mame/src/tools/chdman.cpp

3046 lines
100 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
CHD compression frontend
****************************************************************************/
#include <stdio.h> // must be here otherwise issues with I64FMT in MINGW
#include <assert.h>
#include "osdcore.h"
#include "corefile.h"
#include "chdcd.h"
#include "aviio.h"
#include "avhuff.h"
#include "bitmap.h"
#include "md5.h"
#include "sha1.h"
#include "vbiparse.h"
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <ctype.h>
#include <iostream>
#include <cassert>
#include <cstring>
#include <limits>
#include <memory>
#include <new>
#include <unordered_map>
//**************************************************************************
// CONSTANTS & DEFINES
//**************************************************************************
/* MINGW has adopted the MSVC formatting for 64-bit ints as of gcc 4.4 */
#if defined(WIN32)
#define I64FMT "I64"
#elif !defined(__APPLE__) && defined(__LP64__)
#define I64FMT "l"
#else
#define I64FMT "ll"
#endif
// default hard disk sector size
const uint32_t IDE_SECTOR_SIZE = 512;
// temporary input buffer size
const uint32_t TEMP_BUFFER_SIZE = 32 * 1024 * 1024;
// modes
const int MODE_NORMAL = 0;
const int MODE_CUEBIN = 1;
const int MODE_GDI = 2;
// command modifier
#define REQUIRED "~"
// command strings
#define COMMAND_HELP "help"
#define COMMAND_INFO "info"
#define COMMAND_VERIFY "verify"
#define COMMAND_CREATE_RAW "createraw"
#define COMMAND_CREATE_HD "createhd"
#define COMMAND_CREATE_CD "createcd"
#define COMMAND_CREATE_LD "createld"
#define COMMAND_EXTRACT_RAW "extractraw"
#define COMMAND_EXTRACT_HD "extracthd"
#define COMMAND_EXTRACT_CD "extractcd"
#define COMMAND_EXTRACT_LD "extractld"
#define COMMAND_COPY "copy"
#define COMMAND_ADD_METADATA "addmeta"
#define COMMAND_DEL_METADATA "delmeta"
#define COMMAND_DUMP_METADATA "dumpmeta"
#define COMMAND_LIST_TEMPLATES "listtemplates"
// option strings
#define OPTION_INPUT "input"
#define OPTION_OUTPUT "output"
#define OPTION_OUTPUT_BIN "outputbin"
#define OPTION_OUTPUT_FORCE "force"
#define OPTION_INPUT_START_BYTE "inputstartbyte"
#define OPTION_INPUT_START_HUNK "inputstarthunk"
#define OPTION_INPUT_START_FRAME "inputstartframe"
#define OPTION_INPUT_LENGTH_BYTES "inputbytes"
#define OPTION_INPUT_LENGTH_HUNKS "inputhunks"
#define OPTION_INPUT_LENGTH_FRAMES "inputframes"
#define OPTION_HUNK_SIZE "hunksize"
#define OPTION_UNIT_SIZE "unitsize"
#define OPTION_COMPRESSION "compression"
#define OPTION_INPUT_PARENT "inputparent"
#define OPTION_OUTPUT_PARENT "outputparent"
#define OPTION_IDENT "ident"
#define OPTION_CHS "chs"
#define OPTION_SECTOR_SIZE "sectorsize"
#define OPTION_TAG "tag"
#define OPTION_INDEX "index"
#define OPTION_VALUE_TEXT "valuetext"
#define OPTION_VALUE_FILE "valuefile"
#define OPTION_NO_CHECKSUM "nochecksum"
#define OPTION_VERBOSE "verbose"
#define OPTION_FIX "fix"
#define OPTION_NUMPROCESSORS "numprocessors"
#define OPTION_SIZE "size"
#define OPTION_TEMPLATE "template"
//**************************************************************************
// FUNCTION PROTOTYPES
//**************************************************************************
typedef std::unordered_map<std::string,std::string *> parameters_t;
template <typename Format, typename... Params> static void report_error(int error, Format &&fmt, Params &&...args);
static void do_info(parameters_t &params);
static void do_verify(parameters_t &params);
static void do_create_raw(parameters_t &params);
static void do_create_hd(parameters_t &params);
static void do_create_cd(parameters_t &params);
static void do_create_ld(parameters_t &params);
static void do_copy(parameters_t &params);
static void do_extract_raw(parameters_t &params);
static void do_extract_cd(parameters_t &params);
static void do_extract_ld(parameters_t &params);
static void do_add_metadata(parameters_t &params);
static void do_del_metadata(parameters_t &params);
static void do_dump_metadata(parameters_t &params);
static void do_list_templates(parameters_t &params);
//**************************************************************************
// TYPE DEFINITIONS
//**************************************************************************
// ======================> option_description
struct option_description
{
const char *name;
const char *shortname;
bool parameter;
const char *description;
};
// ======================> command_description
struct command_description
{
const char *name;
void (*handler)(parameters_t &);
const char *description;
const char *valid_options[16];
};
// ======================> avi_info
struct avi_info
{
uint32_t fps_times_1million;
uint32_t width;
uint32_t height;
bool interlaced;
uint32_t channels;
uint32_t rate;
uint32_t max_samples_per_frame;
uint32_t bytes_per_frame;
};
// ======================> hd_template
struct hd_template
{
const char *manufacturer;
const char *model;
uint32_t cylinders;
uint32_t heads;
uint32_t sectors;
uint32_t sector_size;
};
// ======================> metadata_index_info
struct metadata_index_info
{
chd_metadata_tag tag;
uint32_t index;
};
// ======================> fatal_error
class fatal_error : public std::exception
{
public:
fatal_error(int error)
: m_error(error) { }
int error() const { return m_error; }
private:
int m_error;
};
// ======================> chd_zero_compressor
class chd_zero_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_zero_compressor(std::uint64_t offset = 0, std::uint64_t maxoffset = 0)
: m_offset(offset)
, m_maxoffset(maxoffset)
{
}
// read interface
virtual std::uint32_t read_data(void *dest, std::uint64_t offset, std::uint32_t length) override
{
offset += m_offset;
if (offset >= m_maxoffset)
return 0;
if (offset + length > m_maxoffset)
length = m_maxoffset - offset;
std::memset(dest, 0, length);
return length;
}
private:
// internal state
std::uint64_t m_offset;
std::uint64_t m_maxoffset;
};
// ======================> chd_rawfile_compressor
class chd_rawfile_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_rawfile_compressor(util::core_file &file, std::uint64_t offset = 0, std::uint64_t maxoffset = std::numeric_limits<std::uint64_t>::max())
: m_file(file)
, m_offset(offset)
, m_maxoffset((std::min)(maxoffset, file.size()))
{
}
// read interface
virtual std::uint32_t read_data(void *dest, std::uint64_t offset, std::uint32_t length) override
{
offset += m_offset;
if (offset >= m_maxoffset)
return 0;
if (offset + length > m_maxoffset)
length = m_maxoffset - offset;
m_file.seek(offset, SEEK_SET);
return m_file.read(dest, length);
}
private:
// internal state
util::core_file & m_file;
std::uint64_t m_offset;
std::uint64_t m_maxoffset;
};
// ======================> chd_chdfile_compressor
class chd_chdfile_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_chdfile_compressor(chd_file &file, uint64_t offset = 0, uint64_t maxoffset = ~0)
: m_toc(nullptr),
m_file(file),
m_offset(offset),
m_maxoffset(std::min(maxoffset, file.logical_bytes())) { }
// read interface
virtual uint32_t read_data(void *dest, uint64_t offset, uint32_t length)
{
offset += m_offset;
if (offset >= m_maxoffset)
return 0;
if (offset + length > m_maxoffset)
length = m_maxoffset - offset;
chd_error err = m_file.read_bytes(offset, dest, length);
if (err != CHDERR_NONE)
throw err;
// if we have TOC - detect audio sectors and swap data
if (m_toc)
{
assert(offset % CD_FRAME_SIZE == 0);
assert(length % CD_FRAME_SIZE == 0);
int startlba = offset / CD_FRAME_SIZE;
int lenlba = length / CD_FRAME_SIZE;
uint8_t *_dest = reinterpret_cast<uint8_t *>(dest);
for (int chdlba = 0; chdlba < lenlba; chdlba++)
{
// find current frame's track number
int tracknum = m_toc->numtrks;
for (int track = 0; track < m_toc->numtrks; track++)
if ((chdlba + startlba) < m_toc->tracks[track + 1].chdframeofs)
{
tracknum = track;
break;
}
// is it audio ?
