (int y = 0; y < screen.height(); y++)
{
UINT32 *scanline = &bitmap.pix32(y);
memset(scanline, 0, screen.width() * 4);
}
}
return 0;
}
READ32_MEMBER( s3c44b0_device::lcd_r )
{
UINT32 data = ((UINT32*)&m_lcd.regs)[offset];
switch (offset)
{
case S3C44B0_LCDCON1 :
{
int vpos = 0;
// make sure line counter is going
if (m_lcd.regs.lcdcon1 & (1 << 0))
{
vpos = lcd_get_vpos();
int hpos = lcd_get_hpos();
if (hpos < m_lcd.hpos_min) vpos = vpos - 1;
if ((vpos < m_lcd.vpos_min) || (vpos > m_lcd.vpos_max)) vpos = m_lcd.vpos_max;
vpos = m_lcd.vpos_max - vpos;
}
data = (data & ~0xFFC00000) | (vpos << 22);
}
break;
}
// verboselog( *this, 9, "(LCD) %08X -> %08X\n", S3C44B0_BASE_LCD + (offset << 2), data);
return data;
}
void s3c44b0_device::lcd_configure()
{
screen_device *screen = machine().first_screen();
int dismode, clkval, lineval, wdly, hozval, lineblank, wlh, mclk;
double vclk, framerate;
int width, height;
verboselog( *this, 5, "s3c44b0_lcd_configure\n");
dismode = BITS(m_lcd.regs.lcdcon1, 6, 5);
clkval = BITS(m_lcd.regs.lcdcon1, 21, 12);
lineval = BITS(m_lcd.regs.lcdcon2, 9, 0);
wdly = BITS(m_lcd.regs.lcdcon1, 9, 8);
hozval = BITS(m_lcd.regs.lcdcon2, 20, 10);
lineblank = BITS(m_lcd.regs.lcdcon2, 31, 21);
wlh = BITS(m_lcd.regs.lcdcon1, 11, 10);
mclk = get_mclk();
verboselog( *this, 3, "LCD - dismode %d clkval %d lineval %d wdly %d hozval %d lineblank %d wlh %d mclk %d\n", dismode, clkval, lineval, wdly, hozval, lineblank, wlh, mclk);
vclk = (double)(mclk / (clkval * 2));
verboselog( *this, 3, "LCD - vclk %f\n", vclk);
framerate = 1 / (((1 / vclk) * (hozval + 1) + (1 / mclk) * (wlh + wdly + lineblank)) * (lineval + 1));
framerate = framerate / 3; // ???
verboselog( *this, 3, "LCD - framerate %f\n", framerate);
switch (dismode)
{
case S3C44B0_PNRMODE_STN_04_SS : width = ((hozval + 1) * 4); break;
case S3C44B0_PNRMODE_STN_04_DS : width = ((hozval + 1) * 4); break;
case S3C44B0_PNRMODE_STN_08_SS : width = ((hozval + 1) * 8); break;
default : fatalerror("invalid display mode (%d)\n", dismode);
}
height = lineval + 1;
m_lcd.framerate = framerate;
verboselog( *this, 3, "video_screen_configure %d %d %f\n", width, height, m_lcd.framerate);
screen->configure(screen->width(), screen->height(), screen->visible_area(), HZ_TO_ATTOSECONDS(m_lcd.framerate));
m_lcd.hpos_min = 25;
m_lcd.hpos_max = 25 + width - 1;
m_lcd.hpos_end = 25 + width - 1 + 25;
m_lcd.vpos_min = 25;
m_lcd.vpos_max = 25 + height - 1;
m_lcd.vpos_end = 25 + height - 1 + 25;
verboselog( *this, 3, "LCD - min_x %d min_y %d max_x %d max_y %d\n", m_lcd.hpos_min, m_lcd.vpos_min, m_lcd.hpos_max, m_lcd.vpos_max);
if (m_lcd.bitmap)
{
m_lcd.bitmap = nullptr;
}
m_lcd.bitmap = std::make_unique<UINT8[]>((m_lcd.hpos_max - m_lcd.hpos_min + 1) * (m_lcd.vpos_max - m_lcd.vpos_min + 1) * 3);
m_lcd.frame_period = HZ_TO_ATTOSECONDS(m_lcd.framerate);
m_lcd.scantime = m_lcd.frame_period / m_lcd.vpos_end;
m_lcd.pixeltime = m_lcd.frame_period / (m_lcd.vpos_end * m_lcd.hpos_end);
// printf("frame_period %f\n", attotime( 0, m_lcd.frame_period).as_double());
// printf("scantime %f\n", attotime( 0, m_lcd.scantime).as_double());
// printf("pixeltime %f\n", attotime( 0, m_lcd.pixeltime).as_double());
}
void s3c44b0_device::lcd_start()
{
screen_device *screen = machine().first_screen();
verboselog( *this, 1, "LCD start\n");
lcd_configure();
lcd_dma_init();
m_lcd.vpos = m_lcd.vpos_min;
m_lcd.hpos = m_lcd.hpos_min;
m_lcd.frame_time = screen->time_until_pos( 0, 0);
m_lcd.timer->adjust(m_lcd.frame_time, 0);
m_lcd.frame_time = machine().time() + m_lcd.frame_time;
}
void s3c44b0_device::lcd_stop()
{
verboselog( *this, 1, "LCD stop\n");
m_lcd.timer->adjust(attotime::never, 0);
}
void s3c44b0_device::lcd_recalc()
{
if (m_lcd.regs.lcdcon1 & (1 << 0))
lcd_start();
else
lcd_stop();
}
WRITE32_MEMBER( s3c44b0_device::lcd_w )
{
UINT32 old_value = ((UINT32*)&m_lcd.regs)[offset];
// verboselog( *this, 9, "(LCD) %08X <- %08X\n", S3C44B0_BASE_LCD + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_lcd.regs)[offset]);
switch (offset)
{
case S3C44B0_LCDCON1 :
{
if ((old_value & (1 << 0)) != (data & (1 << 0)))
{
lcd_recalc();
}
}
break;
}
}
/* Clock & Power Management */
UINT32 s3c44b0_device::get_mclk()
{
UINT32 data, mdiv, pdiv, sdiv;
data = m_clkpow.regs.pllcon;
mdiv = BITS(data, 19, 12);
pdiv = BITS(data, 9, 4);
sdiv = BITS(data, 1, 0);
