mame/src/emu/debug/debugcpu.c

2240 lines
65 KiB
C

/*********************************************************************
debugcpu.c
Debugger CPU/memory interface engine.
Copyright Nicola Salmoria and the MAME Team.
Visit http://mamedev.org for licensing and usage restrictions.
*********************************************************************/
#include "osdepend.h"
#include "driver.h"
#include "debugcpu.h"
#include "debugcmd.h"
#include "debugcmt.h"
#include "debugcon.h"
#include "express.h"
#include "debugvw.h"
#include "deprecat.h"
#include <ctype.h>
/***************************************************************************
CONSTANTS
***************************************************************************/
#define NUM_TEMP_VARIABLES 10
/***************************************************************************
TYPE DEFINITIONS
***************************************************************************/
/***************************************************************************
LOCAL VARIABLES
***************************************************************************/
FILE *debug_source_file;
symbol_table *global_symtable;
static UINT64 wpdata;
static UINT64 wpaddr;
static int execution_state;
static UINT32 execution_counter;
static int next_index = 1;
static int within_debugger_code = FALSE;
static int last_cpunum;
static int last_stopped_cpunum;
static int steps_until_stop;
static offs_t step_overout_breakpoint;
static int step_overout_cpunum;
static int key_check_counter;
static osd_ticks_t last_periodic_update_time;
static int break_on_vblank;
static int break_on_interrupt;
static int break_on_interrupt_cpunum;
static int break_on_interrupt_irqline;
static int break_on_time;
static attotime break_on_time_target;
static int memory_modified;
static int memory_hook_cpunum;
static debug_cpu_info debug_cpuinfo[MAX_CPU];
static UINT64 tempvar[NUM_TEMP_VARIABLES];
/***************************************************************************
FUNCTION PROTOTYPES
***************************************************************************/
static void debug_cpu_exit(running_machine *machine);
static void perform_trace(debug_cpu_info *info);
static void prepare_for_step_overout(void);
static void process_source_file(void);
static UINT64 get_wpaddr(UINT32 ref);
static UINT64 get_wpdata(UINT32 ref);
static UINT64 get_cycles(UINT32 ref);
static UINT64 get_cpunum(UINT32 ref);
static UINT64 get_tempvar(UINT32 ref);
static UINT64 get_logunmap(UINT32 ref);
static UINT64 get_beamx(UINT32 ref);
static UINT64 get_beamy(UINT32 ref);
static void set_tempvar(UINT32 ref, UINT64 value);
static void set_logunmap(UINT32 ref, UINT64 value);
static UINT64 get_current_pc(UINT32 ref);
static UINT64 get_cpu_reg(UINT32 ref);
static void set_cpu_reg(UINT32 ref, UINT64 value);
static void check_watchpoints(int cpunum, int spacenum, int type, offs_t address, UINT64 value_to_write, UINT64 mem_mask);
static void check_hotspots(int cpunum, int spacenum, offs_t address);
/***************************************************************************
FRONTENDS FOR OLDER FUNCTIONS
***************************************************************************/
/*-------------------------------------------------
mame_debug_init - start up all subsections
-------------------------------------------------*/
void mame_debug_init(running_machine *machine)
{
/* initialize the various subsections */
debug_cpu_init(machine);
debug_command_init(machine);
debug_console_init(machine);
debug_view_init(machine);
debug_comment_init(machine);
atexit(debug_flush_traces);
add_logerror_callback(machine, debug_errorlog_write_line);
}
/*-------------------------------------------------
mame_debug_break - break into the debugger
-------------------------------------------------*/
void mame_debug_break(void)
{
debug_halt_on_next_instruction();
}
/*-------------------------------------------------
mame_debug_is_active - true if the debugger
is currently live
-------------------------------------------------*/
int mame_debug_is_active(void)
{
return within_debugger_code;
}
/*-------------------------------------------------
on_vblank - called when a VBLANK hits
-------------------------------------------------*/
static void on_vblank(const device_config *device, int vblank_state)
{
/* if we're configured to stop on VBLANK, break */
if (vblank_state && break_on_vblank)
{
execution_state = EXECUTION_STATE_STOPPED;
debug_console_printf("Stopped at VBLANK\n");
break_on_vblank = 0;
}
}
/***************************************************************************
INITIALIZATION
***************************************************************************/
/*-------------------------------------------------
debug_cpu_init - initialize the CPU
information for debugging
-------------------------------------------------*/
void debug_cpu_init(running_machine *machine)
{
int cpunum, spacenum, regnum;
/* reset globals */
execution_state = EXECUTION_STATE_STOPPED;
execution_counter = 0;
next_index = 1;
within_debugger_code = FALSE;
last_cpunum = 0;
last_stopped_cpunum = 0;
steps_until_stop = 0;
step_overout_breakpoint = ~0;
step_overout_cpunum = 0;
key_check_counter = 0;
/* create a global symbol table */
global_symtable = symtable_alloc(NULL);
/* add "wpaddr", "wpdata", "cycles", "cpunum", "logunmap" to the global symbol table */
symtable_add_register(global_symtable, "wpaddr", 0, get_wpaddr, NULL);
symtable_add_register(global_symtable, "wpdata", 0, get_wpdata, NULL);
symtable_add_register(global_symtable, "cycles", 0, get_cycles, NULL);
symtable_add_register(global_symtable, "cpunum", 0, get_cpunum, NULL);
symtable_add_register(global_symtable, "logunmap", ADDRESS_SPACE_PROGRAM, get_logunmap, set_logunmap);
symtable_add_register(global_symtable, "logunmapd", ADDRESS_SPACE_DATA, get_logunmap, set_logunmap);
symtable_add_register(global_symtable, "logunmapi", ADDRESS_SPACE_IO, get_logunmap, set_logunmap);
symtable_add_register(global_symtable, "beamx", 0, get_beamx, NULL);
symtable_add_register(global_symtable, "beamy", 0, get_beamy, NULL);
/* add the temporary variables to the global symbol table */
for (regnum = 0; regnum < NUM_TEMP_VARIABLES; regnum++)
{
char symname[10];
sprintf(symname, "temp%d", regnum);
symtable_add_register(global_symtable, symname, regnum, get_tempvar, set_tempvar);
}
/* reset the CPU info */
memset(debug_cpuinfo, 0, sizeof(debug_cpuinfo));
/* loop over CPUs and build up their info */
for (cpunum = 0; cpunum < MAX_CPU; cpunum++)
{
cpu_type cputype = Machine->config->cpu[cpunum].type;
/* if this is a dummy, stop looking */
if (cputype == CPU_DUMMY)
break;
/* reset the PC data */
debug_cpuinfo[cpunum].valid = 1;
debug_cpuinfo[cpunum].endianness = cpunum_endianness(cpunum);
debug_cpuinfo[cpunum].opwidth = cpunum_min_instruction_bytes(cpunum);
debug_cpuinfo[cpunum].ignoring = 0;
debug_cpuinfo[cpunum].temp_breakpoint_pc = ~0;
/* fetch the memory accessors */
debug_cpuinfo[cpunum].translate = (int (*)(int, offs_t *))cpunum_get_info_fct(cpunum, CPUINFO_PTR_TRANSLATE);
debug_cpuinfo[cpunum].read = (int (*)(int, UINT32, int, UINT64 *))cpunum_get_info_fct(cpunum, CPUINFO_PTR_READ);
debug_cpuinfo[cpunum].write = (int (*)(int, UINT32, int, UINT64))cpunum_get_info_fct(cpunum, CPUINFO_PTR_WRITE);
debug_cpuinfo[cpunum].readop = (int (*)(UINT32, int, UINT64 *))cpunum_get_info_fct(cpunum, CPUINFO_PTR_READOP);
/* allocate a symbol table */
debug_cpuinfo[cpunum].symtable = symtable_alloc(global_symtable);
/* add a global symbol for the current instruction pointer */
symtable_add_register(debug_cpuinfo[cpunum].symtable, "curpc", 0, get_current_pc, 0);
/* add all registers into it */
for (regnum = 0; regnum < MAX_REGS; regnum++)
{
const char *str = cpunum_reg_string(cpunum, regnum);
const char *colon;
char symname[256];
int charnum;
/* skip if we don't get a valid string, or one without a colon */