if (m_toc->tracks[tracknum].trktype != CD_TRACK_AUDIO)
continue;
// byteswap if yes
int dataoffset = chdlba * CD_FRAME_SIZE;
for (uint32_t swapindex = dataoffset; swapindex < (dataoffset + CD_MAX_SECTOR_DATA); swapindex += 2)
{
uint8_t temp = _dest[swapindex];
_dest[swapindex] = _dest[swapindex + 1];
_dest[swapindex + 1] = temp;
}
}
}
return length;
}
const cdrom_toc * m_toc;
private:
// internal state
chd_file & m_file;
uint64_t m_offset;
uint64_t m_maxoffset;
};
// ======================> chd_cd_compressor
class chd_cd_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_cd_compressor(cdrom_toc &toc, chdcd_track_input_info &info)
: m_file(),
m_toc(toc),
m_info(info) { }
~chd_cd_compressor()
{
}
// read interface
virtual uint32_t read_data(void *_dest, uint64_t offset, uint32_t length)
{
// verify assumptions made below
assert(offset % CD_FRAME_SIZE == 0);
assert(length % CD_FRAME_SIZE == 0);
// initialize destination to 0 so that unused areas are filled
uint8_t *dest = reinterpret_cast<uint8_t *>(_dest);
memset(dest, 0, length);
// find out which track we're starting in
uint64_t startoffs = 0;
uint32_t length_remaining = length;
for (int tracknum = 0; tracknum < m_toc.numtrks; tracknum++)
{
const cdrom_track_info &trackinfo = m_toc.tracks[tracknum];
uint64_t endoffs = startoffs + (uint64_t)(trackinfo.frames + trackinfo.extraframes) * CD_FRAME_SIZE;
if (offset >= startoffs && offset < endoffs)
{
// if we don't already have this file open, open it now
if (!m_file || m_lastfile.compare(m_info.track[tracknum].fname)!=0)
{
m_file.reset();
m_lastfile = m_info.track[tracknum].fname;
osd_file::error filerr = util::core_file::open(m_lastfile, OPEN_FLAG_READ, m_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Error opening input file (%s)'", m_lastfile.c_str());
}
// iterate over frames
uint64_t bytesperframe = trackinfo.datasize + trackinfo.subsize;
uint64_t src_track_start = m_info.track[tracknum].offset;
uint64_t src_track_end = src_track_start + bytesperframe * (uint64_t)trackinfo.frames;
uint64_t pad_track_start = src_track_end - ((uint64_t)m_toc.tracks[tracknum].padframes * bytesperframe);
while (length_remaining != 0 && offset < endoffs)
{
// determine start of current frame
uint64_t src_frame_start = src_track_start + ((offset - startoffs) / CD_FRAME_SIZE) * bytesperframe;
if (src_frame_start < src_track_end)
{
// read it in, or pad if we're into the padframes
if (src_frame_start >= pad_track_start)
{
memset(dest, 0, bytesperframe);
}
else
{
m_file->seek(src_frame_start, SEEK_SET);
uint32_t count = m_file->read(dest, bytesperframe);
if (count != bytesperframe)
report_error(1, "Error reading input file (%s)'", m_lastfile.c_str());
}
// swap if appropriate
if (m_info.track[tracknum].swap)
for (uint32_t swapindex = 0; swapindex < 2352; swapindex += 2)
{
uint8_t temp = dest[swapindex];
dest[swapindex] = dest[swapindex + 1];
dest[swapindex + 1] = temp;
}
}
// advance
offset += CD_FRAME_SIZE;
dest += CD_FRAME_SIZE;
length_remaining -= CD_FRAME_SIZE;
if (length_remaining == 0)
break;
}
}
// next track starts after the previous one
startoffs = endoffs;
}
return length - length_remaining;
}
private:
// internal state
std::string m_lastfile;
util::core_file::ptr m_file;
cdrom_toc & m_toc;
chdcd_track_input_info & m_info;
};
// ======================> chd_avi_compressor
class chd_avi_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_avi_compressor(avi_file &file, avi_info &info, uint32_t first_frame, uint32_t num_frames)
: m_file(file),
m_info(info),
m_bitmap(info.width, info.height * (info.interlaced ? 2 : 1)),
m_start_frame(first_frame),
m_frame_count(num_frames),
m_ldframedata(num_frames * VBI_PACKED_BYTES),
m_rawdata(info.bytes_per_frame) { }
// getters
const std::vector<uint8_t> &ldframedata() const { return m_ldframedata; }
// read interface
virtual uint32_t read_data(void *_dest, uint64_t offset, uint32_t length)
{
uint8_t *dest = reinterpret_cast<uint8_t *>(_dest);
uint8_t interlace_factor = m_info.interlaced ? 2 : 1;
uint32_t length_remaining = length;
// iterate over frames
int32_t start_frame = offset / m_info.bytes_per_frame;
int32_t end_frame = (offset + length - 1) / m_info.bytes_per_frame;
for (int32_t framenum = start_frame; framenum <= end_frame; framenum++)
if (framenum < m_frame_count)
{
// determine effective frame number and first/last samples
int32_t effframe = m_start_frame + framenum;
uint32_t first_sample = (uint64_t(m_info.rate) * uint64_t(effframe) * uint64_t(1000000) + m_info.fps_times_1million - 1) / uint64_t(m_info.fps_times_1million);
uint32_t samples = (uint64_t(m_info.rate) * uint64_t(effframe + 1) * uint64_t(1000000) + m_info.fps_times_1million - 1) / uint64_t(m_info.fps_times_1million) - first_sample;
// loop over channels and read the samples
int channels = unsigned((std::min<std::size_t>)(m_info.channels, ARRAY_LENGTH(m_audio)));
EQUIVALENT_ARRAY(m_audio, int16_t *) samplesptr;
for (int chnum = 0; chnum < channels; chnum++)
{
// read the sound samples
m_audio[chnum].resize(samples);
samplesptr[chnum] = &m_audio[chnum][0];
avi_file::error avierr = m_file.read_sound_samples(chnum, first_sample, samples, &m_audio[chnum][0]);
if (avierr != avi_file::error::NONE)
report_error(1, "Error reading audio samples %d-%d from channel %d: %s", first_sample, samples, chnum, avi_file::error_string(avierr));
}
// read the video data
avi_file::error avierr = m_file.read_video_frame(effframe / interlace_factor, m_bitmap);
if (avierr != avi_file::error::NONE)
report_error(1, "Error reading AVI frame %d: %s", effframe / interlace_factor, avi_file::error_string(avierr));
bitmap_yuy16 subbitmap(&m_bitmap.pix(effframe % interlace_factor), m_bitmap.width(), m_bitmap.height() / interlace_factor, m_bitmap.rowpixels() * interlace_factor);
// update metadata for this frame
if (m_info.height == 524/2 || m_info.height == 624/2)
{
vbi_metadata vbi;
vbi_parse_all(&subbitmap.pix16(0), subbitmap.rowpixels(), subbitmap.width(), 8, &vbi);
vbi_metadata_pack(&m_ldframedata[framenum * VBI_PACKED_BYTES], framenum, &vbi);
}
// assemble the data into final form
avhuff_error averr = avhuff_encoder::assemble_data(m_rawdata, subbitmap, channels, samples, samplesptr);
if (averr != AVHERR_NONE)
report_error(1, "Error assembling data for frame %d", framenum);
if (m_rawdata.size() < m_info.bytes_per_frame)
{
int old_size = m_rawdata.size();
m_rawdata.resize(m_info.bytes_per_frame);
memset(&m_rawdata[old_size], 0, m_info.bytes_per_frame - old_size);
}
// copy to the destination
uint64_t start_offset = uint64_t(framenum) * uint64_t(m_info.bytes_per_frame);
uint64_t end_offset = start_offset + m_info.bytes_per_frame;
uint32_t bytes_to_copy = (std::min<uint64_t>)(length_remaining, end_offset - offset);
memcpy(dest, &m_rawdata[offset - start_offset], bytes_to_copy);
// advance
offset += bytes_to_copy;
dest += bytes_to_copy;
length_remaining -= bytes_to_copy;
}
return length;
}
private:
// internal state
avi_file & m_file;
avi_info & m_info;
bitmap_yuy16 m_bitmap;
uint32_t m_start_frame;
uint32_t m_frame_count;
std::vector<int16_t> m_audio[8];
std::vector<uint8_t> m_ldframedata;
std::vector<uint8_t> m_rawdata;
};
//**************************************************************************
// GLOBAL VARIABLES
//**************************************************************************
// timing
static clock_t lastprogress = 0;
// default compressors
static const chd_codec_type s_default_raw_compression[4] = { CHD_CODEC_LZMA, CHD_CODEC_ZLIB, CHD_CODEC_HUFFMAN, CHD_CODEC_FLAC };
static const chd_codec_type s_default_hd_compression[4] = { CHD_CODEC_LZMA, CHD_CODEC_ZLIB, CHD_CODEC_HUFFMAN, CHD_CODEC_FLAC };
static const chd_codec_type s_default_cd_compression[4] = { CHD_CODEC_CD_LZMA, CHD_CODEC_CD_ZLIB, CHD_CODEC_CD_FLAC };
static const chd_codec_type s_default_ld_compression[4] = { CHD_CODEC_AVHUFF };
// descriptions for each option
static const option_description s_options[] =
{
{ OPTION_INPUT, "i", true, " <filename>: input file name" },
{ OPTION_INPUT_PARENT, "ip", true, " <filename>: parent file name for input CHD" },
{ OPTION_OUTPUT, "o", true, " <filename>: output file name" },
{ OPTION_OUTPUT_BIN, "ob", true, " <filename>: output file name for binary data" },
{ OPTION_OUTPUT_FORCE, "f", false, ": force overwriting an existing file" },
{ OPTION_OUTPUT_PARENT, "op", true, " <filename>: parent file name for output CHD" },
{ OPTION_INPUT_START_BYTE, "isb", true, " <offset>: starting byte offset within the input" },
{ OPTION_INPUT_START_HUNK, "ish", true, " <offset>: starting hunk offset within the input" },
{ OPTION_INPUT_START_FRAME, "isf", true, " <offset>: starting frame within the input" },
{ OPTION_INPUT_LENGTH_BYTES, "ib", true, " <length>: effective length of input in bytes" },
{ OPTION_INPUT_LENGTH_HUNKS, "ih", true, " <length>: effective length of input in hunks" },
{ OPTION_INPUT_LENGTH_FRAMES, "if", true, " <length>: effective length of input in frames" },
{ OPTION_HUNK_SIZE, "hs", true, " <bytes>: size of each hunk, in bytes" },
{ OPTION_UNIT_SIZE, "us", true, " <bytes>: size of each unit, in bytes" },
{ OPTION_COMPRESSION, "c", true, " <none|type1[,type2[,...]]>: which compression codecs to use (up to 4)" },
{ OPTION_IDENT, "id", true, " <filename>: name of ident file to provide CHS information" },
{ OPTION_CHS, "chs", true, " <cylinders,heads,sectors>: specifies CHS values directly" },
{ OPTION_SECTOR_SIZE, "ss", true, " <bytes>: size of each hard disk sector" },
{ OPTION_TAG, "t", true, " <tag>: 4-character tag for metadata" },
{ OPTION_INDEX, "ix", true, " <index>: indexed instance of this metadata tag" },
{ OPTION_VALUE_TEXT, "vt", true, " <text>: text for the metadata" },
{ OPTION_VALUE_FILE, "vf", true, " <file>: file containing data to add" },
{ OPTION_NUMPROCESSORS, "np", true, " <processors>: limit the number of processors to use during compression" },
{ OPTION_NO_CHECKSUM, "nocs", false, ": do not include this metadata information in the overall SHA-1" },
{ OPTION_FIX, "f", false, ": fix the SHA-1 if it is incorrect" },
{ OPTION_VERBOSE, "v", false, ": output additional information" },
{ OPTION_SIZE, "s", true, ": <bytes>: size of the output file" },
{ OPTION_TEMPLATE, "tp", true, ": <id>: use hard disk template (see listtemplates)" },
};
// descriptions for each command
static const command_description s_commands[] =