return (UINT32)((double)((mdiv + 8) * clock()) / (double)((pdiv + 2) * (1 << sdiv)));
}
READ32_MEMBER( s3c44b0_device::clkpow_r )
{
UINT32 data = ((UINT32*)&m_clkpow.regs)[offset];
verboselog( *this, 9, "(CLKPOW) %08X -> %08X\n", S3C44B0_BASE_CLKPOW + (offset << 2), data);
return data;
}
WRITE32_MEMBER( s3c44b0_device::clkpow_w )
{
verboselog( *this, 9, "(CLKPOW) %08X <- %08X\n", S3C44B0_BASE_CLKPOW + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_clkpow.regs)[offset]);
switch (offset)
{
case S3C44B0_PLLCON :
{
verboselog( *this, 5, "CLKPOW - mclk %d\n", get_mclk());
m_cpu->set_unscaled_clock(get_mclk() * CLOCK_MULTIPLIER);
}
break;
case S3C44B0_CLKCON :
{
if (data & (1 << 2))
{
m_cpu->spin_until_interrupt();
}
}
break;
}
}
/* Interrupt Controller */
void s3c44b0_device::check_pending_irq()
{
// normal irq
UINT32 temp = (m_irq.regs.intpnd & ~m_irq.regs.intmsk) & ~m_irq.regs.intmod;
if (temp != 0)
{
UINT32 int_type = 0;
while ((temp & 1) == 0)
{
int_type++;
temp = temp >> 1;
}
m_irq.regs.i_ispr |= (1 << int_type);
if (m_irq.line_irq != ASSERT_LINE)
{
m_cpu->set_input_line(ARM7_IRQ_LINE, ASSERT_LINE);
m_irq.line_irq = ASSERT_LINE;
}
}
else
{
if (m_irq.line_irq != CLEAR_LINE)
{
m_cpu->set_input_line(ARM7_IRQ_LINE, CLEAR_LINE);
m_irq.line_irq = CLEAR_LINE;
}
}
// fast irq
temp = (m_irq.regs.intpnd & ~m_irq.regs.intmsk) & m_irq.regs.intmod;
if (temp != 0)
{
UINT32 int_type = 0;
while ((temp & 1) == 0)
{
int_type++;
temp = temp >> 1;
}
if (m_irq.line_fiq != ASSERT_LINE)
{
m_cpu->set_input_line(ARM7_FIRQ_LINE, ASSERT_LINE);
m_irq.line_fiq = ASSERT_LINE;
}
}
else
{
if (m_irq.line_fiq != CLEAR_LINE)
{
m_cpu->set_input_line(ARM7_FIRQ_LINE, CLEAR_LINE);
m_irq.line_fiq = CLEAR_LINE;
}
}
}
void s3c44b0_device::request_irq(UINT32 int_type)
{
verboselog( *this, 5, "request irq %d\n", int_type);
m_irq.regs.intpnd |= (1 << int_type);
check_pending_irq();
}
void s3c44b0_device::check_pending_eint()
{
UINT32 temp = m_gpio.regs.extintpnd;
if (temp != 0)
{
UINT32 int_type = 0;
while ((temp & 1) == 0)
{
int_type++;
temp = temp >> 1;
}
request_irq(S3C44B0_INT_EINT4_7);
}
}
void s3c44b0_device::request_eint(UINT32 number)
{
verboselog( *this, 5, "request external interrupt %d\n", number);
if (number < 4)
{
request_irq(S3C44B0_INT_EINT0 + number);
}
else
{
m_gpio.regs.extintpnd |= (1 << (number - 4));
check_pending_eint();
}
}
READ32_MEMBER( s3c44b0_device::irq_r )
{
UINT32 data = ((UINT32*)&m_irq.regs)[offset];
verboselog( *this, 9, "(IRQ) %08X -> %08X\n", S3C44B0_BASE_INT + (offset << 2), data);
return data;
}
WRITE32_MEMBER( s3c44b0_device::irq_w )
{
verboselog( *this, 9, "(IRQ) %08X <- %08X\n", S3C44B0_BASE_INT + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_irq.regs)[offset]);
switch (offset)
{
case S3C44B0_INTMSK :
{
check_pending_irq();
}
break;
case S3C44B0_I_ISPC :
{
m_irq.regs.intpnd = (m_irq.regs.intpnd & ~data); // The bit of INTPND bit is cleared to zero by writing '1' on I_ISPC/F_ISPC
m_irq.regs.i_ispr = (m_irq.regs.i_ispr & ~data); // The pending bit in I_ISPR register should be cleared by writing I_ISPC register.
check_pending_irq();
}
break;
case S3C44B0_F_ISPC :
{
m_irq.regs.intpnd = (m_irq.regs.intpnd & ~data); // The bit of INTPND bit is cleared to zero by writing '1' on I_ISPC/F_ISPC
check_pending_irq();
}
break;
}
}
/* PWM Timer */
UINT16 s3c44b0_device::pwm_calc_observation(int ch)
{
double timeleft, x1, x2;
UINT32 cnto;
timeleft = (m_pwm.timer[ch]->remaining()).as_double();
// printf( "timeleft %f freq %d cntb %d cmpb %d\n", timeleft, m_pwm.freq[ch], m_pwm.cnt[ch], m_pwm.cmp[ch]);
x1 = 1 / ((double)m_pwm.freq[ch] / (m_pwm.cnt[ch]- m_pwm.cmp[ch] + 1));
x2 = x1 / timeleft;
// printf( "x1 %f\n", x1);
cnto = m_pwm.cmp[ch] + ((m_pwm.cnt[ch]- m_pwm.cmp[ch]) / x2);
// printf( "cnto %d\n", cnto);
return cnto;
}
READ32_MEMBER( s3c44b0_device::pwm_r )
{
UINT32 data = ((UINT32*)&m_pwm.regs)[offset];
switch (offset)
{
case S3C44B0_TCNTO0 :
{
data = (data & ~0x0000FFFF) | pwm_calc_observation(0);
}
break;
case S3C44B0_TCNTO1 :
{
data = (data & ~0x0000FFFF) | pwm_calc_observation(1);
}
break;
case S3C44B0_TCNTO2 :
{
data = (data & ~0x0000FFFF) | pwm_calc_observation(2);
}
break;
case S3C44B0_TCNTO3 :
{
data = (data & ~0x0000FFFF) | pwm_calc_observation(3);
}
break;
case S3C44B0_TCNTO4 :
{
data = (data & ~0x0000FFFF) | pwm_calc_observation(4);
}
break;
case S3C44B0_TCNTO5 :