if (str == NULL)
continue;
if (str[0] == '~')
str++;
colon = strchr(str, ':');
if (colon == NULL)
continue;
/* strip all spaces from the name and convert to lowercase */
for (charnum = 0; charnum < sizeof(symname) - 1 && str < colon; str++)
if (!isspace(*str))
symname[charnum++] = tolower(*str);
symname[charnum] = 0;
/* add the symbol to the table */
symtable_add_register(debug_cpuinfo[cpunum].symtable, symname, regnum, get_cpu_reg, set_cpu_reg);
}
/* loop over address spaces and get info */
for (spacenum = 0; spacenum < ADDRESS_SPACES; spacenum++)
{
debug_space_info *spaceinfo = &debug_cpuinfo[cpunum].space[spacenum];
int datawidth = cpunum_databus_width(cpunum, spacenum);
int logwidth = cpunum_logaddr_width(cpunum, spacenum);
int physwidth = cpunum_addrbus_width(cpunum, spacenum);
int addrshift = cpunum_addrbus_shift(cpunum, spacenum);
int pageshift = cpunum_page_shift(cpunum, spacenum);
if (logwidth == 0)
logwidth = physwidth;
spaceinfo->databytes = datawidth / 8;
spaceinfo->pageshift = pageshift;
/* left/right shifts to convert addresses to bytes */
spaceinfo->addr2byte_lshift = (addrshift < 0) ? -addrshift : 0;
spaceinfo->addr2byte_rshift = (addrshift > 0) ? addrshift : 0;
/* number of character used to display addresses */
spaceinfo->physchars = (physwidth + 3) / 4;
spaceinfo->logchars = (logwidth + 3) / 4;
/* masks to apply to addresses */
spaceinfo->physaddrmask = (0xfffffffful >> (32 - physwidth));
spaceinfo->logaddrmask = (0xfffffffful >> (32 - logwidth));
/* masks to apply to byte addresses */
spaceinfo->physbytemask = ((spaceinfo->physaddrmask << spaceinfo->addr2byte_lshift) | ((1 << spaceinfo->addr2byte_lshift) - 1)) >> spaceinfo->addr2byte_rshift;
spaceinfo->logbytemask = ((spaceinfo->logaddrmask << spaceinfo->addr2byte_lshift) | ((1 << spaceinfo->addr2byte_lshift) - 1)) >> spaceinfo->addr2byte_rshift;
}
}
/* add callback for breaking on VBLANK */
if (machine->primary_screen != NULL)
video_screen_register_vblank_callback(machine->primary_screen, on_vblank);
add_exit_callback(machine, debug_cpu_exit);
}
/*-------------------------------------------------
debug_cpu_exit - free all memory
-------------------------------------------------*/
static void debug_cpu_exit(running_machine *machine)
{
int cpunum, spacenum;
/* loop over all watchpoints and breakpoints to free their memory */
for (cpunum = 0; cpunum < MAX_CPU; cpunum++)
{
/* close any tracefiles */
if (debug_cpuinfo[cpunum].trace.file)
fclose(debug_cpuinfo[cpunum].trace.file);
if (debug_cpuinfo[cpunum].trace.action)
free(debug_cpuinfo[cpunum].trace.action);
/* free the symbol table */
if (debug_cpuinfo[cpunum].symtable)
symtable_free(debug_cpuinfo[cpunum].symtable);
/* free all breakpoints */
while (debug_cpuinfo[cpunum].first_bp)
debug_breakpoint_clear(debug_cpuinfo[cpunum].first_bp->index);
/* loop over all address spaces */
for (spacenum = 0; spacenum < ADDRESS_SPACES; spacenum++)
{
/* free all watchpoints */
while (debug_cpuinfo[cpunum].space[spacenum].first_wp)
debug_watchpoint_clear(debug_cpuinfo[cpunum].space[spacenum].first_wp->index);
}
}
/* free the global symbol table */
if (global_symtable)
symtable_free(global_symtable);
}
/***************************************************************************
EXECUTION CONTROL
***************************************************************************/
/*-------------------------------------------------
debug_cpu_single_step - single step past the
requested number of instructions
-------------------------------------------------*/
void debug_cpu_single_step(int numsteps)
{
if (!within_debugger_code)
return;
steps_until_stop = numsteps;
execution_state = EXECUTION_STATE_STEP_INTO;
}
/*-------------------------------------------------
debug_cpu_single_step_over - single step over
a single instruction
-------------------------------------------------*/
void debug_cpu_single_step_over(int numsteps)
{
if (!within_debugger_code)
return;
steps_until_stop = numsteps;
step_overout_cpunum = cpu_getactivecpu();
execution_state = EXECUTION_STATE_STEP_OVER;
}
/*-------------------------------------------------
debug_cpu_single_step_out - single step out of
the current function
-------------------------------------------------*/
void debug_cpu_single_step_out(void)
{
if (!within_debugger_code)
return;
steps_until_stop = 100;
step_overout_cpunum = cpu_getactivecpu();
execution_state = EXECUTION_STATE_STEP_OUT;
}
/*-------------------------------------------------
debug_cpu_go - resume execution
-------------------------------------------------*/
void debug_cpu_go(offs_t targetpc)
{
if (!within_debugger_code)
return;
execution_state = EXECUTION_STATE_RUNNING;
debug_cpuinfo[cpu_getactivecpu()].temp_breakpoint_pc = targetpc;
}
/*-------------------------------------------------
debug_cpu_go_vblank - run until the next
VBLANK
-------------------------------------------------*/
void debug_cpu_go_vblank(void)
{
if (!within_debugger_code)
return;
execution_state = EXECUTION_STATE_RUNNING;
debug_cpuinfo[cpu_getactivecpu()].temp_breakpoint_pc = ~0;
break_on_vblank = 1;
}
/*-------------------------------------------------
debug_cpu_go_interrupt - run until the
specified interrupt fires
-------------------------------------------------*/
void debug_cpu_go_interrupt(int irqline)
{
if (!within_debugger_code)
return;
execution_state = EXECUTION_STATE_RUNNING;
debug_cpuinfo[cpu_getactivecpu()].temp_breakpoint_pc = ~0;
break_on_interrupt = 1;
break_on_interrupt_cpunum = cpu_getactivecpu();
break_on_interrupt_irqline = irqline;
}
/*-------------------------------------------------
debug_cpu_go_milliseconds - run until the
specified delay elapses
-------------------------------------------------*/
void debug_cpu_go_milliseconds(UINT64 milliseconds)
{
if (!within_debugger_code)
return;
execution_state = EXECUTION_STATE_RUNNING;
debug_cpuinfo[cpu_getactivecpu()].temp_breakpoint_pc = ~0;
break_on_time = 1;
break_on_time_target = attotime_add(
timer_get_time(),
attotime_make(milliseconds / 1000, (milliseconds % 1000) * (ATTOSECONDS_PER_SECOND / 1000)));
}
/*-------------------------------------------------
debug_cpu_next_cpu - execute until we hit
the next CPU
-------------------------------------------------*/
void debug_cpu_next_cpu(void)
{
if (!within_debugger_code)
return;
execution_state = EXECUTION_STATE_NEXT_CPU;
}
/*-------------------------------------------------
debug_cpu_ignore_cpu - ignore/observe a given
CPU
-------------------------------------------------*/
void debug_cpu_ignore_cpu(int cpunum, int ignore)
{
debug_cpuinfo[cpunum].ignoring = ignore;
if (!within_debugger_code)
return;
if (cpunum == cpu_getactivecpu() && debug_cpuinfo[cpunum].ignoring)
execution_state = EXECUTION_STATE_NEXT_CPU;
}
/*-------------------------------------------------
debug_cpu_trace - trace execution of a given
CPU
-------------------------------------------------*/
void debug_cpu_trace(int cpunum, FILE *file, int trace_over, const char *action)
{
/* close existing files and delete expressions */
if (debug_cpuinfo[cpunum].trace.file)
fclose(debug_cpuinfo[cpunum].trace.file);
debug_cpuinfo[cpunum].trace.file = NULL;
if (debug_cpuinfo[cpunum].trace.action)
free(debug_cpuinfo[cpunum].trace.action);
debug_cpuinfo[cpunum].trace.action = NULL;
/* open any new files */
debug_cpuinfo[cpunum].trace.file = file;
debug_cpuinfo[cpunum].trace.action = NULL;
if (action)
{
debug_cpuinfo[cpunum].trace.action = malloc(strlen(action) + 1);
if (debug_cpuinfo[cpunum].trace.action)
strcpy(debug_cpuinfo[cpunum].trace.action, action);
}
/* specify trace over */
debug_cpuinfo[cpunum].trace.trace_over_target = trace_over ? ~0 : 0;
}
/***************************************************************************
UTILITIES
***************************************************************************/
/*-------------------------------------------------
debug_get_cpu_info - returns the cpu info