{
{ COMMAND_INFO, do_info, ": displays information about a CHD",
{
REQUIRED OPTION_INPUT,
OPTION_VERBOSE
}
},
{ COMMAND_VERIFY, do_verify, ": verifies a CHD's integrity",
{
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT
}
},
{ COMMAND_CREATE_RAW, do_create_raw, ": create a raw CHD from the input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS,
REQUIRED OPTION_HUNK_SIZE,
REQUIRED OPTION_UNIT_SIZE,
OPTION_COMPRESSION,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_CREATE_HD, do_create_hd, ": create a hard disk CHD from the input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
OPTION_INPUT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS,
OPTION_HUNK_SIZE,
OPTION_COMPRESSION,
OPTION_TEMPLATE,
OPTION_IDENT,
OPTION_CHS,
OPTION_SIZE,
OPTION_SECTOR_SIZE,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_CREATE_CD, do_create_cd, ": create a CD CHD from the input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_HUNK_SIZE,
OPTION_COMPRESSION,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_CREATE_LD, do_create_ld, ": create a laserdisc CHD from the input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_START_FRAME,
OPTION_INPUT_LENGTH_FRAMES,
OPTION_HUNK_SIZE,
OPTION_COMPRESSION,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_EXTRACT_RAW, do_extract_raw, ": extract raw file from a CHD input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS
}
},
{ COMMAND_EXTRACT_HD, do_extract_raw, ": extract raw hard disk file from a CHD input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS
}
},
{ COMMAND_EXTRACT_CD, do_extract_cd, ": extract CD file from a CHD input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_BIN,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
}
},
{ COMMAND_EXTRACT_LD, do_extract_ld, ": extract laserdisc AVI from a CHD input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
OPTION_INPUT_START_FRAME,
OPTION_INPUT_LENGTH_FRAMES
}
},
{ COMMAND_COPY, do_copy, ": copy data from one CHD to another of the same type",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS,
OPTION_HUNK_SIZE,
OPTION_COMPRESSION,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_ADD_METADATA, do_add_metadata, ": add metadata to the CHD",
{
REQUIRED OPTION_INPUT,
REQUIRED OPTION_TAG,
OPTION_INDEX,
OPTION_VALUE_TEXT,
OPTION_VALUE_FILE,
OPTION_NO_CHECKSUM
}
},
{ COMMAND_DEL_METADATA, do_del_metadata, ": remove metadata from the CHD",
{
REQUIRED OPTION_INPUT,
REQUIRED OPTION_TAG,
OPTION_INDEX
}
},
{ COMMAND_DUMP_METADATA, do_dump_metadata, ": dump metadata from the CHD to stdout or to a file",
{
REQUIRED OPTION_INPUT,
OPTION_OUTPUT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_TAG,
OPTION_INDEX
}
},
{ COMMAND_LIST_TEMPLATES, do_list_templates, ": list hard disk templates",
{
}
},
};
// hard disk templates
static const hd_template s_hd_templates[] =
{
{ "Conner", "CFA170A", 332, 16, 63, 512 }, // 163 MB
{ "Rodime", "R0201", 321, 2, 16, 512 }, // 5 MB
{ "Rodime", "R0202", 321, 4, 16, 512 }, // 10 MB
{ "Rodime", "R0203", 321, 6, 16, 512 }, // 15 MB
{ "Rodime", "R0204", 321, 8, 16, 512 }, // 20 MB
};
//**************************************************************************
// IMPLEMENTATION
//**************************************************************************
//-------------------------------------------------
// report_error - report an error
//-------------------------------------------------
template <typename Format, typename... Params> static void report_error(int error, Format &&fmt, Params &&...args)
{
// output to stderr
util::stream_format(std::cerr, std::forward<Format>(fmt), std::forward<Params>(args)...);
std::cerr << std::endl;
// reset time for progress and return the error
lastprogress = 0;
throw fatal_error(error);
}
//-------------------------------------------------
// progress - generic progress callback
//-------------------------------------------------
template <typename Format, typename... Params> static void progress(bool forceit, Format &&fmt, Params &&...args)
{
// skip if it hasn't been long enough
clock_t curtime = clock();
if (!forceit && lastprogress != 0 && curtime - lastprogress < CLOCKS_PER_SEC / 2)
return;
lastprogress = curtime;
// standard vfprintf stuff here
util::stream_format(std::cerr, std::forward<Format>(fmt), std::forward<Params>(args)...);
std::cerr << std::flush;
}
//-------------------------------------------------
// print_help - print help for all the commands
//-------------------------------------------------
static int print_help(const char *argv0, const char *error = nullptr)
{
// print the error message first
if (error != nullptr)
fprintf(stderr, "Error: %s\n\n", error);
// print a summary of each command
printf("Usage:\n");
for (auto & desc : s_commands)
{
printf(" %s %s%s\n", argv0, desc.name, desc.description);
}
printf("\nFor help with any command, run:\n");
printf(" %s %s <command>\n", argv0, COMMAND_HELP);
return 1;
}
//-------------------------------------------------
// print_help - print help for all a specific
// command
//-------------------------------------------------
static int print_help(const char *argv0, const command_description &desc, const char *error = nullptr)
{
// print the error message first
if (error != nullptr)
fprintf(stderr, "Error: %s\n\n", error);
// print usage for this command
printf("Usage:\n");
printf(" %s %s [options], where valid options are:\n", argv0, desc.name);
for (int valid = 0; valid < ARRAY_LENGTH(desc.valid_options); valid++)
{
// determine whether we are required
const char *option = desc.valid_options[valid];
if (option == nullptr)
break;
bool required = (option[0] == REQUIRED[0]);
if (required)
option++;
// find the option
for (auto & s_option : s_options)
if (strcmp(option, s_option.name) == 0)
{
const option_description &odesc = s_option;
printf(" --%s", odesc.name);
if (odesc.shortname != nullptr)
printf(", -%s", odesc.shortname);
printf("%s%s\n", odesc.description, required ? " (required)" : "");
}
}
return 1;
}
//-------------------------------------------------
// big_int_string - create a 64-bit string
//-------------------------------------------------
std::string big_int_string(uint64_t intvalue)
{
// 0 is a special case
if (intvalue == 0)
return "0";
// loop until all chunks are done
std::string str;
bool first = true;
while (intvalue != 0)
{
int chunk = intvalue % 1000;
intvalue /= 1000;
std::string insert = string_format((intvalue != 0) ? "%03d" : "%d", chunk);
if (!first)
str.insert(0, ",");
first = false;
str.insert(0, insert);
}
return str;
}
//-------------------------------------------------
// msf_string_from_frames - output the given
// number of frames in M:S:F format
//-------------------------------------------------
std::string msf_string_from_frames(uint32_t frames)
{
return string_format("%02d:%02d:%02d", frames / (75 * 60), (frames / 75) % 60, frames % 75);
}
//-------------------------------------------------
// parse_number - parse a number string with an
// optional k/m/g suffix
//-------------------------------------------------
uint64_t parse_number(const char *string)
{
// 0-length string is 0
int length = strlen(string);
if (length == 0)
return 0;
// scan forward over digits
uint64_t result = 0;
while (isdigit(*string))
{
result = (result * 10) + (*string - '0');
string++;
}
// handle multipliers
if (*string == 'k' || *string == 'K')
result *= 1024;
if (*string == 'm' || *string == 'M')
result *= 1024 * 1024;
if (*string == 'g' || *string == 'G')
result *= 1024 * 1024 * 1024;
return result;
}
//-------------------------------------------------
// guess_chs - given a file and an offset,
// compute a best guess CHS value set
//-------------------------------------------------
static void guess_chs(std::string *filename, uint64_t filesize, int sectorsize, uint32_t &cylinders, uint32_t &heads, uint32_t &sectors, uint32_t &bps)
{
// if this is a direct physical drive read, handle it specially
if (filename != nullptr && osd_get_physical_drive_geometry(filename->c_str(), &cylinders, &heads, &sectors, &bps))
return;
// if we have no length to work with, we can't guess
if (filesize == 0)
report_error(1, "Can't guess CHS values because there is no input file");
// now find a valid value
for (uint32_t totalsectors = filesize / sectorsize; ; totalsectors++)
for (uint32_t cursectors = 63; cursectors > 1; cursectors--)
if (totalsectors % cursectors == 0)
{
uint32_t totalheads = totalsectors / cursectors;
for (uint32_t curheads = 16; curheads > 1; curheads--)
if (totalheads % curheads == 0)
{
cylinders = totalheads / curheads;
heads = curheads;
sectors = cursectors;
return;
}
}
}
//-------------------------------------------------
// parse_input_chd_parameters - parse the
// standard set of input CHD parameters
//-------------------------------------------------
static void parse_input_chd_parameters(const parameters_t &params, chd_file &input_chd, chd_file &input_parent_chd, bool writeable = false)
{
// process input parent file
auto input_chd_parent_str = params.find(OPTION_INPUT_PARENT);
if (input_chd_parent_str != params.end())
{
chd_error err = input_parent_chd.open(input_chd_parent_str->second->c_str());
if (err != CHDERR_NONE)
report_error(1, "Error opening parent CHD file (%s): %s", input_chd_parent_str->second->c_str(), chd_file::error_string(err));
}
// process input file
auto input_chd_str = params.find(OPTION_INPUT);
if (input_chd_str != params.end())
{
chd_error err = input_chd.open(input_chd_str->second->c_str(), writeable, input_parent_chd.opened() ? &input_parent_chd : nullptr);
if (err != CHDERR_NONE)
report_error(1, "Error opening CHD file (%s): %s", input_chd_str->second->c_str(), chd_file::error_string(err));
}
}
//-------------------------------------------------
// parse_input_start_end - parse input start/end
// parameters in a standard way
//-------------------------------------------------
static void parse_input_start_end(const parameters_t &params, uint64_t logical_size, uint32_t hunkbytes, uint32_t framebytes, uint64_t &input_start, uint64_t &input_end)
{
// process start/end if we were provided an input CHD
input_start = 0;
input_end = logical_size;
// process input start
auto input_start_byte_str = params.find(OPTION_INPUT_START_BYTE);
auto input_start_hunk_str = params.find(OPTION_INPUT_START_HUNK);