{
data = (data & ~0x0000FFFF) | pwm_calc_observation(5);
}
break;
}
verboselog( *this, 9, "(PWM) %08X -> %08X\n", S3C44B0_BASE_PWM + (offset << 2), data);
return data;
}
void s3c44b0_device::pwm_start(int timer)
{
const int mux_table[] = { 2, 4, 8, 16};
const int prescaler_shift[] = { 0, 0, 8, 8, 16, 16};
const int mux_shift[] = { 0, 4, 8, 12, 16, 20};
UINT32 mclk, prescaler, mux, cnt, cmp, auto_reload;
double freq, hz;
verboselog( *this, 1, "PWM %d start\n", timer);
mclk = get_mclk();
prescaler = (m_pwm.regs.tcfg0 >> prescaler_shift[timer]) & 0xFF;
mux = (m_pwm.regs.tcfg1 >> mux_shift[timer]) & 0x0F;
if (mux < 4)
{
freq = (double)mclk / (prescaler + 1) / mux_table[mux];
}
else
{
// todo
freq = (double)mclk / (prescaler + 1) / 1;
}
switch (timer)
{
case 0 :
{
cnt = BITS(m_pwm.regs.tcntb0, 15, 0);
cmp = BITS(m_pwm.regs.tcmpb0, 15, 0);
auto_reload = BIT(m_pwm.regs.tcon, 3);
}
break;
case 1 :
{
cnt = BITS(m_pwm.regs.tcntb1, 15, 0);
cmp = BITS(m_pwm.regs.tcmpb1, 15, 0);
auto_reload = BIT(m_pwm.regs.tcon, 11);
}
break;
case 2 :
{
cnt = BITS(m_pwm.regs.tcntb2, 15, 0);
cmp = BITS(m_pwm.regs.tcmpb2, 15, 0);
auto_reload = BIT(m_pwm.regs.tcon, 15);
}
break;
case 3 :
{
cnt = BITS(m_pwm.regs.tcntb3, 15, 0);
cmp = BITS(m_pwm.regs.tcmpb3, 15, 0);
auto_reload = BIT(m_pwm.regs.tcon, 19);
}
break;
case 4 :
{
cnt = BITS(m_pwm.regs.tcntb4, 15, 0);
cmp = BITS(m_pwm.regs.tcmpb4, 15, 0);
auto_reload = BIT(m_pwm.regs.tcon, 23);
}
break;
case 5 :
{
cnt = BITS(m_pwm.regs.tcntb5, 15, 0);
cmp = 0;
auto_reload = BIT(m_pwm.regs.tcon, 26);
}
break;
default :
{
cnt = cmp = auto_reload = 0;
}
break;
}
// hz = freq / (cnt - cmp + 1);
if (cnt < 2)
{
hz = freq;
}
else
{
hz = freq / cnt;
}
verboselog( *this, 5, "PWM %d - mclk=%d prescaler=%d div=%d freq=%f cnt=%d cmp=%d auto_reload=%d hz=%f\n", timer, mclk, prescaler, mux_table[mux], freq, cnt, cmp, auto_reload, hz);
m_pwm.cnt[timer] = cnt;
m_pwm.cmp[timer] = cmp;
m_pwm.freq[timer] = freq;
if (cnt == 0)
{
m_pwm.timer[timer]->adjust(attotime::never, 0);
}
else
{
if (auto_reload)
{
m_pwm.timer[timer]->adjust(attotime::from_hz(hz), timer, attotime::from_hz(hz));
}
else
{
m_pwm.timer[timer]->adjust(attotime::from_hz(hz), timer);
}
}
}
void s3c44b0_device::pwm_stop(int timer)
{
verboselog( *this, 1, "PWM %d stop\n", timer);
m_pwm.timer[timer]->adjust(attotime::never, 0);
}
void s3c44b0_device::pwm_recalc(int timer)
{
const int tcon_shift[] = { 0, 8, 12, 16, 20, 24};
if (m_pwm.regs.tcon & (1 << tcon_shift[timer]))
pwm_start(timer);
else
pwm_stop(timer);
}
WRITE32_MEMBER( s3c44b0_device::pwm_w )
{
UINT32 old_value = ((UINT32*)&m_pwm.regs)[offset];
verboselog( *this, 9, "(PWM) %08X <- %08X\n", S3C44B0_BASE_PWM + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_pwm.regs)[offset]);
switch (offset)
{
case S3C44B0_TCON :
{
if ((data & (1 << 0)) != (old_value & (1 << 0)))
{
pwm_recalc(0);
}
if ((data & (1 << 8)) != (old_value & (1 << 8)))
{
pwm_recalc(1);
}
if ((data & (1 << 12)) != (old_value & (1 << 12)))
{
pwm_recalc(2);
}
if ((data & (1 << 16)) != (old_value & (1 << 16)))
{
pwm_recalc(3);
}
if ((data & (1 << 20)) != (old_value & (1 << 20)))
{
pwm_recalc(4);
}
if ((data & (1 << 24)) != (old_value & (1 << 24)))
{
pwm_recalc(5);
}
}
break;
}
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::pwm_timer_exp )
{
int ch = param;
const int ch_int[] = { S3C44B0_INT_TIMER0, S3C44B0_INT_TIMER1, S3C44B0_INT_TIMER2, S3C44B0_INT_TIMER3, S3C44B0_INT_TIMER4, S3C44B0_INT_TIMER5 };
verboselog( *this, 2, "PWM %d timer callback\n", ch);
if (BITS(m_pwm.regs.tcfg1, 27, 24) == (ch + 1))
{
fatalerror("s3c44b0_dma_request_pwm( device)\n");
}
else
{
request_irq(ch_int[ch]);
}
}
/* IIC */
inline void s3c44b0_device::iface_i2c_scl_w(int state)
{
if (!m_scl_w_cb.isnull())
(m_scl_w_cb)( state);
}
inline void s3c44b0_device::iface_i2c_sda_w(int state)
{
if (!m_sda_w_cb.isnull())
(m_sda_w_cb)( state);
}
inline int s3c44b0_device::iface_i2c_sda_r()
{
if (!m_sda_r_cb.isnull())
return (m_sda_r_cb)();
else
return 0;
}
void s3c44b0_device::i2c_send_start()
{
verboselog( *this, 5, "i2c_send_start\n");
iface_i2c_sda_w(1);
iface_i2c_scl_w(1);
iface_i2c_sda_w(0);
iface_i2c_scl_w(0);
}
void s3c44b0_device::i2c_send_stop()
{
verboselog( *this, 5, "i2c_send_stop\n");
iface_i2c_sda_w(0);
iface_i2c_scl_w(1);
iface_i2c_sda_w(1);
iface_i2c_scl_w(0);
}
UINT8 s3c44b0_device::i2c_receive_byte(int ack)