block for a given CPU
-------------------------------------------------*/
const debug_cpu_info *debug_get_cpu_info(int cpunum)
{
return &debug_cpuinfo[cpunum];
}
/*-------------------------------------------------
debug_halt_on_next_instruction - halt in
the debugger on the next instruction
-------------------------------------------------*/
void debug_halt_on_next_instruction(void)
{
debug_console_printf("Internal breakpoint\n");
execution_state = EXECUTION_STATE_STOPPED;
}
/*-------------------------------------------------
debug_refresh_display - redraw the current
video display
-------------------------------------------------*/
void debug_refresh_display(void)
{
video_frame_update(Machine, TRUE);
}
/*-------------------------------------------------
debug_get_execution_state - return the
current execution state
-------------------------------------------------*/
int debug_get_execution_state(void)
{
return execution_state;
}
/*-------------------------------------------------
debug_get_execution_counter - return the
current execution counter
-------------------------------------------------*/
UINT32 debug_get_execution_counter(void)
{
return execution_counter;
}
/*-------------------------------------------------
get_wpaddr - getter callback for the
'wpaddr' symbol
-------------------------------------------------*/
static UINT64 get_wpaddr(UINT32 ref)
{
return wpaddr;
}
/*-------------------------------------------------
get_wpdata - getter callback for the
'wpdata' symbol
-------------------------------------------------*/
static UINT64 get_wpdata(UINT32 ref)
{
return wpdata;
}
/*-------------------------------------------------
get_cycles - getter callback for the
'cycles' symbol
-------------------------------------------------*/
static UINT64 get_cycles(UINT32 ref)
{
return activecpu_get_icount();
}
/*-------------------------------------------------
get_cpunum - getter callback for the
'cpunum' symbol
-------------------------------------------------*/
static UINT64 get_cpunum(UINT32 ref)
{
return cpu_getactivecpu();
}
/*-------------------------------------------------
get_tempvar - getter callback for the
'tempX' symbols
-------------------------------------------------*/
static UINT64 get_tempvar(UINT32 ref)
{
return tempvar[ref];
}
/*-------------------------------------------------
set_tempvar - setter callback for the
'tempX' symbols
-------------------------------------------------*/
static void set_tempvar(UINT32 ref, UINT64 value)
{
tempvar[ref] = value;
}
/*-------------------------------------------------
get_logunmap - getter callback for the logumap
symbols
-------------------------------------------------*/
static UINT64 get_logunmap(UINT32 ref)
{
return memory_get_log_unmap(ref);
}
/*-------------------------------------------------
get_beamx - get beam horizontal position
-------------------------------------------------*/
static UINT64 get_beamx(UINT32 ref)
{
UINT64 ret = 0;
const device_config *screen = device_list_find_by_index(Machine->config->devicelist, VIDEO_SCREEN, ref);
if (screen != NULL)
ret = video_screen_get_hpos(screen);
return ret;
}
/*-------------------------------------------------
get_beamy - get beam vertical position
-------------------------------------------------*/
static UINT64 get_beamy(UINT32 ref)
{
UINT64 ret = 0;
const device_config *screen = device_list_find_by_index(Machine->config->devicelist, VIDEO_SCREEN, ref);
if (screen != NULL)
ret = video_screen_get_vpos(screen);
return ret;
}
/*-------------------------------------------------
set_logunmap - setter callback for the logumap
symbols
-------------------------------------------------*/
static void set_logunmap(UINT32 ref, UINT64 value)
{
memory_set_log_unmap(ref, value ? 1 : 0);
}
/*-------------------------------------------------
get_current_pc - getter callback for a CPU's
current instruction pointer
-------------------------------------------------*/
static UINT64 get_current_pc(UINT32 ref)
{
return activecpu_get_pc();
}
/*-------------------------------------------------
get_cpu_reg - getter callback for a CPU's
register symbols
-------------------------------------------------*/
static UINT64 get_cpu_reg(UINT32 ref)
{
return activecpu_get_reg(ref);
}
/*-------------------------------------------------
set_cpu_reg - setter callback for a CPU's
register symbols
-------------------------------------------------*/
static void set_cpu_reg(UINT32 ref, UINT64 value)
{
activecpu_set_reg(ref, value);
}
/***************************************************************************
MAIN CPU CALLBACK
***************************************************************************/
/*-------------------------------------------------
mame_debug_hook - called by the CPU cores
before executing each instruction
-------------------------------------------------*/
void mame_debug_hook(offs_t curpc)
{
int cpunum = cpu_getactivecpu();
debug_cpu_info *info = &debug_cpuinfo[cpunum];
/* update the history */
info->pc_history[info->pc_history_index++ % DEBUG_HISTORY_SIZE] = curpc;
/* quick out if we are ignoring */
if (info->ignoring)
return;
/* note that we are in the debugger code */
within_debugger_code = TRUE;
/* bump the counter */
execution_counter++;
/* are we tracing? */
if (info->trace.file)
perform_trace(info);
/* per-instruction hook? */
if (info->instrhook != NULL && (*info->instrhook)(curpc))
execution_state = EXECUTION_STATE_STOPPED;
/* check for execution breakpoints */
if (execution_state != EXECUTION_STATE_STOPPED)
{
/* see if we hit an interrupt break */
if (break_on_interrupt == 2 && break_on_interrupt_cpunum == cpunum)
{
debug_console_printf("Stopped on interrupt (CPU %d, IRQ %d)\n", break_on_interrupt_cpunum, break_on_interrupt_irqline);
break_on_interrupt = 0;
execution_state = EXECUTION_STATE_STOPPED;
}
/* see if we hit a target time */
if (break_on_time && attotime_compare(timer_get_time(), break_on_time_target) > 0)
{
debug_console_printf("Stopped at time interval %.1g\n", attotime_to_double(timer_get_time()));
break_on_time = 0;
execution_state = EXECUTION_STATE_STOPPED;
}
/* see if the CPU changed and break if we are waiting for that to happen */
if (cpunum != last_cpunum)
{
if (execution_state == EXECUTION_STATE_NEXT_CPU)
execution_state = EXECUTION_STATE_STOPPED;
last_cpunum = cpunum;
}
/* check the temp running breakpoint and break if we hit it */
if (info->temp_breakpoint_pc != ~0 && execution_state == EXECUTION_STATE_RUNNING && curpc == info->temp_breakpoint_pc)
{
execution_state = EXECUTION_STATE_STOPPED;
debug_console_printf("Stopped at temporary breakpoint %X on CPU %d\n", info->temp_breakpoint_pc, cpunum);
info->temp_breakpoint_pc = ~0;
}
/* check for execution breakpoints */
if (info->first_bp)
debug_check_breakpoints(cpunum, curpc);
/* handle single stepping */
if (steps_until_stop > 0 && (execution_state >= EXECUTION_STATE_STEP_INTO && execution_state <= EXECUTION_STATE_STEP_OUT))
{
/* is this an actual step? */
if (step_overout_breakpoint == ~0 || (cpunum == step_overout_cpunum && curpc == step_overout_breakpoint))
{
/* decrement the count and reset the breakpoint */
steps_until_stop--;
step_overout_breakpoint = ~0;
/* if we hit 0, stop; otherwise, we might want to update everything */
if (steps_until_stop == 0)
execution_state = EXECUTION_STATE_STOPPED;
else if (execution_state != EXECUTION_STATE_STEP_OUT && (steps_until_stop < 200 || steps_until_stop % 100 == 0))
{
debug_view_update_all();
debug_refresh_display();
}
}
}
/* check for debug keypresses */
if (execution_state != EXECUTION_STATE_STOPPED && ++key_check_counter > 10000)
{
key_check_counter = 0;
if (input_ui_pressed(IPT_UI_DEBUG_BREAK))
{
execution_state = EXECUTION_STATE_STOPPED;
debug_console_printf("User-initiated break\n");
}
/* while we're here, check for a periodic update */