auto input_start_frame_str = params.find(OPTION_INPUT_START_FRAME);
if (input_start_byte_str != params.end())
input_start = parse_number(input_start_byte_str->second->c_str());
if (input_start_hunk_str != params.end())
input_start = parse_number(input_start_hunk_str->second->c_str()) * hunkbytes;
if (input_start_frame_str != params.end())
input_start = parse_number(input_start_frame_str->second->c_str()) * framebytes;
if (input_start >= input_end)
report_error(1, "Input start offset greater than input file size");
// process input length
auto input_length_bytes_str = params.find(OPTION_INPUT_LENGTH_BYTES);
auto input_length_hunks_str = params.find(OPTION_INPUT_LENGTH_HUNKS);
auto input_length_frames_str = params.find(OPTION_INPUT_LENGTH_FRAMES);
uint64_t input_length = input_end;
if (input_length_bytes_str != params.end())
input_length = parse_number(input_length_bytes_str->second->c_str());
if (input_length_hunks_str != params.end())
input_length = parse_number(input_length_hunks_str->second->c_str()) * hunkbytes;
if (input_length_frames_str != params.end())
input_length = parse_number(input_length_frames_str->second->c_str()) * framebytes;
if (input_start + input_length < input_end)
input_end = input_start + input_length;
}
//-------------------------------------------------
// check_existing_output_file - see if an output
// file already exists, and error if it does,
// unless --force is specified
//-------------------------------------------------
static void check_existing_output_file(const parameters_t &params, const char *filename)
{
if (params.find(OPTION_OUTPUT_FORCE) == params.end())
{
util::core_file::ptr file;
osd_file::error filerr = util::core_file::open(filename, OPEN_FLAG_READ, file);
if (filerr == osd_file::error::NONE)
{
file.reset();
report_error(1, "Error: file already exists (%s)\nUse --force (or -f) to force overwriting", filename);
}
}
}
//-------------------------------------------------
// parse_output_chd_parameters - parse the
// standard set of output CHD parameters
//-------------------------------------------------
static std::string *parse_output_chd_parameters(const parameters_t &params, chd_file &output_parent_chd)
{
// process output parent file
auto output_chd_parent_str = params.find(OPTION_OUTPUT_PARENT);
if (output_chd_parent_str != params.end())
{
chd_error err = output_parent_chd.open(output_chd_parent_str->second->c_str());
if (err != CHDERR_NONE)
report_error(1, "Error opening parent CHD file (%s): %s", output_chd_parent_str->second->c_str(), chd_file::error_string(err));
}
// process output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
check_existing_output_file(params, output_chd_str->second->c_str());
return (output_chd_str != params.end()) ? output_chd_str->second : nullptr;
}
//-------------------------------------------------
// parse_hunk_size - parse the hunk_size
// parameter in a standard way
//-------------------------------------------------
static void parse_hunk_size(const parameters_t &params, uint32_t required_granularity, uint32_t &hunk_size)
{
auto hunk_size_str = params.find(OPTION_HUNK_SIZE);
if (hunk_size_str != params.end())
{
hunk_size = parse_number(hunk_size_str->second->c_str());
if (hunk_size < 16 || hunk_size > 1024 * 1024)
report_error(1, "Invalid hunk size");
if (hunk_size % required_granularity != 0)
report_error(1, "Hunk size is not an even multiple of %d", required_granularity);
}
}
//-------------------------------------------------
// parse_compression - parse a standard
// compression parameter string
//-------------------------------------------------
static void parse_compression(const parameters_t &params, chd_codec_type compression[4])
{
// see if anything was specified
auto compression_str = params.find(OPTION_COMPRESSION);
if (compression_str == params.end())
return;
// special case: 'none'
if (compression_str->second->compare("none")==0)
{
compression[0] = compression[1] = compression[2] = compression[3] = CHD_CODEC_NONE;
return;
}
// iterate through compressors
int index = 0;
for (int start = 0, end = compression_str->second->find_first_of(','); index < 4; start = end + 1, end = compression_str->second->find_first_of(',', end + 1))
{
std::string name(*compression_str->second, start, (end == -1) ? -1 : end - start);
if (name.length() != 4)
report_error(1, "Invalid compressor '%s' specified", name.c_str());
chd_codec_type type = CHD_MAKE_TAG(name[0], name[1], name[2], name[3]);
if (!chd_codec_list::codec_exists(type))
report_error(1, "Invalid compressor '%s' specified", name.c_str());
compression[index++] = type;
if (end == -1)
break;
}
for(;index < 4; ++index)
{
compression[index] = CHD_CODEC_NONE;
}
}
//-------------------------------------------------
// parse_numprocessors - handle the numprocessors
// command
//-------------------------------------------------
static void parse_numprocessors(const parameters_t &params)
{
auto numprocessors_str = params.find(OPTION_NUMPROCESSORS);
if (numprocessors_str == params.end())
return;
int count = atoi(numprocessors_str->second->c_str());
if (count > 0)
{
extern int osd_num_processors;
osd_num_processors = count;
}
}
//-------------------------------------------------
// compression_string - create a friendly string
// describing a set of compressors
//-------------------------------------------------
static std::string compression_string(chd_codec_type compression[4])
{
// output compression types
if (compression[0] == CHD_CODEC_NONE)
return "none";
// iterate over types
std::string str;
for (int index = 0; index < 4; index++)
{
chd_codec_type type = compression[index];
if (type == CHD_CODEC_NONE)
break;
if (index != 0)
str.append(", ");
str.push_back((type >> 24) & 0xff);
str.push_back((type >> 16) & 0xff);
str.push_back((type >> 8) & 0xff);
str.push_back(type & 0xff);
str.append(" (").append(chd_codec_list::codec_name(type)).append(")");
}
return str;
}
//-------------------------------------------------
// compress_common - standard compression loop
//-------------------------------------------------
static void compress_common(chd_file_compressor &chd)
{
// begin compressing
chd.compress_begin();
// loop until done
double complete, ratio;
chd_error err;
while ((err = chd.compress_continue(complete, ratio)) == CHDERR_WALKING_PARENT || err == CHDERR_COMPRESSING)
if (err == CHDERR_WALKING_PARENT)
progress(false, "Examining parent, %.1f%% complete... \r", 100.0 * complete);
else
progress(false, "Compressing, %.1f%% complete... (ratio=%.1f%%) \r", 100.0 * complete, 100.0 * ratio);
// handle errors
if (err != CHDERR_NONE)
report_error(1, "Error during compression: %-40s", chd_file::error_string(err));
// final progress update
progress(true, "Compression complete ... final ratio = %.1f%% \n", 100.0 * ratio);
}
//-------------------------------------------------
// output_track_metadata - output track metadata
// to a CUE file
//-------------------------------------------------
void output_track_metadata(int mode, util::core_file &file, int tracknum, const cdrom_track_info &info, const char *filename, uint32_t frameoffs, uint64_t discoffs)
{
if (mode == MODE_GDI)
{
int mode = 0, size = 2048;
switch (info.trktype)
{
case CD_TRACK_MODE1:
mode = 4;
size = 2048;
break;
case CD_TRACK_MODE1_RAW:
mode = 4;
size = 2352;
break;
case CD_TRACK_MODE2:
mode = 4;
size = 2336;
break;
case CD_TRACK_MODE2_FORM1:
mode = 4;
size = 2048;
break;
case CD_TRACK_MODE2_FORM2:
mode = 4;
size = 2324;
break;
case CD_TRACK_MODE2_FORM_MIX:
mode = 4;
size = 2336;
break;
case CD_TRACK_MODE2_RAW:
mode = 4;
size = 2352;
break;
case CD_TRACK_AUDIO:
mode = 0;
size = 2352;
break;
}
bool needquote = strchr(filename, ' ') != nullptr;
file.printf("%d %d %d %d %s%s%s %d\n", tracknum+1, frameoffs, mode, size, needquote?"\"":"", filename, needquote?"\"":"", discoffs);
}
else if (mode == MODE_CUEBIN)
{
// first track specifies the file
if (tracknum == 0)
file.printf("FILE \"%s\" BINARY\n", filename);
// determine submode
std::string tempstr;
switch (info.trktype)
{
case CD_TRACK_MODE1:
case CD_TRACK_MODE1_RAW:
tempstr = string_format("MODE1/%04d", info.datasize);
break;
case CD_TRACK_MODE2:
case CD_TRACK_MODE2_FORM1:
case CD_TRACK_MODE2_FORM2:
case CD_TRACK_MODE2_FORM_MIX:
case CD_TRACK_MODE2_RAW:
tempstr = string_format("MODE2/%04d", info.datasize);
break;
case CD_TRACK_AUDIO:
tempstr.assign("AUDIO");
break;
}
// output TRACK entry
file.printf(" TRACK %02d %s\n", tracknum + 1, tempstr);
// output PREGAP tag if pregap sectors are not in the file
if ((info.pregap > 0) && (info.pgdatasize == 0))
{
file.printf(" PREGAP %s\n", msf_string_from_frames(info.pregap));
file.printf(" INDEX 01 %s\n", msf_string_from_frames(frameoffs));
}
else if ((info.pregap > 0) && (info.pgdatasize > 0))
{
file.printf(" INDEX 00 %s\n", msf_string_from_frames(frameoffs));
file.printf(" INDEX 01 %s\n", msf_string_from_frames(frameoffs+info.pregap));
}
// if no pregap at all, output index 01 only
if (info.pregap == 0)
{
file.printf(" INDEX 01 %s\n", msf_string_from_frames(frameoffs));
}
// output POSTGAP
if (info.postgap > 0)
file.printf(" POSTGAP %s\n", msf_string_from_frames(info.postgap));
}
// non-CUE mode
else if (mode == MODE_NORMAL)
{
// header on the first track
if (tracknum == 0)
file.printf("CD_ROM\n\n\n");
file.printf("// Track %d\n", tracknum + 1);
// write out the track type
std::string modesubmode;
if (info.subtype != CD_SUB_NONE)
modesubmode = string_format("%s %s", cdrom_get_type_string(info.trktype), cdrom_get_subtype_string(info.subtype));
else
modesubmode = string_format("%s", cdrom_get_type_string(info.trktype));
file.printf("TRACK %s\n", modesubmode);
// write out the attributes
file.printf("NO COPY\n");
if (info.trktype == CD_TRACK_AUDIO)
{
file.printf("NO PRE_EMPHASIS\n");
file.printf("TWO_CHANNEL_AUDIO\n");
}
// output pregap
if (info.pregap > 0)
file.printf("ZERO %s %s\n", modesubmode, msf_string_from_frames(info.pregap));
// all tracks but the first one have a file offset
if (tracknum > 0)
file.printf("DATAFILE \"%s\" #%d %s // length in bytes: %d\n", filename, uint32_t(discoffs), msf_string_from_frames(info.frames), info.frames * (info.datasize + info.subsize));
else
file.printf("DATAFILE \"%s\" %s // length in bytes: %d\n", filename, msf_string_from_frames(info.frames), info.frames * (info.datasize + info.subsize));