{
UINT8 data = 0;
verboselog( *this, 5, "i2c_receive_byte ...\n");
iface_i2c_sda_w(1);
for (int i = 0; i < 8; i++)
{
iface_i2c_scl_w(1);
data = (data << 1) + (iface_i2c_sda_r() ? 1 : 0);
iface_i2c_scl_w(0);
}
verboselog( *this, 5, "recv data %02X\n", data);
verboselog( *this, 5, "send ack %d\n", ack);
iface_i2c_sda_w(ack ? 0 : 1);
iface_i2c_scl_w(1);
iface_i2c_scl_w(0);
return data;
}
int s3c44b0_device::i2c_send_byte(UINT8 data)
{
int ack;
verboselog( *this, 5, "i2c_send_byte ...\n");
verboselog( *this, 5, "send data %02X\n", data);
for (int i = 0; i < 8; i++)
{
iface_i2c_sda_w((data & 0x80) ? 1 : 0);
data = data << 1;
iface_i2c_scl_w(1);
iface_i2c_scl_w(0);
}
iface_i2c_sda_w(1); // ack bit
iface_i2c_scl_w(1);
ack = iface_i2c_sda_r();
verboselog( *this, 5, "recv ack %d\n", ack);
iface_i2c_scl_w(0);
return ack;
}
void s3c44b0_device::iic_start()
{
int mode_selection;
verboselog( *this, 1, "IIC start\n");
i2c_send_start();
mode_selection = BITS(m_iic.regs.iicstat, 7, 6);
switch (mode_selection)
{
case 2 : i2c_send_byte(m_iic.regs.iicds | 0x01); break;
case 3 : i2c_send_byte(m_iic.regs.iicds & 0xFE); break;
}
m_iic.timer->adjust(attotime::from_usec( 1), 0);
}
void s3c44b0_device::iic_stop()
{
verboselog( *this, 1, "IIC stop\n");
i2c_send_stop();
m_iic.timer->adjust(attotime::never, 0);
}
void s3c44b0_device::iic_resume()
{
int mode_selection;
verboselog( *this, 1, "IIC resume\n");
mode_selection = BITS(m_iic.regs.iicstat, 7, 6);
switch (mode_selection)
{
case 2 : m_iic.regs.iicds = i2c_receive_byte(BIT(m_iic.regs.iiccon, 7)); break;
case 3 : i2c_send_byte(m_iic.regs.iicds & 0xFF); break;
}
m_iic.timer->adjust(attotime::from_usec( 1), 0);
}
READ32_MEMBER( s3c44b0_device::iic_r )
{
UINT32 data = ((UINT32*)&m_iic.regs)[offset];
switch (offset)
{
case S3C44B0_IICSTAT :
{
data = data & ~0x0000000F;
}
break;
}
verboselog( *this, 9, "(IIC) %08X -> %08X\n", S3C44B0_BASE_IIC + (offset << 2), data);
return data;
}
WRITE32_MEMBER( s3c44b0_device::iic_w )
{
UINT32 old_value = ((UINT32*)&m_iic.regs)[offset];
verboselog( *this, 9, "(IIC) %08X <- %08X\n", S3C44B0_BASE_IIC + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_iic.regs)[offset]);
switch (offset)
{
case S3C44B0_IICCON :
{
int interrupt_pending_flag;
#if 0
const int div_table[] = { 16, 512};
int enable_interrupt, transmit_clock_value, tx_clock_source_selection
double clock;
transmit_clock_value = (data >> 0) & 0xF;
tx_clock_source_selection = (data >> 6) & 1;
enable_interrupt = (data >> 5) & 1;
clock = (double)get_pclk() / div_table[tx_clock_source_selection] / (transmit_clock_value + 1);
#endif
interrupt_pending_flag = BIT(old_value, 4);
if (interrupt_pending_flag != 0)
{
interrupt_pending_flag = BIT(data, 4);
if (interrupt_pending_flag == 0)
{
int start_stop_condition;
start_stop_condition = BIT(m_iic.regs.iicstat, 5);
if (start_stop_condition != 0)
{
if (m_iic.count == 0)
{
iic_start();
}
else
{
iic_resume();
}
}
else
{
iic_stop();
}
}
}
}
break;
case S3C44B0_IICSTAT :
{
int interrupt_pending_flag;
m_iic.count = 0;
interrupt_pending_flag = BIT(m_iic.regs.iiccon, 4);
if (interrupt_pending_flag == 0)
{
int start_stop_condition;
start_stop_condition = BIT(data, 5);
if (start_stop_condition != 0)
{
if (m_iic.count == 0)
{
iic_start();
}
else
{
iic_resume();
}
}
else
{
iic_stop();
}
}
}
break;
}
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::iic_timer_exp )
{
int enable_interrupt;
verboselog( *this, 2, "IIC timer callback\n");
m_iic.count++;
enable_interrupt = BIT(m_iic.regs.iiccon, 5);
m_iic.regs.iicds = 0xFF; // TEST
if (enable_interrupt)
{
m_iic.regs.iiccon |= (1 << 4); // [bit 4] interrupt is pending
request_irq(S3C44B0_INT_IIC);
}
}
/* I/O Port */
inline UINT32 s3c44b0_device::iface_gpio_port_r(int port)
{
if (!m_port_r_cb.isnull())
return (m_port_r_cb)(port);
else
return 0;
}
inline void s3c44b0_device::iface_gpio_port_w(int port, UINT32 data)
{
if (!m_port_w_cb.isnull())
(m_port_w_cb)(port, data, 0xffff);
}
READ32_MEMBER( s3c44b0_device::gpio_r )
{
UINT32 data = ((UINT32*)&m_gpio.regs)[offset];
switch (offset)
{
case S3C44B0_GPADAT :
{
data = iface_gpio_port_r(S3C44B0_GPIO_PORT_A) & S3C44B0_GPADAT_MASK;
}
break;
case S3C44B0_GPBDAT :
{
data = iface_gpio_port_r(S3C44B0_GPIO_PORT_B) & S3C44B0_GPBDAT_MASK;
}
break;
case S3C44B0_GPCDAT :
{
data = iface_gpio_port_r(S3C44B0_GPIO_PORT_C) & S3C44B0_GPCDAT_MASK;