if (cpunum == last_stopped_cpunum && execution_state != EXECUTION_STATE_STOPPED && osd_ticks() > last_periodic_update_time + osd_ticks_per_second()/4)
{
debug_view_update_all();
last_periodic_update_time = osd_ticks();
}
}
}
/* if we are supposed to halt, do it now */
if (execution_state == EXECUTION_STATE_STOPPED)
{
/* reset the state */
steps_until_stop = 0;
step_overout_breakpoint = ~0;
/* update all views */
debug_view_update_all();
debug_refresh_display();
/* wait for the debugger; during this time, disable sound output */
sound_mute(TRUE);
while (execution_state == EXECUTION_STATE_STOPPED)
{
/* clear the memory modified flag and wait */
memory_modified = 0;
osd_wait_for_debugger();
/* if something modified memory, update the screen */
if (memory_modified)
debug_refresh_display();
/* check for commands in the source file */
process_source_file();
/* if an event got scheduled, resume */
if (mame_is_scheduled_event_pending(Machine))
execution_state = EXECUTION_STATE_RUNNING;
}
sound_mute(FALSE);
/* remember the last cpunum where we stopped */
last_stopped_cpunum = cpunum;
}
/* handle step out/over on the instruction we are about to execute */
if ((execution_state == EXECUTION_STATE_STEP_OVER || execution_state == EXECUTION_STATE_STEP_OUT) && cpunum == step_overout_cpunum && step_overout_breakpoint == ~0)
prepare_for_step_overout();
/* no longer in debugger code */
within_debugger_code = FALSE;
}
/*-------------------------------------------------
perform_trace - log to the tracefile the
data for a given instruction
-------------------------------------------------*/
static UINT32 dasm_wrapped(char *buffer, offs_t pc)
{
const debug_cpu_info *cpuinfo = debug_get_cpu_info(cpu_getactivecpu());
int maxbytes = activecpu_max_instruction_bytes();
UINT8 opbuf[64], argbuf[64];
offs_t pcbyte;
int numbytes;
/* fetch the bytes up to the maximum */
pcbyte = ADDR2BYTE_MASKED(pc, cpuinfo, ADDRESS_SPACE_PROGRAM);
for (numbytes = 0; numbytes < maxbytes; numbytes++)
{
opbuf[numbytes] = debug_read_opcode(pcbyte + numbytes, 1, FALSE);
argbuf[numbytes] = debug_read_opcode(pcbyte + numbytes, 1, TRUE);
}
return activecpu_dasm(buffer, pc, opbuf, argbuf);
}
static void perform_trace(debug_cpu_info *info)
{
offs_t pc = activecpu_get_pc();
int offset, count, i;
char buffer[100];
offs_t dasmresult;
/* are we in trace over mode and in a subroutine? */
if (info->trace.trace_over_target && (info->trace.trace_over_target != ~0))
{
if (info->trace.trace_over_target != pc)
return;
info->trace.trace_over_target = ~0;
}
/* check for a loop condition */
for (i = count = 0; i < TRACE_LOOPS; i++)
if (info->trace.history[i] == pc)
count++;
/* if no more than 1 hit, process normally */
if (count <= 1)
{
/* if we just finished looping, indicate as much */
if (info->trace.loops)
fprintf(info->trace.file, "\n (loops for %d instructions)\n\n", info->trace.loops);
info->trace.loops = 0;
/* execute any trace actions first */
if (info->trace.action)
debug_console_execute_command(info->trace.action, 0);
/* print the address */
offset = sprintf(buffer, "%0*X: ", info->space[ADDRESS_SPACE_PROGRAM].logchars, pc);
/* print the disassembly */
dasmresult = dasm_wrapped(&buffer[offset], pc);
/* output the result */
fprintf(info->trace.file, "%s\n", buffer);
/* do we need to step the trace over this instruction? */
if (info->trace.trace_over_target && (dasmresult & DASMFLAG_SUPPORTED)
&& (dasmresult & DASMFLAG_STEP_OVER))
{
int extraskip = (dasmresult & DASMFLAG_OVERINSTMASK) >> DASMFLAG_OVERINSTSHIFT;
offs_t trace_over_target = pc + (dasmresult & DASMFLAG_LENGTHMASK);
/* if we need to skip additional instructions, advance as requested */
while (extraskip-- > 0)
trace_over_target += dasm_wrapped(buffer, trace_over_target) & DASMFLAG_LENGTHMASK;
info->trace.trace_over_target = trace_over_target;
}
/* log this PC */
info->trace.nextdex = (info->trace.nextdex + 1) % TRACE_LOOPS;
info->trace.history[info->trace.nextdex] = pc;
}
/* else just count the loop */
else
info->trace.loops++;
}
/*-------------------------------------------------
prepare_for_step_overout - prepare things for
stepping over an instruction
-------------------------------------------------*/
static void prepare_for_step_overout(void)
{
offs_t pc = activecpu_get_pc();
char dasmbuffer[100];
offs_t dasmresult;
/* disassemble the current instruction and get the flags */
dasmresult = dasm_wrapped(dasmbuffer, pc);
/* if flags are supported and it's a call-style opcode, set a temp breakpoint after that instruction */
if ((dasmresult & DASMFLAG_SUPPORTED) && (dasmresult & DASMFLAG_STEP_OVER))
{
int extraskip = (dasmresult & DASMFLAG_OVERINSTMASK) >> DASMFLAG_OVERINSTSHIFT;
pc += dasmresult & DASMFLAG_LENGTHMASK;
/* if we need to skip additional instructions, advance as requested */
while (extraskip-- > 0)
pc += dasm_wrapped(dasmbuffer, pc) & DASMFLAG_LENGTHMASK;
step_overout_breakpoint = pc;
}
/* if we're stepping out and this isn't a step out instruction, reset the steps until stop to a high number */
if (execution_state == EXECUTION_STATE_STEP_OUT)
{
if ((dasmresult & DASMFLAG_SUPPORTED) && !(dasmresult & DASMFLAG_STEP_OUT))
steps_until_stop = 100;
else
steps_until_stop = 1;
}
}
/*-------------------------------------------------
process_source_file - executes commands from
a source file
-------------------------------------------------*/
static void process_source_file(void)
{
/* loop until the file is exhausted or until we are executing again */
while (debug_source_file && (execution_state == EXECUTION_STATE_STOPPED))
{
char buf[512];
int i;
char *s;
/* stop at the end of file */
if (feof(debug_source_file))
{
fclose(debug_source_file);
debug_source_file = NULL;
return;
}
/* fetch the next line */
memset(buf, 0, sizeof(buf));
fgets(buf, sizeof(buf), debug_source_file);
/* strip out comments (text after '//') */
s = strstr(buf, "//");
if (s)
*s = '\0';
/* strip whitespace */
i = (int)strlen(buf);
while((i > 0) && (isspace(buf[i-1])))
buf[--i] = '\0';
/* execute the command */
if (buf[0])
debug_console_execute_command(buf, 1);
}
}
/*-------------------------------------------------
debug_vblank_hook - called when an interrupt
is acknowledged
-------------------------------------------------*/
void debug_interrupt_hook(int cpunum, int irqline)
{
/* if we're configured to stop on interrupt, break */
if (break_on_interrupt && cpunum == break_on_interrupt_cpunum && (break_on_interrupt_irqline == -1 || irqline == break_on_interrupt_irqline))
{
break_on_interrupt = 2;
break_on_interrupt_irqline = irqline;
}
}
/*-------------------------------------------------
standard_debug_hook_read - standard read hook
-------------------------------------------------*/
static void standard_debug_hook_read(int spacenum, offs_t address, UINT64 mem_mask)
{
debug_cpu_info *info = &debug_cpuinfo[memory_hook_cpunum];
/* check watchpoints */
if (info->read_watchpoints)
check_watchpoints(memory_hook_cpunum, spacenum, WATCHPOINT_READ, address, 0, mem_mask);
/* check hotspots */
if (info->hotspots)
check_hotspots(memory_hook_cpunum, spacenum, address);
}
/*-------------------------------------------------
standard_debug_hook_write - standard write hook
-------------------------------------------------*/
static void standard_debug_hook_write(int spacenum, offs_t address, UINT64 data, UINT64 mem_mask)
{
debug_cpu_info *info = &debug_cpuinfo[memory_hook_cpunum];
/* check watchpoints */
if (info->write_watchpoints)
check_watchpoints(memory_hook_cpunum, spacenum, WATCHPOINT_WRITE, address, data, mem_mask);
}
/*-------------------------------------------------
debug_get_memory_hooks - get memory hooks
for the specified CPU
-------------------------------------------------*/
void debug_get_memory_hooks(int cpunum, debug_hook_read_func *read, debug_hook_write_func *write)
{
memory_hook_cpunum = cpunum;
if (debug_cpuinfo[cpunum].read_watchpoints || debug_cpuinfo[cpunum].hotspots)
*read = standard_debug_hook_read;
else