// tracks with pregaps get a START marker too
if (info.pregap > 0)
file.printf("START %s\n", msf_string_from_frames(info.pregap));
file.printf("\n\n");
}
}
//-------------------------------------------------
// do_info - dump the header information from
// a drive image
//-------------------------------------------------
static void do_info(parameters_t &params)
{
bool verbose = params.find(OPTION_VERBOSE) != params.end();
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// print filename and version
printf("Input file: %s\n", params.find(OPTION_INPUT)->second->c_str());
printf("File Version: %d\n", input_chd.version());
if (input_chd.version() < 3)
report_error(1, "Unsupported version (%d); use an older chdman to upgrade to version 3 or later", input_chd.version());
// output cmpression and size information
chd_codec_type compression[4] = { input_chd.compression(0), input_chd.compression(1), input_chd.compression(2), input_chd.compression(3) };
printf("Logical size: %s bytes\n", big_int_string(input_chd.logical_bytes()).c_str());
printf("Hunk Size: %s bytes\n", big_int_string(input_chd.hunk_bytes()).c_str());
printf("Total Hunks: %s\n", big_int_string(input_chd.hunk_count()).c_str());
printf("Unit Size: %s bytes\n", big_int_string(input_chd.unit_bytes()).c_str());
printf("Total Units: %s\n", big_int_string(input_chd.unit_count()).c_str());
printf("Compression: %s\n", compression_string(compression).c_str());
printf("CHD size: %s bytes\n", big_int_string(static_cast<util::core_file &>(input_chd).size()).c_str());
if (compression[0] != CHD_CODEC_NONE)
printf("Ratio: %.1f%%\n", 100.0 * double(static_cast<util::core_file &>(input_chd).size()) / double(input_chd.logical_bytes()));
// add SHA1 output
util::sha1_t overall = input_chd.sha1();
if (overall != util::sha1_t::null)
{
printf("SHA1: %s\n", overall.as_string().c_str());
if (input_chd.version() >= 4)
printf("Data SHA1: %s\n", input_chd.raw_sha1().as_string().c_str());
}
util::sha1_t parent = input_chd.parent_sha1();
if (parent != util::sha1_t::null)
printf("Parent SHA1: %s\n", parent.as_string().c_str());
// print out metadata
std::vector<uint8_t> buffer;
std::vector<metadata_index_info> info;
for (int index = 0; ; index++)
{
// get the indexed metadata item; stop when we hit an error
chd_metadata_tag metatag;
uint8_t metaflags;
chd_error err = input_chd.read_metadata(CHDMETATAG_WILDCARD, index, buffer, metatag, metaflags);
if (err != CHDERR_NONE)
break;
// determine our index
uint32_t metaindex = ~0;
for (auto & elem : info)
if (elem.tag == metatag)
{
metaindex = ++elem.index;
break;
}
// if not found, add to our tracking
if (metaindex == ~0)
{
metadata_index_info curinfo = { metatag, 0 };
info.push_back(curinfo);
metaindex = 0;
}
// print either a string representation or a hex representation of the tag
if (isprint((metatag >> 24) & 0xff) && isprint((metatag >> 16) & 0xff) && isprint((metatag >> 8) & 0xff) && isprint(metatag & 0xff))
printf("Metadata: Tag='%c%c%c%c' Index=%d Length=%d bytes\n", (metatag >> 24) & 0xff, (metatag >> 16) & 0xff, (metatag >> 8) & 0xff, metatag & 0xff, metaindex, int(buffer.size()));
else
printf("Metadata: Tag=%08x Index=%d Length=%d bytes\n", metatag, metaindex, int(buffer.size()));
printf(" ");
uint32_t count = buffer.size();
// limit output to 60 characters of metadata if not verbose
if (!verbose)
count = std::min(60U, count);
for (int chnum = 0; chnum < count; chnum++)
printf("%c", isprint(uint8_t(buffer[chnum])) ? buffer[chnum] : '.');
printf("\n");
}
// print compression stats if verbose
if (verbose)
{
uint32_t compression_types[10] = { 0 };
for (uint32_t hunknum = 0; hunknum < input_chd.hunk_count(); hunknum++)
{
// get info on this hunk
chd_codec_type codec;
uint32_t compbytes;
chd_error err = input_chd.hunk_info(hunknum, codec, compbytes);
if (err != CHDERR_NONE)
report_error(1, "Error getting info on hunk %d: %s", hunknum, chd_file::error_string(err));
// decode into our data
if (codec > CHD_CODEC_MINI)
for (int comptype = 0; comptype < 4; comptype++)
if (codec == input_chd.compression(comptype))
{
codec = CHD_CODEC_MINI + 1 + comptype;
break;
}
if (codec > ARRAY_LENGTH(compression_types))
codec = ARRAY_LENGTH(compression_types) - 1;
// count stats
compression_types[codec]++;
}
// output the stats
printf("\n");
printf(" Hunks Percent Name\n");
printf("---------- ------- ------------------------------------\n");
for (int comptype = 0; comptype < ARRAY_LENGTH(compression_types); comptype++)
if (compression_types[comptype] != 0)
{
// determine the name
const char *name = "Unknown";
switch (comptype)
{
case CHD_CODEC_NONE: name = "Uncompressed"; break;
case CHD_CODEC_SELF: name = "Copy from self"; break;
case CHD_CODEC_PARENT: name = "Copy from parent"; break;
case CHD_CODEC_MINI: name = "Legacy 8-byte mini"; break;
default:
int index = comptype - 1 - CHD_CODEC_MINI;
if (index < 4)
name = chd_codec_list::codec_name(input_chd.compression(index));
break;
}
// output the stats
printf("%10s %5.1f%% %-40s\n",
big_int_string(compression_types[comptype]).c_str(),
100.0 * double(compression_types[comptype]) / double(input_chd.hunk_count()),
name);
}
}
}
//-------------------------------------------------
// do_verify - validate the SHA1 on a CHD
//-------------------------------------------------
static void do_verify(parameters_t &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// only makes sense for compressed CHDs with valid SHA1's
if (!input_chd.compressed())
report_error(0, "No verification to be done; CHD is uncompressed");
util::sha1_t raw_sha1 = (input_chd.version() <= 3) ? input_chd.sha1() : input_chd.raw_sha1();
if (raw_sha1 == util::sha1_t::null)
report_error(0, "No verification to be done; CHD has no checksum");
// create an array to read into
std::vector<uint8_t> buffer((TEMP_BUFFER_SIZE / input_chd.hunk_bytes()) * input_chd.hunk_bytes());
// read all the data and build up an SHA-1
util::sha1_creator rawsha1;
for (uint64_t offset = 0; offset < input_chd.logical_bytes(); )
{
progress(false, "Verifying, %.1f%% complete... \r", 100.0 * double(offset) / double(input_chd.logical_bytes()));
// determine how much to read
uint32_t bytes_to_read = (std::min<uint64_t>)(buffer.size(), input_chd.logical_bytes() - offset);
chd_error err = input_chd.read_bytes(offset, &buffer[0], bytes_to_read);
if (err != CHDERR_NONE)
report_error(1, "Error reading CHD file (%s): %s", params.find(OPTION_INPUT)->second->c_str(), chd_file::error_string(err));
// add to the checksum
rawsha1.append(&buffer[0], bytes_to_read);
offset += bytes_to_read;
}
util::sha1_t computed_sha1 = rawsha1.finish();
// finish up
if (raw_sha1 != computed_sha1)
{
fprintf(stderr, "Error: Raw SHA1 in header = %s\n", raw_sha1.as_string().c_str());
fprintf(stderr, " actual SHA1 = %s\n", computed_sha1.as_string().c_str());
// fix it if requested; this also fixes the overall one so we don't need to do any more
if (params.find(OPTION_FIX) != params.end())
{
input_chd.set_raw_sha1(computed_sha1);
printf("SHA-1 updated to correct value in input CHD\n");
}
}
else
{
printf("Raw SHA1 verification successful!\n");
// now include the metadata for >= v4
if (input_chd.version() >= 4)
{
util::sha1_t computed_overall_sha1 = input_chd.compute_overall_sha1(computed_sha1);
if (input_chd.sha1() == computed_overall_sha1)
printf("Overall SHA1 verification successful!\n");
else
{
fprintf(stderr, "Error: Overall SHA1 in header = %s\n", input_chd.sha1().as_string().c_str());
fprintf(stderr, " actual SHA1 = %s\n", computed_overall_sha1.as_string().c_str());
// fix it if requested
if (params.find(OPTION_FIX) != params.end())
{
input_chd.set_raw_sha1(computed_sha1);
printf("SHA-1 updated to correct value in input CHD\n");
}
}
}
}
}
//-------------------------------------------------
// do_create_raw - create a new compressed raw
// image from a raw file
//-------------------------------------------------
static void do_create_raw(parameters_t &params)
{
// process input file
util::core_file::ptr input_file;
auto input_file_str = params.find(OPTION_INPUT);
if (input_file_str != params.end())
{
osd_file::error filerr = util::core_file::open(*input_file_str->second, OPEN_FLAG_READ, input_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", input_file_str->second->c_str());
}
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process hunk size
uint32_t hunk_size = output_parent.opened() ? output_parent.hunk_bytes() : 0;
parse_hunk_size(params, 1, hunk_size);
// process unit size
uint32_t unit_size = output_parent.opened() ? output_parent.unit_bytes() : 0;
auto unit_size_str = params.find(OPTION_UNIT_SIZE);
if (unit_size_str != params.end())
{
unit_size = parse_number(unit_size_str->second->c_str());
if (hunk_size % unit_size != 0)
report_error(1, "Unit size is not an even divisor of the hunk size");
}
// process input start/end (needs to know hunk_size)
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, input_file->size(), hunk_size, hunk_size, input_start, input_end);
// process compression
chd_codec_type compression[4];
memcpy(compression, s_default_raw_compression, sizeof(compression));
parse_compression(params, compression);
// process numprocessors
parse_numprocessors(params);
// print some info
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
printf("Input file: %s\n", input_file_str->second->c_str());
if (input_start != 0 || input_end != input_file->size())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(input_end - input_start).c_str());
}
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Hunk size: %s\n", big_int_string(hunk_size).c_str());
printf("Logical size: %s\n", big_int_string(input_end - input_start).c_str());
// catch errors so we can close & delete the output file
try
{
// create the new CHD
std::unique_ptr<chd_file_compressor> chd(new chd_rawfile_compressor(*input_file, input_start, input_end));
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), input_end - input_start, hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), input_end - input_start, hunk_size, unit_size, compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// if we have a parent, copy forward all the metadata
if (output_parent.opened())
chd->clone_all_metadata(output_parent);
// compress it generically
compress_common(*chd);
}
catch (...)