}
break;
case S3C44B0_GPDDAT :
{
data = iface_gpio_port_r(S3C44B0_GPIO_PORT_D) & S3C44B0_GPDDAT_MASK;
}
break;
case S3C44B0_GPEDAT :
{
data = iface_gpio_port_r(S3C44B0_GPIO_PORT_E) & S3C44B0_GPEDAT_MASK;
}
break;
case S3C44B0_GPFDAT :
{
data = iface_gpio_port_r(S3C44B0_GPIO_PORT_F) & S3C44B0_GPFDAT_MASK;
}
break;
case S3C44B0_GPGDAT :
{
data = iface_gpio_port_r(S3C44B0_GPIO_PORT_G) & S3C44B0_GPGDAT_MASK;
}
break;
}
verboselog( *this, 9, "(GPIO) %08X -> %08X\n", S3C44B0_BASE_GPIO + (offset << 2), data);
return data;
}
WRITE32_MEMBER( s3c44b0_device::gpio_w )
{
UINT32 old_value = ((UINT32*)&m_gpio.regs)[offset];
verboselog( *this, 9, "(GPIO) %08X <- %08X\n", S3C44B0_BASE_GPIO + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_gpio.regs)[offset]);
switch (offset)
{
case S3C44B0_GPADAT :
{
iface_gpio_port_w(S3C44B0_GPIO_PORT_A, data & S3C44B0_GPADAT_MASK);
}
break;
case S3C44B0_GPBDAT :
{
iface_gpio_port_w(S3C44B0_GPIO_PORT_B, data & S3C44B0_GPBDAT_MASK);
}
break;
case S3C44B0_GPCDAT :
{
iface_gpio_port_w(S3C44B0_GPIO_PORT_C, data & S3C44B0_GPCDAT_MASK);
}
break;
case S3C44B0_GPDDAT :
{
iface_gpio_port_w(S3C44B0_GPIO_PORT_D, data & S3C44B0_GPDDAT_MASK);
}
break;
case S3C44B0_GPEDAT :
{
iface_gpio_port_w(S3C44B0_GPIO_PORT_E, data & S3C44B0_GPEDAT_MASK);
}
break;
case S3C44B0_GPFDAT :
{
iface_gpio_port_w(S3C44B0_GPIO_PORT_F, data & S3C44B0_GPFDAT_MASK);
}
break;
case S3C44B0_GPGDAT :
{
iface_gpio_port_w(S3C44B0_GPIO_PORT_G, data & S3C44B0_GPGDAT_MASK);
}
break;
case S3C44B0_EXTINTPND :
{
m_gpio.regs.extintpnd = (old_value & ~data);
check_pending_eint();
}
break;
}
}
/* UART */
UINT32 s3c44b0_device::uart_r(int ch, UINT32 offset)
{
UINT32 data = ((UINT32*)&m_uart[ch].regs)[offset];
switch (offset)
{
case S3C44B0_UTRSTAT :
{
data = (data & ~0x00000006) | 0x00000004 | 0x00000002; // [bit 2] Transmitter empty / [bit 1] Transmit buffer empty
}
break;
case S3C44B0_URXH :
{
UINT8 rxdata = data & 0xFF;
verboselog( *this, 5, "UART %d read %02X (%c)\n", ch, rxdata, ((rxdata >= 32) && (rxdata < 128)) ? (char)rxdata : '?');
m_uart[ch].regs.utrstat &= ~1; // [bit 0] Receive buffer data ready
}
break;
}
return data;
}
void s3c44b0_device::uart_w(int ch, UINT32 offset, UINT32 data, UINT32 mem_mask)
{
COMBINE_DATA(&((UINT32*)&m_uart[ch].regs)[offset]);
switch (offset)
{
case S3C44B0_UTXH :
{
UINT8 txdata = data & 0xFF;
verboselog( *this, 5, "UART %d write %02X (%c)\n", ch, txdata, ((txdata >= 32) && (txdata < 128)) ? (char)txdata : '?');
#ifdef UART_PRINTF
printf( "%c", ((txdata >= 32) && (txdata < 128)) ? (char)txdata : '?');
#endif
}
break;
case S3C44B0_UBRDIV :
{
UINT32 mclk, hz;
mclk = get_mclk();
hz = (mclk / (m_uart->regs.ubrdiv + 1)) / 16;
verboselog( *this, 5, "UART %d - mclk %08X hz %08X\n", ch, mclk, hz);
m_uart->timer->adjust(attotime::from_hz(hz), ch, attotime::from_hz(hz));
}
break;
}
}
READ32_MEMBER( s3c44b0_device::uart_0_r )
{
UINT32 data = uart_r(0, offset);
// verboselog( *this, 9, "(UART 0) %08X -> %08X\n", S3C44B0_BASE_UART_0 + (offset << 2), data);
return data;
}
READ32_MEMBER( s3c44b0_device::uart_1_r )
{
UINT32 data = uart_r(1, offset);
// verboselog( *this, 9, "(UART 1) %08X -> %08X\n", S3C44B0_BASE_UART_1 + (offset << 2), data);
return data;
}
WRITE32_MEMBER( s3c44b0_device::uart_0_w )
{
verboselog( *this, 9, "(UART 0) %08X <- %08X (%08X)\n", S3C44B0_BASE_UART_0 + (offset << 2), data, mem_mask);
uart_w(0, offset, data, mem_mask);
}
WRITE32_MEMBER( s3c44b0_device::uart_1_w )
{
verboselog( *this, 9, "(UART 1) %08X <- %08X (%08X)\n", S3C44B0_BASE_UART_1 + (offset << 2), data, mem_mask);
uart_w(1, offset, data, mem_mask);
}
void s3c44b0_device::uart_fifo_w(int uart, UINT8 data)
{
// printf("s3c44b0_uart_fifo_w (%c)\n", data);
m_uart[uart].regs.urxh = data;
m_uart[uart].regs.utrstat |= 1; // [bit 0] Receive buffer data ready
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::uart_timer_exp )
{
int ch = param;
verboselog( *this, 2, "UART %d timer callback\n", ch);
if ((m_uart->regs.ucon & (1 << 9)) != 0)
{
const int ch_int[] = { S3C44B0_INT_UTXD0, S3C44B0_INT_UTXD1 };
request_irq(ch_int[ch]);
}
}
/* Watchdog Timer */
UINT16 s3c44b0_device::wdt_calc_current_count()
{
return 0;
}
READ32_MEMBER( s3c44b0_device::wdt_r )
{
UINT32 data = ((UINT32*)&m_wdt.regs)[offset];
switch (offset)
{
case S3C44B0_WTCNT :
{
// is wdt active?