*read = NULL;
if (debug_cpuinfo[cpunum].write_watchpoints)
*write = standard_debug_hook_write;
else
*write = NULL;
}
/*-------------------------------------------------
debug_set_instruction_hook - set a hook to
be called on each instruction for a given CPU
-------------------------------------------------*/
void debug_set_instruction_hook(int cpunum, int (*hook)(offs_t pc))
{
debug_cpuinfo[cpunum].instrhook = hook;
}
/***************************************************************************
BREAKPOINTS
***************************************************************************/
/*-------------------------------------------------
debug_check_breakpoints - check the
breakpoints for a given CPU
-------------------------------------------------*/
void debug_check_breakpoints(int cpunum, offs_t pc)
{
debug_cpu_breakpoint *bp;
UINT64 result;
/* see if we match */
for (bp = debug_cpuinfo[cpunum].first_bp; bp; bp = bp->next)
if (bp->enabled && bp->address == pc)
/* if we do, evaluate the condition */
if (bp->condition == NULL || (expression_execute(bp->condition, &result) == EXPRERR_NONE && result))
{
/* halt in the debugger by default */
execution_state = EXECUTION_STATE_STOPPED;
/* if we hit, evaluate the action */
if (bp->action != NULL)
debug_console_execute_command(bp->action, 0);
/* print a notification, unless the action made us go again */
if (execution_state == EXECUTION_STATE_STOPPED)
debug_console_printf("Stopped at breakpoint %X\n", bp->index);
break;
}
}
/*-------------------------------------------------
debug_breakpoint_first - find the first
breakpoint for a given CPU
-------------------------------------------------*/
static debug_cpu_breakpoint *find_breakpoint(int bpnum)
{
debug_cpu_breakpoint *bp;
int cpunum;
/* loop over CPUs and find the requested breakpoint */
for (cpunum = 0; cpunum < MAX_CPU; cpunum++)
for (bp = debug_cpuinfo[cpunum].first_bp; bp; bp = bp->next)
if (bp->index == bpnum)
return bp;
return NULL;
}
/*-------------------------------------------------
debug_breakpoint_first - return the first
breakpoint for a given CPU
-------------------------------------------------*/
debug_cpu_breakpoint *debug_breakpoint_first(int cpunum)
{
return (cpunum < MAX_CPU) ? debug_cpuinfo[cpunum].first_bp : NULL;
}
/*-------------------------------------------------
debug_breakpoint_set - set a new breakpoint
-------------------------------------------------*/
int debug_breakpoint_set(int cpunum, offs_t address, parsed_expression *condition, const char *action)
{
debug_cpu_breakpoint *bp;
assert_always((cpunum >= 0) && (cpunum < cpu_gettotalcpu()), "debug_breakpoint_set() called with invalid cpunum!");
/* allocate breakpoint */
bp = malloc(sizeof(*bp));
/* if we can't allocate, return failure */
if (!bp)
return 0;
/* fill in the structure */
bp->index = next_index++;
bp->enabled = 1;
bp->address = address;
bp->condition = condition;
bp->action = NULL;
if (action)
{
bp->action = malloc(strlen(action) + 1);
if (bp->action)
strcpy(bp->action, action);
}
/* hook us in */
bp->next = debug_cpuinfo[cpunum].first_bp;
debug_cpuinfo[cpunum].first_bp = bp;
return bp->index;
}
/*-------------------------------------------------
debug_breakpoint_clear - clear a breakpoint
-------------------------------------------------*/
int debug_breakpoint_clear(int bpnum)
{
debug_cpu_breakpoint *bp, *pbp;
int cpunum;
/* loop over CPUs and find the requested breakpoint */
for (cpunum = 0; cpunum < MAX_CPU; cpunum++)
for (pbp = NULL, bp = debug_cpuinfo[cpunum].first_bp; bp; pbp = bp, bp = bp->next)
if (bp->index == bpnum)
{
/* unlink us from the list */
if (pbp == NULL)
debug_cpuinfo[cpunum].first_bp = bp->next;
else
pbp->next = bp->next;
/* free the memory */
if (bp->condition)
expression_free(bp->condition);
if (bp->action)
free(bp->action);
free(bp);
return 1;
}
/* we didn't find it; return an error */
return 0;
}
/*-------------------------------------------------
debug_breakpoint_enable - enable/disable a
breakpoint
-------------------------------------------------*/
int debug_breakpoint_enable(int bpnum, int enable)
{
debug_cpu_breakpoint *bp = find_breakpoint(bpnum);
/* if we found it, set it */
if (bp != NULL)
{
bp->enabled = (enable != 0);
return 1;
}
return 0;
}
/***************************************************************************
WATCHPOINTS
***************************************************************************/
/*-------------------------------------------------
check_watchpoints - check the
breakpoints for a given CPU and address space
-------------------------------------------------*/
static void check_watchpoints(int cpunum, int spacenum, int type, offs_t address, UINT64 value_to_write, UINT64 mem_mask)
{
debug_cpu_watchpoint *wp;
UINT64 result;
offs_t size = 0;
/* if we're within debugger code, don't stop */
if (within_debugger_code)
return;
within_debugger_code = TRUE;
/* adjust address, size & value_to_write based on mem_mask. */
if( mem_mask != 0 )
{
const debug_cpu_info *info = &debug_cpuinfo[cpunum];
int address_offset = 0;
int bus_size = info->space[spacenum].databytes;
while (address_offset < bus_size && (mem_mask & 0xff) == 0)
{
address_offset++;
value_to_write >>= 8;
mem_mask >>= 8;
}
while (mem_mask != 0)
{
size++;
mem_mask >>= 8;
}
if (info->endianness == CPU_IS_LE)
{
address += address_offset;
}
else
{
address += bus_size - size - address_offset;
}
}
/* if we are a write watchpoint, stash the value that will be written */
wpaddr = address;
if (type & WATCHPOINT_WRITE)
wpdata = value_to_write;
/* see if we match */
for (wp = debug_cpuinfo[cpunum].space[spacenum].first_wp; wp; wp = wp->next)
if (wp->enabled && (wp->type & type) && address + size > wp->address && address < wp->address + wp->length)
/* if we do, evaluate the condition */
if (wp->condition == NULL || (expression_execute(wp->condition, &result) == EXPRERR_NONE && result))
{
/* halt in the debugger by default */
execution_state = EXECUTION_STATE_STOPPED;
/* if we hit, evaluate the action */
if (wp->action != NULL)
debug_console_execute_command(wp->action, 0);
/* print a notification, unless the action made us go again */
if (execution_state == EXECUTION_STATE_STOPPED)
{
static const char *const sizes[] =
{
"0bytes", "byte", "word", "3bytes", "dword", "5bytes", "6bytes", "7bytes", "qword"
};
char buffer[100];
if (type & WATCHPOINT_WRITE)
{
sprintf(buffer, "Stopped at watchpoint %X writing %s to %08X (PC=%X)", wp->index, sizes[size], BYTE2ADDR(address, &debug_cpuinfo[cpunum], spacenum), activecpu_get_pc());
if (value_to_write >> 32)
sprintf(&buffer[strlen(buffer)], " (data=%X%08X)", (UINT32)(value_to_write >> 32), (UINT32)value_to_write);
else
sprintf(&buffer[strlen(buffer)], " (data=%X)", (UINT32)value_to_write);
}
else
sprintf(buffer, "Stopped at watchpoint %X reading %s from %08X (PC=%X)", wp->index, sizes[size], BYTE2ADDR(address, &debug_cpuinfo[cpunum], spacenum), activecpu_get_pc());
debug_console_printf("%s\n", buffer);
}
break;
}
within_debugger_code = FALSE;
}
/*-------------------------------------------------
debug_watchpoint_first - find the first
watchpoint for a given CPU
-------------------------------------------------*/
static debug_cpu_watchpoint *find_watchpoint(int wpnum)
{
debug_cpu_watchpoint *wp;
int cpunum, spacenum;
/* loop over CPUs and address spaces and find the requested watchpoint */
for (cpunum = 0; cpunum < MAX_CPU; cpunum++)
for (spacenum = 0; spacenum < ADDRESS_SPACES; spacenum++)
for (wp = debug_cpuinfo[cpunum].space[spacenum].first_wp; wp; wp = wp->next)
if (wp->index == wpnum)
return wp;
return NULL;
}
/*-------------------------------------------------
debug_watchpoint_first - return the first
watchpoint for a given CPU
-------------------------------------------------*/
debug_cpu_watchpoint *debug_watchpoint_first(int cpunum, int spacenum)
{
return (cpunum < MAX_CPU && spacenum < ADDRESS_SPACES) ? debug_cpuinfo[cpunum].space[spacenum].first_wp : NULL;