{
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_create_hd - create a new compressed hard
// disk image from a raw file
//-------------------------------------------------
static void do_create_hd(parameters_t &params)
{
// process input file
util::core_file::ptr input_file;
auto input_file_str = params.find(OPTION_INPUT);
if (input_file_str != params.end())
{
osd_file::error filerr = util::core_file::open(*input_file_str->second, OPEN_FLAG_READ, input_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", input_file_str->second->c_str());
}
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process sectorsize
uint32_t sector_size = output_parent.opened() ? output_parent.unit_bytes() : IDE_SECTOR_SIZE;
auto sectorsize_str = params.find(OPTION_SECTOR_SIZE);
if (sectorsize_str != params.end())
{
if (output_parent.opened())
report_error(1, "Sector size does not apply when creating a diff from the parent");
sector_size = parse_number(sectorsize_str->second->c_str());
}
// process hunk size (needs to know sector_size)
uint32_t hunk_size = output_parent.opened() ? output_parent.hunk_bytes() : std::max((4096 / sector_size) * sector_size, sector_size);
parse_hunk_size(params, sector_size, hunk_size);
// process input start/end (needs to know hunk_size)
uint64_t filesize = 0;
uint64_t input_start = 0;
uint64_t input_end = 0;
if (input_file)
{
parse_input_start_end(params, input_file->size(), hunk_size, hunk_size, input_start, input_end);
filesize = input_end - input_start;
}
else
{
auto size_str = params.find(OPTION_SIZE);
if (size_str != params.end())
{
if (sscanf(size_str->second->c_str(), "%" I64FMT"d", &filesize) != 1)
report_error(1, "Invalid size string");
}
}
// process compression
chd_codec_type compression[4];
memcpy(compression, s_default_hd_compression, sizeof(compression));
if (!input_file)
compression[0] = compression[1] = compression[2] = compression[3] = CHD_CODEC_NONE;
parse_compression(params, compression);
if (!input_file && compression[0] != CHD_CODEC_NONE)
report_error(1, "Blank hard disks must be uncompressed");
// process numprocessors
parse_numprocessors(params);
// process chs
uint32_t cylinders = 0;
uint32_t heads = 0;
uint32_t sectors = 0;
auto chs_str = params.find(OPTION_CHS);
if (chs_str != params.end())
{
if (output_parent.opened())
report_error(1, "CHS does not apply when creating a diff from the parent");
if (sscanf(chs_str->second->c_str(), "%d,%d,%d", &cylinders, &heads, &sectors) != 3)
report_error(1, "Invalid CHS string; must be of the form <cylinders>,<heads>,<sectors>");
}
// process ident
std::vector<uint8_t> identdata;
if (output_parent.opened())
output_parent.read_metadata(HARD_DISK_IDENT_METADATA_TAG, 0, identdata);
auto ident_str = params.find(OPTION_IDENT);
if (ident_str != params.end())
{
// load the file
osd_file::error filerr = util::core_file::load(ident_str->second->c_str(), identdata);
if (filerr != osd_file::error::NONE)
report_error(1, "Error reading ident file (%s)", ident_str->second->c_str());
// must be at least 14 bytes; extract CHS data from there
if (identdata.size() < 14)
report_error(1, "Ident file '%s' is invalid (too short)", ident_str->second->c_str());
cylinders = (identdata[3] << 8) | identdata[2];
heads = (identdata[7] << 8) | identdata[6];
sectors = (identdata[13] << 8) | identdata[12];
// ignore CHS for > 8GB drives
if (cylinders * heads * sectors >= 16514064)
cylinders = 0;
}
// process template
auto template_str = params.find(OPTION_TEMPLATE);
if (template_str != params.end())
{
uint32_t id = parse_number(template_str->second->c_str());
if (id >= ARRAY_LENGTH(s_hd_templates))
report_error(1, "Template '%d' is invalid\n", id);
cylinders = s_hd_templates[id].cylinders;
heads = s_hd_templates[id].heads;
sectors = s_hd_templates[id].sectors;
sector_size = s_hd_templates[id].sector_size;
printf("Template: %s %s\n", s_hd_templates[id].manufacturer, s_hd_templates[id].model);
}
// extract geometry from the parent if we have one
if (output_parent.opened() && cylinders == 0)
{
std::string metadata;
if (output_parent.read_metadata(HARD_DISK_METADATA_TAG, 0, metadata) != CHDERR_NONE)
report_error(1, "Unable to find hard disk metadata in parent CHD");
if (sscanf(metadata.c_str(), HARD_DISK_METADATA_FORMAT, &cylinders, &heads, &sectors, &sector_size) != 4)
report_error(1, "Error parsing hard disk metadata in parent CHD");
}
// validate the size
if (filesize % sector_size != 0)
report_error(1, "Data size is not divisible by sector size %d", sector_size);
// if no CHS values, try to guess them
if (cylinders == 0)
{
if (!input_file && filesize == 0)
report_error(1, "Blank hard drives must specify either a length or a set of CHS values");
guess_chs((input_file_str != params.end()) ? input_file_str->second : nullptr, filesize, sector_size, cylinders, heads, sectors, sector_size);
}
uint32_t totalsectors = cylinders * heads * sectors;
// print some info
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
if (input_file)
{
printf("Input file: %s\n", input_file_str->second->c_str());
if (input_start != 0 || input_end != input_file->size())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(filesize).c_str());
}
}
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Cylinders: %d\n", cylinders);
printf("Heads: %d\n", heads);
printf("Sectors: %d\n", sectors);
printf("Bytes/sector: %d\n", sector_size);
printf("Sectors/hunk: %d\n", hunk_size / sector_size);
printf("Logical size: %s\n", big_int_string(uint64_t(totalsectors) * uint64_t(sector_size)).c_str());
// catch errors so we can close & delete the output file
try
{
// create the new hard drive
std::unique_ptr<chd_file_compressor> chd;
if (input_file) chd.reset(new chd_rawfile_compressor(*input_file, input_start, input_end));
else chd.reset(new chd_zero_compressor(input_start, input_end));
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), uint64_t(totalsectors) * uint64_t(sector_size), hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), uint64_t(totalsectors) * uint64_t(sector_size), hunk_size, sector_size, compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// add the standard hard disk metadata
std::string metadata = string_format(HARD_DISK_METADATA_FORMAT, cylinders, heads, sectors, sector_size);
err = chd->write_metadata(HARD_DISK_METADATA_TAG, 0, metadata);
if (err != CHDERR_NONE)
report_error(1, "Error adding hard disk metadata: %s", chd_file::error_string(err));
// write the ident if present
if (!identdata.empty())
{
err = chd->write_metadata(HARD_DISK_IDENT_METADATA_TAG, 0, identdata);
if (err != CHDERR_NONE)
report_error(1, "Error adding hard disk metadata: %s", chd_file::error_string(err));
}
// compress it generically
if (input_file)
compress_common(*chd);
}
catch (...)
{
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_create_cd - create a new compressed CD
// image from a raw file
//-------------------------------------------------
static void do_create_cd(parameters_t &params)
{
// process input file
chdcd_track_input_info track_info;
cdrom_toc toc = { 0 };
auto input_file_str = params.find(OPTION_INPUT);
if (input_file_str != params.end())
{
chd_error err = chdcd_parse_toc(input_file_str->second->c_str(), toc, track_info);
if (err != CHDERR_NONE)
report_error(1, "Error parsing input file (%s: %s)\n", input_file_str->second->c_str(), chd_file::error_string(err));
}
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process hunk size
uint32_t hunk_size = output_parent.opened() ? output_parent.hunk_bytes() : CD_FRAMES_PER_HUNK * CD_FRAME_SIZE;
parse_hunk_size(params, CD_FRAME_SIZE, hunk_size);
// process compression
chd_codec_type compression[4];
memcpy(compression, s_default_cd_compression, sizeof(compression));
parse_compression(params, compression);
// process numprocessors
parse_numprocessors(params);
// pad each track to a 4-frame boundary. cdrom.c will deal with this on the read side
uint32_t origtotalsectors = 0;
uint32_t totalsectors = 0;
for (int tracknum = 0; tracknum < toc.numtrks; tracknum++)
{
cdrom_track_info &trackinfo = toc.tracks[tracknum];
int padded = (trackinfo.frames + CD_TRACK_PADDING - 1) / CD_TRACK_PADDING;
trackinfo.extraframes = padded * CD_TRACK_PADDING - trackinfo.frames;
origtotalsectors += trackinfo.frames;
totalsectors += trackinfo.frames + trackinfo.extraframes;
}
// print some info
std::string tempstr;
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
printf("Input file: %s\n", input_file_str->second->c_str());
printf("Input tracks: %d\n", toc.numtrks);
printf("Input length: %s\n", msf_string_from_frames(origtotalsectors).c_str());
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Logical size: %s\n", big_int_string(uint64_t(totalsectors) * CD_FRAME_SIZE).c_str());
// catch errors so we can close & delete the output file
chd_cd_compressor *chd = nullptr;
try
{
// create the new CD
chd = new chd_cd_compressor(toc, track_info);
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), uint64_t(totalsectors) * uint64_t(CD_FRAME_SIZE), hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), uint64_t(totalsectors) * uint64_t(CD_FRAME_SIZE), hunk_size, CD_FRAME_SIZE, compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// add the standard CD metadata; we do this even if we have a parent because it might be different
err = cdrom_write_metadata(chd, &toc);
if (err != CHDERR_NONE)
report_error(1, "Error adding CD metadata: %s", chd_file::error_string(err));
// compress it generically
compress_common(*chd);
delete chd;
}
catch (...)