if ((m_wdt.regs.wtcon & (1 << 5)) != 0)
{
data = wdt_calc_current_count();
}
}
break;
}
verboselog( *this, 9, "(WDT) %08X -> %08X\n", S3C44B0_BASE_WDT + (offset << 2), data);
return data;
}
void s3c44b0_device::wdt_start()
{
UINT32 mclk, prescaler, clock;
double freq, hz;
verboselog( *this, 1, "WDT start\n");
mclk = get_mclk();
prescaler = BITS(m_wdt.regs.wtcon, 15, 8);
clock = 16 << BITS(m_wdt.regs.wtcon, 4, 3);
freq = (double)mclk / (prescaler + 1) / clock;
hz = freq / m_wdt.regs.wtcnt;
verboselog( *this, 5, "WDT mclk %d prescaler %d clock %d freq %f hz %f\n", mclk, prescaler, clock, freq, hz);
m_wdt.timer->adjust(attotime::from_hz(hz), 0, attotime::from_hz(hz));
}
void s3c44b0_device::wdt_stop()
{
verboselog( *this, 1, "WDT stop\n");
m_wdt.regs.wtcnt = wdt_calc_current_count();
m_wdt.timer->adjust(attotime::never, 0);
}
void s3c44b0_device::wdt_recalc()
{
if ((m_wdt.regs.wtcon & (1 << 5)) != 0)
wdt_start();
else
wdt_stop();
}
WRITE32_MEMBER( s3c44b0_device::wdt_w )
{
UINT32 old_value = ((UINT32*)&m_wdt.regs)[offset];
verboselog( *this, 9, "(WDT) %08X <- %08X\n", S3C44B0_BASE_WDT + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_wdt.regs)[offset]);
switch (offset)
{
case S3C44B0_WTCON :
{
if ((data & (1 << 5)) != (old_value & (1 << 5)))
{
wdt_recalc();
}
}
break;
}
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::wdt_timer_exp )
{
verboselog( *this, 2, "WDT timer callback\n");
if ((m_wdt.regs.wtcon & (1 << 2)) != 0)
{
request_irq(S3C44B0_INT_WDT);
}
if ((m_wdt.regs.wtcon & (1 << 0)) != 0)
{
//s3c44b0_reset();
fatalerror("s3c44b0_reset\n");
}
}
/* CPU Wrapper */
READ32_MEMBER( s3c44b0_device::cpuwrap_r )
{
UINT32 data = ((UINT32*)&m_cpuwrap.regs)[offset];
verboselog( *this, 9, "(CPUWRAP) %08X -> %08X\n", S3C44B0_BASE_CPU_WRAPPER + (offset << 2), data);
return data;
}
WRITE32_MEMBER( s3c44b0_device::cpuwrap_w )
{
verboselog( *this, 9, "(CPUWRAP) %08X <- %08X\n", S3C44B0_BASE_CPU_WRAPPER + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_cpuwrap.regs)[offset]);
}
/* A/D Converter */
READ32_MEMBER( s3c44b0_device::adc_r )
{
UINT32 data = ((UINT32*)&m_adc.regs)[offset];
verboselog( *this, 9, "(ADC) %08X -> %08X\n", S3C44B0_BASE_ADC + (offset << 2), data);
return data;
}
void s3c44b0_device::adc_start()
{
UINT32 mclk, prescaler;
double freq, hz;
verboselog( *this, 1, "ADC start\n");
mclk = get_mclk();
prescaler = BITS(m_adc.regs.adcpsr, 7, 0);
freq = (double)mclk / (2 * (prescaler + 1)) / 16;
hz = freq / 1; //m_wdt.regs.wtcnt;
verboselog( *this, 5, "ADC mclk %d prescaler %d freq %f hz %f\n", mclk, prescaler, freq, hz);
m_adc.timer->adjust(attotime::from_hz(hz), 0);
}
void s3c44b0_device::adc_stop()
{
verboselog( *this, 1, "ADC stop\n");
m_adc.timer->adjust(attotime::never, 0);
}
void s3c44b0_device::adc_recalc()
{
if ((m_adc.regs.adccon & (1 << 0)) != 0)
adc_start();
else
adc_stop();
}
WRITE32_MEMBER( s3c44b0_device::adc_w )
{
UINT32 old_value = ((UINT32*)&m_wdt.regs)[offset];
verboselog( *this, 9, "(ADC) %08X <- %08X\n", S3C44B0_BASE_ADC + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_adc.regs)[offset]);
switch (offset)
{
case S3C44B0_ADCCON :
{
if ((data & (1 << 0)) != (old_value & (1 << 0)))
{
adc_recalc();
}
m_adc.regs.adccon &= ~(1 << 0); // "this bit is cleared after the start-up"
}
break;
}
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::adc_timer_exp )
{
verboselog( *this, 2, "ADC timer callback\n");
m_adc.regs.adccon |= (1 << 6);
request_irq(S3C44B0_INT_ADC);
}
/* SIO */
READ32_MEMBER( s3c44b0_device::sio_r )
{
UINT32 data = ((UINT32*)&m_sio.regs)[offset];
verboselog( *this, 9, "(SIO) %08X -> %08X\n", S3C44B0_BASE_SIO + (offset << 2), data);
return data;
}
void s3c44b0_device::sio_start()
{
UINT32 mclk, prescaler;
double freq, hz;
verboselog( *this, 1, "SIO start\n");
mclk = get_mclk();
prescaler = BITS(m_sio.regs.sbrdr, 11, 0);
freq = (double)mclk / 2 / (prescaler + 1);
hz = freq / 1; //m_wdt.regs.wtcnt;
verboselog( *this, 5, "SIO mclk %d prescaler %d freq %f hz %f\n", mclk, prescaler, freq, hz);
m_sio.timer->adjust(attotime::from_hz(hz), 0);
// printf("SIO transmit %02X (%c)\n", m_sio.regs.siodat, ((m_sio.regs.siodat >= 32) && (m_sio.regs.siodat < 128)) ? (char)m_sio.regs.siodat : '?');
}
void s3c44b0_device::sio_stop()
{
verboselog( *this, 1, "SIO stop\n");
// m_wdt.regs.wtcnt = s3c44b0_wdt_calc_current_count( device);
m_sio.timer->adjust(attotime::never, 0);
}
void s3c44b0_device::sio_recalc()
{
if ((m_sio.regs.siocon & (1 << 3)) != 0)
sio_start();
else
sio_stop();
}
WRITE32_MEMBER( s3c44b0_device::sio_w )
{
UINT32 old_value = ((UINT32*)&m_sio.regs)[offset];
verboselog( *this, 9, "(SIO) %08X <- %08X\n", S3C44B0_BASE_SIO + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_sio.regs)[offset]);
switch (offset)
{
case S3C44B0_SIOCON :
{
if ((old_value & (1 << 3)) != (data & (1 << 3)))
{
sio_recalc();
}
m_sio.regs.siocon &= ~(1 << 3); // "This bit is cleared just after writing this bit as 1."