}
/*-------------------------------------------------
debug_watchpoint_set - set a new watchpoint
-------------------------------------------------*/
int debug_watchpoint_set(int cpunum, int spacenum, int type, offs_t address, offs_t length, parsed_expression *condition, const char *action)
{
debug_cpu_watchpoint *wp = malloc(sizeof(*wp));
/* if we can't allocate, return failure */
if (!wp)
return 0;
/* fill in the structure */
wp->index = next_index++;
wp->enabled = 1;
wp->type = type;
wp->address = ADDR2BYTE_MASKED(address, &debug_cpuinfo[cpunum], spacenum);
wp->length = ADDR2BYTE(length, &debug_cpuinfo[cpunum], spacenum);
wp->condition = condition;
wp->action = NULL;
if (action)
{
wp->action = malloc(strlen(action) + 1);
if (wp->action)
strcpy(wp->action, action);
}
/* hook us in */
wp->next = debug_cpuinfo[cpunum].space[spacenum].first_wp;
debug_cpuinfo[cpunum].space[spacenum].first_wp = wp;
if (wp->type & WATCHPOINT_READ)
debug_cpuinfo[cpunum].read_watchpoints++;
if (wp->type & WATCHPOINT_WRITE)
debug_cpuinfo[cpunum].write_watchpoints++;
/* force debug_get_memory_hooks() to be called */
cpuintrf_push_context(-1);
cpuintrf_pop_context();
return wp->index;
}
/*-------------------------------------------------
debug_watchpoint_clear - clear a watchpoint
-------------------------------------------------*/
int debug_watchpoint_clear(int wpnum)
{
debug_cpu_watchpoint *wp, *pwp;
int cpunum, spacenum;
/* loop over CPUs and find the requested watchpoint */
for (cpunum = 0; cpunum < MAX_CPU; cpunum++)
for (spacenum = 0; spacenum < ADDRESS_SPACES; spacenum++)
for (pwp = NULL, wp = debug_cpuinfo[cpunum].space[spacenum].first_wp; wp; pwp = wp, wp = wp->next)
if (wp->index == wpnum)
{
/* unlink us from the list */
if (pwp == NULL)
debug_cpuinfo[cpunum].space[spacenum].first_wp = wp->next;
else
pwp->next = wp->next;
/* free the memory */
if (wp->condition)
expression_free(wp->condition);
if (wp->action)
free(wp->action);
if (wp->type & WATCHPOINT_READ)
debug_cpuinfo[cpunum].read_watchpoints--;
if (wp->type & WATCHPOINT_WRITE)
debug_cpuinfo[cpunum].write_watchpoints--;
free(wp);
/* force debug_get_memory_hooks() to be called */
cpuintrf_push_context(-1);
cpuintrf_pop_context();
return 1;
}
/* we didn't find it; return an error */
return 0;
}
/*-------------------------------------------------
debug_watchpoint_enable - enable/disable a
watchpoint
-------------------------------------------------*/
int debug_watchpoint_enable(int wpnum, int enable)
{
debug_cpu_watchpoint *wp = find_watchpoint(wpnum);
/* if we found it, set it */
if (wp != NULL)
{
wp->enabled = (enable != 0);
return 1;
}
return 0;
}
/***************************************************************************
HOTSPOTS
***************************************************************************/
/*-------------------------------------------------
debug_hotspot_track - enable/disable tracking
of hotspots
-------------------------------------------------*/
int debug_hotspot_track(int cpunum, int numspots, int threshhold)
{
debug_cpu_info *info = &debug_cpuinfo[cpunum];
/* if we already have tracking info, kill it */
if (info->hotspots)
free(info->hotspots);
info->hotspots = NULL;
/* only start tracking if we have a non-zero count */
if (numspots > 0)
{
/* allocate memory for hotspots */
info->hotspots = malloc_or_die(sizeof(*info->hotspots) * numspots);
memset(info->hotspots, 0xff, sizeof(*info->hotspots) * numspots);
/* fill in the info */
info->hotspot_count = numspots;
info->hotspot_threshhold = threshhold;
}
/* force debug_get_memory_hooks() to be called */
cpuintrf_push_context(-1);
cpuintrf_pop_context();
return 1;
}
/*-------------------------------------------------
check_hotspots - check for
hotspots on a memory read access
-------------------------------------------------*/
static void check_hotspots(int cpunum, int spacenum, offs_t address)
{
debug_cpu_info *info = &debug_cpuinfo[cpunum];
offs_t pc = activecpu_get_pc();
int hotindex;
/* see if we have a match in our list */
for (hotindex = 0; hotindex < info->hotspot_count; hotindex++)
if (info->hotspots[hotindex].access == address && info->hotspots[hotindex].pc == pc && info->hotspots[hotindex].spacenum == spacenum)
break;
/* if we didn't find any, make a new entry */
if (hotindex == info->hotspot_count)
{
/* if the bottom of the list is over the threshhold, print it */
debug_hotspot_entry *spot = &info->hotspots[info->hotspot_count - 1];
if (spot->count > info->hotspot_threshhold)
debug_console_printf("Hotspot @ %s %08X (PC=%08X) hit %d times (fell off bottom)\n", address_space_names[spot->spacenum], spot->access, spot->pc, spot->count);
/* move everything else down and insert this one at the top */
memmove(&info->hotspots[1], &info->hotspots[0], sizeof(info->hotspots[0]) * (info->hotspot_count - 1));
info->hotspots[0].access = address;
info->hotspots[0].pc = pc;
info->hotspots[0].spacenum = spacenum;
info->hotspots[0].count = 1;
}
/* if we did find one, increase the count and move it to the top */
else
{
info->hotspots[hotindex].count++;
if (hotindex != 0)
{
debug_hotspot_entry temp = info->hotspots[hotindex];
memmove(&info->hotspots[1], &info->hotspots[0], sizeof(info->hotspots[0]) * hotindex);
info->hotspots[0] = temp;
}
}
}
/***************************************************************************
MEMORY ACCESSORS
***************************************************************************/
/*-------------------------------------------------
debug_read_byte - return a byte from the
current cpu in the specified memory space
-------------------------------------------------*/
UINT8 debug_read_byte(int spacenum, offs_t address, int apply_translation)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
UINT64 custom;
UINT8 result;
/* mask against the logical byte mask */
address &= info->space[spacenum].logbytemask;
/* all accesses from this point on are for the debugger */
memory_set_debugger_access(1);
/* translate if necessary; if not mapped, return 0xff */
if (apply_translation && info->translate != NULL && !(*info->translate)(spacenum, &address))
result = 0xff;
/* if there is a custom read handler, and it returns TRUE, use that value */
else if (info->read && (*info->read)(spacenum, address, 1, &custom))
result = custom;
/* otherwise, call the byte reading function for the translated address */
else
result = (*active_address_space[spacenum].accessors->read_byte)(address);
/* no longer accessing via the debugger */
memory_set_debugger_access(0);
return result;
}
/*-------------------------------------------------
debug_read_word - return a word from the
current cpu in the specified memory space
-------------------------------------------------*/
UINT16 debug_read_word(int spacenum, offs_t address, int apply_translation)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
UINT64 custom;
UINT16 result;
/* mask against the logical byte mask */
address &= info->space[spacenum].logbytemask;
/* if this is misaligned read, or if there are no word readers, just read two bytes */
if ((address & 1) || !active_address_space[spacenum].accessors->read_word)
{
UINT8 byte0 = debug_read_byte(spacenum, address + 0, apply_translation);
UINT8 byte1 = debug_read_byte(spacenum, address + 1, apply_translation);
/* based on the endianness, the result is assembled differently */
if (debug_cpuinfo[cpu_getactivecpu()].endianness == CPU_IS_LE)
result = byte0 | (byte1 << 8);
else
result = byte1 | (byte0 << 8);
}
/* otherwise, this proceeds like the byte case */
else
{
/* all accesses from this point on are for the debugger */
memory_set_debugger_access(1);
/* translate if necessary; if not mapped, return 0xffff */
if (apply_translation && info->translate != NULL && !(*info->translate)(spacenum, &address))
result = 0xffff;
/* if there is a custom read handler, and it returns TRUE, use that value */