{
delete chd;
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_create_ld - create a new A/V file from an
// input AVI file and metadata
//-------------------------------------------------
static void do_create_ld(parameters_t &params)
{
// process input file
avi_file::ptr input_file;
auto input_file_str = params.find(OPTION_INPUT);
if (input_file_str != params.end())
{
avi_file::error avierr = avi_file::open(*input_file_str->second, input_file);
if (avierr != avi_file::error::NONE)
report_error(1, "Error opening AVI file (%s): %s\n", input_file_str->second->c_str(), avi_file::error_string(avierr));
}
const avi_file::movie_info &aviinfo = input_file->get_movie_info();
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process input start/end
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, aviinfo.video_numsamples, 0, 1, input_start, input_end);
// determine parameters of the incoming video stream
avi_info info;
info.fps_times_1million = uint64_t(aviinfo.video_timescale) * 1000000 / aviinfo.video_sampletime;
info.width = aviinfo.video_width;
info.height = aviinfo.video_height;
info.interlaced = ((info.fps_times_1million / 1000000) <= 30) && (info.height % 2 == 0) && (info.height > 288);
info.channels = aviinfo.audio_channels;
info.rate = aviinfo.audio_samplerate;
// adjust for interlacing
if (info.interlaced)
{
info.fps_times_1million *= 2;
info.height /= 2;
input_start *= 2;
input_end *= 2;
}
// determine the number of bytes per frame
info.max_samples_per_frame = (uint64_t(info.rate) * 1000000 + info.fps_times_1million - 1) / info.fps_times_1million;
info.bytes_per_frame = avhuff_encoder::raw_data_size(info.width, info.height, info.channels, info.max_samples_per_frame);
// process hunk size
uint32_t hunk_size = output_parent.opened() ? output_parent.hunk_bytes() : info.bytes_per_frame;
parse_hunk_size(params, info.bytes_per_frame, hunk_size);
// process compression
chd_codec_type compression[4];
memcpy(compression, s_default_ld_compression, sizeof(compression));
parse_compression(params, compression);
// disable support for uncompressed ones until the extraction code can handle it
if (compression[0] == CHD_CODEC_NONE)
report_error(1, "Uncompressed is not supported");
// process numprocessors
parse_numprocessors(params);
// print some info
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
printf("Input file: %s\n", input_file_str->second->c_str());
if (input_start != 0 && input_end != aviinfo.video_numsamples)
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s (%02d:%02d:%02d)\n", big_int_string(input_end - input_start).c_str(),
uint32_t((uint64_t(input_end - input_start) * 1000000 / info.fps_times_1million / 60 / 60)),
uint32_t(((uint64_t(input_end - input_start) * 1000000 / info.fps_times_1million / 60) % 60)),
uint32_t(((uint64_t(input_end - input_start) * 1000000 / info.fps_times_1million) % 60)));
printf("Frame rate: %d.%06d\n", info.fps_times_1million / 1000000, info.fps_times_1million % 1000000);
printf("Frame size: %d x %d %s\n", info.width, info.height * (info.interlaced ? 2 : 1), info.interlaced ? "interlaced" : "non-interlaced");
printf("Audio: %d channels at %d Hz\n", info.channels, info.rate);
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Hunk size: %s\n", big_int_string(hunk_size).c_str());
printf("Logical size: %s\n", big_int_string(uint64_t(input_end - input_start) * hunk_size).c_str());
// catch errors so we can close & delete the output file
chd_avi_compressor *chd = nullptr;
try
{
// create the new CHD
chd = new chd_avi_compressor(*input_file, info, input_start, input_end);
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), uint64_t(input_end - input_start) * hunk_size, hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), uint64_t(input_end - input_start) * hunk_size, hunk_size, info.bytes_per_frame, compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// write the core A/V metadata
std::string metadata = string_format(AV_METADATA_FORMAT, info.fps_times_1million / 1000000, info.fps_times_1million % 1000000, info.width, info.height, info.interlaced, info.channels, info.rate);
err = chd->write_metadata(AV_METADATA_TAG, 0, metadata);
if (err != CHDERR_NONE)
report_error(1, "Error adding AV metadata: %s\n", chd_file::error_string(err));
// create the compressor and then run it generically
compress_common(*chd);
// write the final LD metadata
if (info.height == 524/2 || info.height == 624/2)
{
err = chd->write_metadata(AV_LD_METADATA_TAG, 0, chd->ldframedata(), 0);
if (err != CHDERR_NONE)
report_error(1, "Error adding AVLD metadata: %s\n", chd_file::error_string(err));
}
delete chd;
}
catch (...)
{
delete chd;
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_copy - create a new CHD with data from
// another CHD
//-------------------------------------------------
static void do_copy(parameters_t &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// parse out input start/end
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, input_chd.logical_bytes(), input_chd.hunk_bytes(), input_chd.hunk_bytes(), input_start, input_end);
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process hunk size
uint32_t hunk_size = input_chd.hunk_bytes();
parse_hunk_size(params, 1, hunk_size);
if (hunk_size % input_chd.hunk_bytes() != 0 && input_chd.hunk_bytes() % hunk_size != 0)
report_error(1, "Hunk size is not an even multiple or divisor of input hunk size");
// process compression; we default to our current preferences using metadata to pick the type
chd_codec_type compression[4];
{
std::vector<uint8_t> metadata;
if (input_chd.read_metadata(HARD_DISK_METADATA_TAG, 0, metadata) == CHDERR_NONE)
memcpy(compression, s_default_hd_compression, sizeof(compression));
else if (input_chd.read_metadata(AV_METADATA_TAG, 0, metadata) == CHDERR_NONE)
memcpy(compression, s_default_ld_compression, sizeof(compression));
else if (input_chd.read_metadata(CDROM_OLD_METADATA_TAG, 0, metadata) == CHDERR_NONE ||
input_chd.read_metadata(CDROM_TRACK_METADATA_TAG, 0, metadata) == CHDERR_NONE ||
input_chd.read_metadata(CDROM_TRACK_METADATA2_TAG, 0, metadata) == CHDERR_NONE ||
input_chd.read_metadata(GDROM_OLD_METADATA_TAG, 0, metadata) == CHDERR_NONE ||
input_chd.read_metadata(GDROM_TRACK_METADATA_TAG, 0, metadata) == CHDERR_NONE)
memcpy(compression, s_default_cd_compression, sizeof(compression));
else
memcpy(compression, s_default_raw_compression, sizeof(compression));
}
parse_compression(params, compression);
// process numprocessors
parse_numprocessors(params);
// print some info
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
printf("Input CHD: %s\n", params.find(OPTION_INPUT)->second->c_str());
if (input_start != 0 || input_end != input_chd.logical_bytes())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(input_end - input_start).c_str());
}
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Hunk size: %s\n", big_int_string(hunk_size).c_str());
printf("Logical size: %s\n", big_int_string(input_end - input_start).c_str());
// catch errors so we can close & delete the output file
chd_chdfile_compressor *chd = nullptr;
try
{
// create the new CHD
chd = new chd_chdfile_compressor(input_chd, input_start, input_end);
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), input_end - input_start, hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), input_end - input_start, hunk_size, input_chd.unit_bytes(), compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// clone all the metadata, upgrading where appropriate
std::vector<uint8_t> metadata;
chd_metadata_tag metatag;
uint8_t metaflags;
uint32_t index = 0;
bool redo_cd = false;
bool cdda_swap = false;
for (err = input_chd.read_metadata(CHDMETATAG_WILDCARD, index++, metadata, metatag, metaflags); err == CHDERR_NONE; err = input_chd.read_metadata(CHDMETATAG_WILDCARD, index++, metadata, metatag, metaflags))
{
// if this is an old CD-CHD tag, note that we want to re-do it
if (metatag == CDROM_OLD_METADATA_TAG || metatag == CDROM_TRACK_METADATA_TAG)
{
redo_cd = true;
continue;
}
// if this is old GD tag we want re-do it and swap CDDA
if (metatag == GDROM_OLD_METADATA_TAG)
{
cdda_swap = redo_cd = true;
continue;
}
// otherwise, clone it
err = chd->write_metadata(metatag, CHDMETAINDEX_APPEND, metadata, metaflags);
if (err != CHDERR_NONE)
report_error(1, "Error writing cloned metadata: %s", chd_file::error_string(err));
}
// if we need to re-do the CD metadata, do it now
if (redo_cd)
{
cdrom_file *cdrom = cdrom_open(&input_chd);
if (cdrom == nullptr)
report_error(1, "Error upgrading CD metadata");
const cdrom_toc *toc = cdrom_get_toc(cdrom);
err = cdrom_write_metadata(chd, toc);
if (err != CHDERR_NONE)
report_error(1, "Error writing upgraded CD metadata: %s", chd_file::error_string(err));
if (cdda_swap)
chd->m_toc = toc;
}
// compress it generically
compress_common(*chd);
delete chd;
}
catch (...)