}
break;
}
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::sio_timer_exp )
{
verboselog( *this, 2, "SIO timer callback\n");
m_sio.regs.siodat = 0x00; // TEST
if ((m_sio.regs.siocon & (1 << 0)) != 0)
{
request_irq(S3C44B0_INT_SIO);
}
}
/* IIS */
inline void s3c44b0_device::iface_i2s_data_w(address_space &space, int ch, UINT16 data)
{
if (!m_data_w_cb.isnull())
(m_data_w_cb)(ch, data, 0);
}
void s3c44b0_device::iis_start()
{
UINT32 mclk;
int prescaler;
double freq, hz;
const int div[] = { 2, 4, 6, 8, 10, 12, 14, 16, 1, 0, 3, 0, 5, 0, 7, 0 };
verboselog( *this, 1, "IIS start\n");
mclk = get_mclk();
prescaler = BITS(m_iis.regs.iispsr, 3, 0);
freq = (double)mclk / div[prescaler];
hz = freq / 256 * 2;
verboselog( *this, 5, "IIS mclk %d prescaler %d freq %f hz %f\n", mclk, prescaler, freq, hz);
m_iis.timer->adjust(attotime::from_hz(hz), 0, attotime::from_hz(hz));
}
void s3c44b0_device::iis_stop()
{
verboselog( *this, 1, "IIS stop\n");
m_iis.timer->adjust(attotime::never, 0);
}
READ32_MEMBER( s3c44b0_device::iis_r )
{
UINT32 data = ((UINT32*)&m_iis.regs)[offset];
verboselog( *this, 9, "(IIS) %08X -> %08X\n", S3C44B0_BASE_IIS + (offset << 2), data);
return data;
}
WRITE32_MEMBER( s3c44b0_device::iis_w )
{
UINT32 old_value = ((UINT32*)&m_iis.regs)[offset];
verboselog( *this, 9, "(IIS) %08X <- %08X\n", S3C44B0_BASE_IIS + (offset << 2), data);
COMBINE_DATA(&((UINT32*)&m_iis.regs)[offset]);
switch (offset)
{
case S3C44B0_IISCON :
{
if ((old_value & (1 << 0)) != (data & (1 << 0)))
{
if ((data & (1 << 0)) != 0)
{
iis_start();
}
else
{
iis_stop();
}
}
}
break;
case S3C44B0_IISFIFO :
{
if (ACCESSING_BITS_16_31)
{
m_iis.fifo[m_iis.fifo_index++] = BITS(data, 31, 16);
}
if (ACCESSING_BITS_0_15)
{
m_iis.fifo[m_iis.fifo_index++] = BITS(data, 15, 0);
}
if (m_iis.fifo_index == 2)
{
m_iis.fifo_index = 0;
iface_i2s_data_w(space, 0, m_iis.fifo[0]);
iface_i2s_data_w(space, 1, m_iis.fifo[1]);
}
}
break;
}
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::iis_timer_exp )
{
verboselog( *this, 2, "IIS timer callback\n");
if ((m_iis.regs.iiscon & (1 << 5)) != 0)
{
bdma_request_iis();
}
}
/* ZDMA */
void s3c44b0_device::zdma_trigger(int ch)
{
address_space &space = m_cpu->space(AS_PROGRAM);
UINT32 saddr, daddr;
int dal, dst, opt, das, cnt;
verboselog( *this, 5, "s3c44b0_zdma_trigger %d\n", ch);
dst = BITS(m_zdma->regs.dcsrc, 31, 30);
dal = BITS(m_zdma->regs.dcsrc, 29, 28);
saddr = BITS(m_zdma->regs.dcsrc, 27, 0);
verboselog( *this, 5, "dst %d dal %d saddr %08X\n", dst, dal, saddr);
opt = BITS(m_zdma->regs.dcdst, 31, 30);
das = BITS(m_zdma->regs.dcdst, 29, 28);
daddr = BITS(m_zdma->regs.dcdst, 27, 0);
verboselog( *this, 5, "opt %d das %d daddr %08X\n", opt, das, daddr);
cnt = BITS(m_zdma->regs.dccnt, 19, 0);
verboselog( *this, 5, "icnt %08X\n", cnt);
while (cnt > 0)
{
verboselog( *this, 9, "[%08X] -> [%08X]\n", saddr, daddr);
switch (dst)
{
case 0 : space.write_byte(daddr, space.read_byte(saddr)); break;
case 1 : space.write_word(daddr, space.read_word(saddr)); break;
case 2 : space.write_dword(daddr, space.read_dword(saddr)); break;
}
switch (dal)
{
case 1 : saddr += (1 << dst); break;
case 2 : saddr -= (1 << dst); break;
}
switch (das)
{
case 1 : daddr += (1 << dst); break;
case 2 : daddr -= (1 << dst); break;
}
cnt -= (1 << dst);
}
m_zdma->regs.dcsrc = CLR_BITS(m_zdma->regs.dcsrc, 27, 0) | saddr;
m_zdma->regs.dcdst = CLR_BITS(m_zdma->regs.dcdst, 27, 0) | daddr;
m_zdma->regs.dccnt = CLR_BITS(m_zdma->regs.dcdst, 19, 0) | cnt;
if (cnt == 0)
{
if ((m_zdma->regs.dccnt & (1 << 23)) != 0)
{
const int ch_int[] = { S3C44B0_INT_ZDMA0, S3C44B0_INT_ZDMA1 };
request_irq(ch_int[ch]);
}
}
}
void s3c44b0_device::zdma_start(int ch)
{
verboselog( *this, 5, "ZDMA %d start\n", ch);
m_zdma->regs.dcsrc = m_zdma->regs.disrc;
m_zdma->regs.dcdst = m_zdma->regs.didst;
m_zdma->regs.dccnt = m_zdma->regs.dicnt;
zdma_trigger(ch);
}
UINT32 s3c44b0_device::zdma_r(int ch, UINT32 offset)
{
UINT32 data = ((UINT32*)&m_zdma[ch].regs)[offset];
return data;
}
void s3c44b0_device::zdma_w(int ch, UINT32 offset, UINT32 data, UINT32 mem_mask)
{
UINT32 old_value = ((UINT32*)&m_zdma[ch].regs)[offset];
COMBINE_DATA(&((UINT32*)&m_zdma[ch].regs)[offset]);
switch (offset)
{
case S3C44B0_DCON :
{
if ((old_value & 3) != (data & 3))
{
switch (data & 3)
{
case 1 : zdma_start(ch); break;
}
}
m_zdma[ch].regs.dcon &= ~3; // "After writing 01,10,11, CMD bit is cleared automatically"