else if (info->read && (*info->read)(spacenum, address, 2, &custom))
result = custom;
/* otherwise, call the byte reading function for the translated address */
else
result = (*active_address_space[spacenum].accessors->read_word)(address);
/* no longer accessing via the debugger */
memory_set_debugger_access(0);
}
return result;
}
/*-------------------------------------------------
debug_read_dword - return a dword from the
current cpu in the specified memory space
-------------------------------------------------*/
UINT32 debug_read_dword(int spacenum, offs_t address, int apply_translation)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
UINT64 custom;
UINT32 result;
/* mask against the logical byte mask */
address &= info->space[spacenum].logbytemask;
/* if this is misaligned read, or if there are no dword readers, just read two words */
if ((address & 3) || !active_address_space[spacenum].accessors->read_dword)
{
UINT16 word0 = debug_read_word(spacenum, address + 0, apply_translation);
UINT16 word1 = debug_read_word(spacenum, address + 2, apply_translation);
/* based on the endianness, the result is assembled differently */
if (debug_cpuinfo[cpu_getactivecpu()].endianness == CPU_IS_LE)
result = word0 | (word1 << 16);
else
result = word1 | (word0 << 16);
}
/* otherwise, this proceeds like the byte case */
else
{
/* all accesses from this point on are for the debugger */
memory_set_debugger_access(1);
/* translate if necessary; if not mapped, return 0xffffffff */
if (apply_translation && info->translate != NULL && !(*info->translate)(spacenum, &address))
result = 0xffffffff;
/* if there is a custom read handler, and it returns TRUE, use that value */
else if (info->read && (*info->read)(spacenum, address, 4, &custom))
result = custom;
/* otherwise, call the byte reading function for the translated address */
else
result = (*active_address_space[spacenum].accessors->read_dword)(address);
/* no longer accessing via the debugger */
memory_set_debugger_access(0);
}
return result;
}
/*-------------------------------------------------
debug_read_qword - return a qword from the
current cpu in the specified memory space
-------------------------------------------------*/
UINT64 debug_read_qword(int spacenum, offs_t address, int apply_translation)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
UINT64 custom;
UINT64 result;
/* mask against the logical byte mask */
address &= info->space[spacenum].logbytemask;
/* if this is misaligned read, or if there are no qword readers, just read two dwords */
if ((address & 7) || !active_address_space[spacenum].accessors->read_qword)
{
UINT32 dword0 = debug_read_dword(spacenum, address + 0, apply_translation);
UINT32 dword1 = debug_read_dword(spacenum, address + 4, apply_translation);
/* based on the endianness, the result is assembled differently */
if (debug_cpuinfo[cpu_getactivecpu()].endianness == CPU_IS_LE)
result = dword0 | ((UINT64)dword1 << 32);
else
result = dword1 | ((UINT64)dword0 << 32);
}
/* otherwise, this proceeds like the byte case */
else
{
/* all accesses from this point on are for the debugger */
memory_set_debugger_access(1);
/* translate if necessary; if not mapped, return 0xffffffffffffffff */
if (apply_translation && info->translate != NULL && !(*info->translate)(spacenum, &address))
result = ~(UINT64)0;
/* if there is a custom read handler, and it returns TRUE, use that value */
else if (info->read && (*info->read)(spacenum, address, 8, &custom))
result = custom;
/* otherwise, call the byte reading function for the translated address */
else
result = (*active_address_space[spacenum].accessors->read_qword)(address);
/* no longer accessing via the debugger */
memory_set_debugger_access(0);
}
return result;
}
/*-------------------------------------------------
debug_write_byte - write a byte to the
current cpu in the specified memory space
-------------------------------------------------*/
void debug_write_byte(int spacenum, offs_t address, UINT8 data, int apply_translation)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
/* mask against the logical byte mask */
address &= info->space[spacenum].logbytemask;
/* all accesses from this point on are for the debugger */
memory_set_debugger_access(1);
/* translate if necessary; if not mapped, we're done */
if (apply_translation && info->translate != NULL && !(*info->translate)(spacenum, &address))
;
/* if there is a custom write handler, and it returns TRUE, use that */
else if (info->write && (*info->write)(spacenum, address, 1, data))
;
/* otherwise, call the byte reading function for the translated address */
else
(*active_address_space[spacenum].accessors->write_byte)(address, data);
/* no longer accessing via the debugger */
memory_set_debugger_access(0);
memory_modified = 1;
}
/*-------------------------------------------------
debug_write_word - write a word to the
current cpu in the specified memory space
-------------------------------------------------*/
void debug_write_word(int spacenum, offs_t address, UINT16 data, int apply_translation)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
/* mask against the logical byte mask */
address &= info->space[spacenum].logbytemask;
/* if this is a misaligned write, or if there are no word writers, just read two bytes */
if ((address & 1) || !active_address_space[spacenum].accessors->write_word)
{
if (debug_cpuinfo[cpu_getactivecpu()].endianness == CPU_IS_LE)
{
debug_write_byte(spacenum, address + 0, data >> 0, apply_translation);
debug_write_byte(spacenum, address + 1, data >> 8, apply_translation);
}
else
{
debug_write_byte(spacenum, address + 0, data >> 8, apply_translation);
debug_write_byte(spacenum, address + 1, data >> 0, apply_translation);
}
}
/* otherwise, this proceeds like the byte case */
else
{
/* all accesses from this point on are for the debugger */
memory_set_debugger_access(1);
/* translate if necessary; if not mapped, we're done */
if (apply_translation && info->translate && !(*info->translate)(spacenum, &address))
;
/* if there is a custom write handler, and it returns TRUE, use that */
else if (info->write && (*info->write)(spacenum, address, 2, data))
;
/* otherwise, call the byte reading function for the translated address */
else
(*active_address_space[spacenum].accessors->write_word)(address, data);
/* no longer accessing via the debugger */
memory_set_debugger_access(0);
memory_modified = 1;
}
}
/*-------------------------------------------------
debug_write_dword - write a dword to the
current cpu in the specified memory space
-------------------------------------------------*/
void debug_write_dword(int spacenum, offs_t address, UINT32 data, int apply_translation)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
/* mask against the logical byte mask */
address &= info->space[spacenum].logbytemask;
/* if this is a misaligned write, or if there are no dword writers, just read two words */
if ((address & 3) || !active_address_space[spacenum].accessors->write_dword)
{
if (debug_cpuinfo[cpu_getactivecpu()].endianness == CPU_IS_LE)
{
debug_write_word(spacenum, address + 0, data >> 0, apply_translation);
debug_write_word(spacenum, address + 2, data >> 16, apply_translation);
}
else
{
debug_write_word(spacenum, address + 0, data >> 16, apply_translation);
debug_write_word(spacenum, address + 2, data >> 0, apply_translation);
}
}
/* otherwise, this proceeds like the byte case */
else
{
/* all accesses from this point on are for the debugger */
memory_set_debugger_access(1);
/* translate if necessary; if not mapped, we're done */
if (apply_translation && info->translate && !(*info->translate)(spacenum, &address))
;
/* if there is a custom write handler, and it returns TRUE, use that */
else if (info->write && (*info->write)(spacenum, address, 4, data))
;
/* otherwise, call the byte reading function for the translated address */
else
(*active_address_space[spacenum].accessors->write_dword)(address, data);
/* no longer accessing via the debugger */
memory_set_debugger_access(0);
memory_modified = 1;
}
}
/*-------------------------------------------------
debug_write_qword - write a qword to the
current cpu in the specified memory space
-------------------------------------------------*/
void debug_write_qword(int spacenum, offs_t address, UINT64 data, int apply_translation)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
/* mask against the logical byte mask */
address &= info->space[spacenum].logbytemask;
/* if this is a misaligned write, or if there are no qword writers, just read two dwords */
if ((address & 7) || !active_address_space[spacenum].accessors->write_qword)
{
if (debug_cpuinfo[cpu_getactivecpu()].endianness == CPU_IS_LE)
{
debug_write_dword(spacenum, address + 0, data >> 0, apply_translation);
debug_write_dword(spacenum, address + 4, data >> 32, apply_translation);
}
else
{
debug_write_dword(spacenum, address + 0, data >> 32, apply_translation);
debug_write_dword(spacenum, address + 4, data >> 0, apply_translation);
}
}
/* otherwise, this proceeds like the byte case */
else
{
/* all accesses from this point on are for the debugger */
memory_set_debugger_access(1);
/* translate if necessary; if not mapped, we're done */
if (apply_translation && info->translate && !(*info->translate)(spacenum, &address))
;
/* if there is a custom write handler, and it returns TRUE, use that */
else if (info->write && (*info->write)(spacenum, address, 8, data))
;
/* otherwise, call the byte reading function for the translated address */
else
(*active_address_space[spacenum].accessors->write_qword)(address, data);
/* no longer accessing via the debugger */
memory_set_debugger_access(0);
memory_modified = 1;
}
}
/*-------------------------------------------------
debug_read_opcode - read 1,2,4 or 8 bytes at
the given offset from opcode space
-------------------------------------------------*/
UINT64 debug_read_opcode(offs_t address, int size, int arg)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
offs_t lowbits_mask;
const void *ptr;
/* keep in logical range */
address &= info->space[ADDRESS_SPACE_PROGRAM].logbytemask;
/* shortcut if we have a custom routine */
if (info->readop)
{
UINT64 result;
if ((*info->readop)(address, size, &result))
return result;
}
/* if we're bigger than the address bus, break into smaller pieces */
if (size > info->space[ADDRESS_SPACE_PROGRAM].databytes)
{
int halfsize = size / 2;
UINT64 r0 = debug_read_opcode(address + 0, halfsize, arg);
UINT64 r1 = debug_read_opcode(address + halfsize, halfsize, arg);
if (info->endianness == CPU_IS_LE)
return r0 | (r1 << (8 * halfsize));
else
return r1 | (r0 << (8 * halfsize));
}
/* translate to physical first */
if (info->translate && !(*info->translate)(ADDRESS_SPACE_PROGRAM, &address))
return ~(UINT64)0 & (~(UINT64)0 >> (64 - 8*size));
/* keep in physical range */
address &= info->space[ADDRESS_SPACE_PROGRAM].physbytemask;
/* adjust the address */
memory_set_opbase(address);
switch (info->space[ADDRESS_SPACE_PROGRAM].databytes * 10 + size)
{
/* dump opcodes in bytes from a byte-sized bus */
case 11:
break;
/* dump opcodes in bytes from a word-sized bus */
case 21:
address ^= (info->endianness == CPU_IS_LE) ? BYTE_XOR_LE(0) : BYTE_XOR_BE(0);
break;
/* dump opcodes in words from a word-sized bus */
case 22:
break;
/* dump opcodes in bytes from a dword-sized bus */
case 41:
address ^= (info->endianness == CPU_IS_LE) ? BYTE4_XOR_LE(0) : BYTE4_XOR_BE(0);
break;
/* dump opcodes in words from a dword-sized bus */
case 42:
address ^= (info->endianness == CPU_IS_LE) ? WORD_XOR_LE(0) : WORD_XOR_BE(0);
break;
/* dump opcodes in dwords from a dword-sized bus */
case 44:
break;
/* dump opcodes in bytes from a qword-sized bus */
case 81:
address ^= (info->endianness == CPU_IS_LE) ? BYTE8_XOR_LE(0) : BYTE8_XOR_BE(0);
break;
/* dump opcodes in words from a qword-sized bus */
case 82:
address ^= (info->endianness == CPU_IS_LE) ? WORD2_XOR_LE(0) : WORD2_XOR_BE(0);
break;
/* dump opcodes in dwords from a qword-sized bus */
case 84:
address ^= (info->endianness == CPU_IS_LE) ? DWORD_XOR_LE(0) : DWORD_XOR_BE(0);
break;
/* dump opcodes in qwords from a qword-sized bus */
case 88:
break;
default:
fatalerror("debug_read_opcode: unknown type = %d", info->space[ADDRESS_SPACE_PROGRAM].databytes * 10 + size);
break;
}
/* get pointer to data */
/* note that we query aligned to the bus width, and then add back the low bits */
lowbits_mask = info->space[ADDRESS_SPACE_PROGRAM].databytes - 1;
ptr = memory_get_op_ptr(cpu_getactivecpu(), address & ~lowbits_mask, arg);
if (!ptr)
return ~(UINT64)0 & (~(UINT64)0 >> (64 - 8*size));
ptr = (UINT8 *)ptr + (address & lowbits_mask);
/* gross! */
// if (osd_is_bad_read_ptr(ptr, size))
// fatalerror("debug_read_opcode: cpu %d address %x mapped to invalid memory %p", cpu_getactivecpu(), address, ptr);
/* return based on the size */
switch (size)
{
case 1: return *(UINT8 *) ptr;
case 2: return *(UINT16 *)ptr;
case 4: return *(UINT32 *)ptr;
case 8: return *(UINT64 *)ptr;
}
return 0; /* appease compiler */
}
/*-------------------------------------------------
external_read_memory - read 1,2,4 or 8 bytes at
the given offset in the given address space
-------------------------------------------------*/
UINT64 external_read_memory(int space, UINT32 offset, int size)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
if (info->space[space].databytes == 0)
return ~0;
/* adjust the address into a byte address */
offset = ADDR2BYTE(offset, info, space);
switch (size)
{
case 1: return debug_read_byte(space, offset, TRUE);
case 2: return debug_read_word(space, offset, TRUE);
case 4: return debug_read_dword(space, offset, TRUE);
case 8: return debug_read_qword(space, offset, TRUE);
}
return ~0;
}
/*-------------------------------------------------
external_write_memory - write 1,2,4 or 8 bytes to
the given offset in the given address space
-------------------------------------------------*/
void external_write_memory(int space, UINT32 offset, int size, UINT64 value)
{
const debug_cpu_info *info = &debug_cpuinfo[cpu_getactivecpu()];
if (info->space[space].databytes == 0)
return;
/* adjust the address into a byte address */
offset = ADDR2BYTE(offset, info, space);
switch (size)
{
case 1: debug_write_byte(space, offset, value, TRUE); break;
case 2: debug_write_word(space, offset, value, TRUE); break;
case 4: debug_write_dword(space, offset, value, TRUE); break;
case 8: debug_write_qword(space, offset, value, TRUE); break;
}
}
/*-------------------------------------------------
debug_trace_printf - writes text to a given
CPU's trace file
-------------------------------------------------*/
void debug_trace_printf(int cpunum, const char *fmt, ...)
{
va_list va;
debug_cpu_info *info = &debug_cpuinfo[cpunum];
if (info->trace.file)
{
va_start(va, fmt);
vfprintf(info->trace.file, fmt, va);
va_end(va);
}
}
/*-------------------------------------------------
debug_source_script - specifies a debug command
script to use
-------------------------------------------------*/
void debug_source_script(const char *file)
{
if (debug_source_file)
{
fclose(debug_source_file);
debug_source_file = NULL;
}
if (file)
{
debug_source_file = fopen(file, "r");
if (!debug_source_file)
{
if (mame_get_phase(Machine) == MAME_PHASE_RUNNING)
debug_console_printf("Cannot open command file '%s'\n", file);
else
fatalerror("Cannot open command file '%s'", file);
}
}
}
/*-------------------------------------------------
debug_flush_traces - flushes all traces; this is
useful if a trace is going on when we fatalerror
-------------------------------------------------*/
void debug_flush_traces(void)
{
int cpunum;
for (cpunum = 0; cpunum < cpu_gettotalcpu(); cpunum++)
{
if (debug_cpuinfo[cpunum].trace.file)
fflush(debug_cpuinfo[cpunum].trace.file);
}
}