}
break;
}
}
READ32_MEMBER( s3c44b0_device::zdma_0_r )
{
UINT32 data = zdma_r(0, offset);
verboselog( *this, 9, "(ZDMA 0) %08X -> %08X\n", S3C44B0_BASE_ZDMA_0 + (offset << 2), data);
return data;
}
READ32_MEMBER( s3c44b0_device::zdma_1_r )
{
UINT32 data = zdma_r(1, offset);
verboselog( *this, 9, "(ZDMA 1) %08X -> %08X\n", S3C44B0_BASE_ZDMA_1 + (offset << 2), data);
return data;
}
WRITE32_MEMBER( s3c44b0_device::zdma_0_w )
{
verboselog( *this, 9, "(ZDMA 0) %08X <- %08X (%08X)\n", S3C44B0_BASE_ZDMA_0 + (offset << 2), data, mem_mask);
zdma_w(0, offset, data, mem_mask);
}
WRITE32_MEMBER( s3c44b0_device::zdma_1_w )
{
verboselog( *this, 9, "(ZDMA 1) %08X <- %08X (%08X)\n", S3C44B0_BASE_ZDMA_1 + (offset << 2), data, mem_mask);
zdma_w(1, offset, data, mem_mask);
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::zdma_timer_exp )
{
int ch = param;
verboselog( *this, 2, "ZDMA %d timer callback\n", ch);
}
/* BDMA */
void s3c44b0_device::bdma_trigger(int ch)
{
address_space &space = m_cpu->space(AS_PROGRAM);
UINT32 saddr, daddr;
int dal, dst, tdm, das, cnt;
verboselog( *this, 5, "s3c44b0_bdma_trigger %d\n", ch);
dst = BITS(m_bdma->regs.dcsrc, 31, 30);
dal = BITS(m_bdma->regs.dcsrc, 29, 28);
saddr = BITS(m_bdma->regs.dcsrc, 27, 0);
verboselog( *this, 5, "dst %d dal %d saddr %08X\n", dst, dal, saddr);
tdm = BITS(m_bdma->regs.dcdst, 31, 30);
das = BITS(m_bdma->regs.dcdst, 29, 28);
daddr = BITS(m_bdma->regs.dcdst, 27, 0);
verboselog( *this, 5, "tdm %d das %d daddr %08X\n", tdm, das, daddr);
cnt = BITS(m_bdma->regs.dccnt, 19, 0);
verboselog( *this, 5, "icnt %08X\n", cnt);
verboselog( *this, 9, "[%08X] -> [%08X]\n", saddr, daddr);
switch (dst)
{
case 0 : space.write_byte(daddr, space.read_byte(saddr)); break;
case 1 : space.write_word(daddr, space.read_word(saddr)); break;
case 2 : space.write_dword(daddr, space.read_dword(saddr)); break;
}
switch (dal)
{
case 1 : saddr += (1 << dst); break;
case 2 : saddr -= (1 << dst); break;
}
switch (das)
{
case 1 : daddr += (1 << dst); break;
case 2 : daddr -= (1 << dst); break;
}
cnt -= (1 << dst);
m_bdma->regs.dcsrc = CLR_BITS(m_bdma->regs.dcsrc, 27, 0) | saddr;
m_bdma->regs.dcdst = CLR_BITS(m_bdma->regs.dcdst, 27, 0) | daddr;
m_bdma->regs.dccnt = CLR_BITS(m_bdma->regs.dcdst, 19, 0) | cnt;
if (cnt == 0)
{
if ((m_bdma->regs.dccnt & (1 << 23)) != 0)
{
const int ch_int[] = { S3C44B0_INT_BDMA0, S3C44B0_INT_BDMA1 };
request_irq(ch_int[ch]);
}
}
}
void s3c44b0_device::bdma_request_iis()
{
verboselog( *this, 5, "s3c44b0_bdma_request_iis\n");
bdma_trigger(0);
}
UINT32 s3c44b0_device::bdma_r(int ch, UINT32 offset)
{
UINT32 data = ((UINT32*)&m_bdma[ch].regs)[offset];
return data;
}
void s3c44b0_device::bdma_start(int ch)
{
verboselog( *this, 5, "BDMA %d start\n", ch);
int qsc = BITS(m_bdma->regs.dicnt, 31, 30);
if ((ch == 0) && (qsc == 1))
{
// IIS
}
else
{
printf( "s3c44b0_bdma_start - todo\n");
}
m_bdma->regs.dcsrc = m_bdma->regs.disrc;
m_bdma->regs.dcdst = m_bdma->regs.didst;
m_bdma->regs.dccnt = m_bdma->regs.dicnt;
}
void s3c44b0_device::bdma_stop(int ch)
{
verboselog( *this, 5, "BDMA %d stop\n", ch);
m_bdma[ch].timer->adjust(attotime::never, ch);
}
void s3c44b0_device::bdma_w(int ch, UINT32 offset, UINT32 data, UINT32 mem_mask)
{
UINT32 old_value = ((UINT32*)&m_bdma[ch].regs)[offset];
COMBINE_DATA(&((UINT32*)&m_bdma[ch].regs)[offset]);
switch (offset)
{
case S3C44B0_DICNT :
{
if ((old_value & (1 << 20)) != (data & (1 << 20)))
{
if ((data & (1 << 20)) != 0)
{
bdma_start(ch);
}
else
{
bdma_stop(ch);
}
}
}
break;
}
}
READ32_MEMBER( s3c44b0_device::bdma_0_r )
{
UINT32 data = bdma_r(0, offset);
verboselog( *this, 9, "(BDMA 0) %08X -> %08X\n", S3C44B0_BASE_BDMA_0 + (offset << 2), data);
return data;
}
READ32_MEMBER( s3c44b0_device::bdma_1_r )
{
UINT32 data = bdma_r(1, offset);
verboselog( *this, 9, "(BDMA 1) %08X -> %08X\n", S3C44B0_BASE_BDMA_1 + (offset << 2), data);
return data;
}
WRITE32_MEMBER( s3c44b0_device::bdma_0_w )
{
verboselog( *this, 9, "(BDMA 0) %08X <- %08X (%08X)\n", S3C44B0_BASE_BDMA_0 + (offset << 2), data, mem_mask);
bdma_w(0, offset, data, mem_mask);
}
WRITE32_MEMBER( s3c44b0_device::bdma_1_w )
{
verboselog( *this, 9, "(BDMA 1) %08X <- %08X (%08X)\n", S3C44B0_BASE_BDMA_1 + (offset << 2), data, mem_mask);
bdma_w(1, offset, data, mem_mask);
}
TIMER_CALLBACK_MEMBER( s3c44b0_device::bdma_timer_exp )
{
int ch = param;
verboselog( *this, 2, "BDMA %d timer callback\n", ch);
}