{
delete chd;
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_extract_raw - extract a raw file from a
// CHD image
//-------------------------------------------------
static void do_extract_raw(parameters_t &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// parse out input start/end
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, input_chd.logical_bytes(), input_chd.hunk_bytes(), input_chd.hunk_bytes(), input_start, input_end);
// verify output file doesn't exist
auto output_file_str = params.find(OPTION_OUTPUT);
if (output_file_str != params.end())
check_existing_output_file(params, output_file_str->second->c_str());
// print some info
printf("Output File: %s\n", output_file_str->second->c_str());
printf("Input CHD: %s\n", params.find(OPTION_INPUT)->second->c_str());
if (input_start != 0 || input_end != input_chd.logical_bytes())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(input_end - input_start).c_str());
}
// catch errors so we can close & delete the output file
util::core_file::ptr output_file;
try
{
// process output file
osd_file::error filerr = util::core_file::open(*output_file_str->second, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE, output_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_file_str->second->c_str());
// copy all data
std::vector<uint8_t> buffer((TEMP_BUFFER_SIZE / input_chd.hunk_bytes()) * input_chd.hunk_bytes());
for (uint64_t offset = input_start; offset < input_end; )
{
progress(false, "Extracting, %.1f%% complete... \r", 100.0 * double(offset - input_start) / double(input_end - input_start));
// determine how much to read
uint32_t bytes_to_read = (std::min<uint64_t>)(buffer.size(), input_end - offset);
chd_error err = input_chd.read_bytes(offset, &buffer[0], bytes_to_read);
if (err != CHDERR_NONE)
report_error(1, "Error reading CHD file (%s): %s", params.find(OPTION_INPUT)->second->c_str(), chd_file::error_string(err));
// write to the output
uint32_t count = output_file->write(&buffer[0], bytes_to_read);
if (count != bytes_to_read)
report_error(1, "Error writing to file; check disk space (%s)", output_file_str->second->c_str());
// advance
offset += bytes_to_read;
}
// finish up
output_file.reset();
printf("Extraction complete \n");
}
catch (...)
{
// delete the output file
if (output_file != nullptr)
{
output_file.reset();
osd_file::remove(*output_file_str->second);
}
throw;
}
}
//-------------------------------------------------
// do_extract_cd - extract a CD file from a
// CHD image
//-------------------------------------------------
static void do_extract_cd(parameters_t &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// further process input file
cdrom_file *cdrom = cdrom_open(&input_chd);
if (cdrom == nullptr)
report_error(1, "Unable to recognize CHD file as a CD");
const cdrom_toc *toc = cdrom_get_toc(cdrom);
// verify output file doesn't exist
auto output_file_str = params.find(OPTION_OUTPUT);
if (output_file_str != params.end())
check_existing_output_file(params, output_file_str->second->c_str());
// verify output BIN file doesn't exist
auto output_bin_file_fnd = params.find(OPTION_OUTPUT_BIN);
std::string default_name(*output_file_str->second);
int chop = default_name.find_last_of('.');
if (chop != -1)
default_name.erase(chop, default_name.size());
char basename[128];
strncpy(basename, default_name.c_str(), 127);
default_name.append(".bin");
std::string *output_bin_file_str;
if (output_bin_file_fnd == params.end())
output_bin_file_str = &default_name;
else
output_bin_file_str = output_bin_file_fnd->second;
check_existing_output_file(params, output_bin_file_str->c_str());
// print some info
printf("Output TOC: %s\n", output_file_str->second->c_str());
printf("Output Data: %s\n", output_bin_file_str->c_str());
printf("Input CHD: %s\n", params.find(OPTION_INPUT)->second->c_str());
// catch errors so we can close & delete the output file
util::core_file::ptr output_bin_file;
util::core_file::ptr output_toc_file;
try
{
int mode = MODE_NORMAL;
if (output_file_str->second->find(".cue") != -1)
{
mode = MODE_CUEBIN;
}
else if (output_file_str->second->find(".gdi") != -1)
{
mode = MODE_GDI;
}
// process output file
osd_file::error filerr = util::core_file::open(*output_file_str->second, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_NO_BOM, output_toc_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_file_str->second->c_str());
// process output BIN file
if (mode != MODE_GDI)
{
filerr = util::core_file::open(*output_bin_file_str, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE, output_bin_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_bin_file_str->c_str());
}
// determine total frames
uint64_t total_bytes = 0;
for (int tracknum = 0; tracknum < toc->numtrks; tracknum++)
total_bytes += toc->tracks[tracknum].frames * (toc->tracks[tracknum].datasize + toc->tracks[tracknum].subsize);
// GDI must start with the # of tracks
if (mode == MODE_GDI)
{
output_toc_file->printf("%d\n", toc->numtrks);
}
// iterate over tracks and copy all data
uint64_t outputoffs = 0;
uint32_t discoffs = 0;
std::vector<uint8_t> buffer;
for (int tracknum = 0; tracknum < toc->numtrks; tracknum++)
{
std::string trackbin_name(basename);
if (mode == MODE_GDI)
{
char temp[11];
sprintf(temp, "%02d", tracknum+1);
trackbin_name.append(temp);
if (toc->tracks[tracknum].trktype == CD_TRACK_AUDIO)
trackbin_name.append(".raw");
else
trackbin_name.append(".bin");
output_bin_file.reset();
filerr = util::core_file::open(trackbin_name, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE, output_bin_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", trackbin_name.c_str());
outputoffs = 0;
}
// output the metadata about the track to the TOC file
const cdrom_track_info &trackinfo = toc->tracks[tracknum];
if (mode == MODE_GDI)
{
output_track_metadata(mode, *output_toc_file, tracknum, trackinfo, core_filename_extract_base(trackbin_name).c_str(), discoffs, outputoffs);
}
else
{
output_track_metadata(mode, *output_toc_file, tracknum, trackinfo, core_filename_extract_base(*output_bin_file_str).c_str(), discoffs, outputoffs);
}
// If this is bin/cue output and the CHD contains subdata, warn the user and don't include
// the subdata size in the buffer calculation.
uint32_t output_frame_size = trackinfo.datasize + ((trackinfo.subtype != CD_SUB_NONE) ? trackinfo.subsize : 0);
if (trackinfo.subtype != CD_SUB_NONE && ((mode == MODE_CUEBIN) || (mode == MODE_GDI)))
{
printf("Warning: Track %d has subcode data. bin/cue and gdi formats cannot contain subcode data and it will be omitted.\n", tracknum+1);
printf(" : This may affect usage of the output image. Use bin/toc output to keep all data.\n");
output_frame_size = trackinfo.datasize;
}
// resize the buffer for the track
buffer.resize((TEMP_BUFFER_SIZE / output_frame_size) * output_frame_size);
// now read and output the actual data
uint32_t bufferoffs = 0;
uint32_t actualframes = trackinfo.frames - trackinfo.padframes;
for (uint32_t frame = 0; frame < actualframes; frame++)
{
progress(false, "Extracting, %.1f%% complete... \r", 100.0 * double(outputoffs) / double(total_bytes));
// read the data
cdrom_read_data(cdrom, cdrom_get_track_start_phys(cdrom, tracknum) + frame, &buffer[bufferoffs], trackinfo.trktype, true);
// for CDRWin and GDI audio tracks must be reversed
// in the case of GDI and CHD version < 5 we assuming source CHD image is GDROM so audio tracks is already reversed
if (((mode == MODE_GDI && input_chd.version() > 4) || (mode == MODE_CUEBIN)) && (trackinfo.trktype == CD_TRACK_AUDIO))
for (int swapindex = 0; swapindex < trackinfo.datasize; swapindex += 2)
{
uint8_t swaptemp = buffer[bufferoffs + swapindex];
buffer[bufferoffs + swapindex] = buffer[bufferoffs + swapindex + 1];
buffer[bufferoffs + swapindex + 1] = swaptemp;
}
bufferoffs += trackinfo.datasize;
discoffs++;
// read the subcode data
if (trackinfo.subtype != CD_SUB_NONE && (mode == MODE_NORMAL))
{
cdrom_read_subcode(cdrom, cdrom_get_track_start_phys(cdrom, tracknum) + frame, &buffer[bufferoffs], true);
bufferoffs += trackinfo.subsize;
}
// write it out if we need to
if (bufferoffs == buffer.size() || frame == actualframes - 1)
{
output_bin_file->seek(outputoffs, SEEK_SET);
uint32_t byteswritten = output_bin_file->write(&buffer[0], bufferoffs);
if (byteswritten != bufferoffs)
report_error(1, "Error writing frame %d to file (%s): %s\n", frame, output_file_str->second->c_str(), chd_file::error_string(CHDERR_WRITE_ERROR));
outputoffs += bufferoffs;
bufferoffs = 0;
}
}
discoffs += trackinfo.padframes;
}
// finish up
output_bin_file.reset();
output_toc_file.reset();
printf("Extraction complete \n");
}
catch (...)
{
// delete the output files
output_bin_file.reset();
output_toc_file.reset();
osd_file::remove(*output_bin_file_str);
osd_file::remove(*output_file_str->second);
throw;
}
}
//-------------------------------------------------
// do_extract_ld - extract an AVI file from a
// CHD image
//-------------------------------------------------
static void do_extract_ld(parameters_t &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// read core metadata
std::string metadata;
chd_error err = input_chd.read_metadata(AV_METADATA_TAG, 0, metadata);
if (err != CHDERR_NONE)
report_error(1, "Unable to find A/V metadata in the input CHD");
// parse the metadata
uint32_t fps_times_1million;
uint32_t max_samples_per_frame;
uint32_t frame_bytes;
int width;
int height;
int interlaced;
int channels;
int rate;
{
int fps;
int fpsfrac;
if (sscanf(metadata.c_str(), AV_METADATA_FORMAT, &fps, &fpsfrac, &width, &height, &interlaced, &channels, &rate) != 7)
report_error(1, "Improperly formatted A/V metadata found");
fps_times_1million = fps * 1000000 + fpsfrac;
}
uint8_t interlace_factor = interlaced ? 2 : 1;
// determine key parameters and validate
max_samples_per_frame = (uint64_t(rate) * 1000000 + fps_times_1million - 1) / fps_times_1million;
frame_bytes = avhuff_encoder::raw_data_size(width, height, channels, max_samples_per_frame);
if (frame_bytes != input_chd.hunk_bytes())
report_error(1, "Frame size does not match hunk size for this CHD");
// parse out input start/end
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, input_chd.hunk_count() / interlace_factor, 0, 1, input_start, input_end);
input_start *= interlace_factor;
input_end *= interlace_factor;
// build up the movie info
avi_file::movie_info info;
info.video_format = FORMAT_YUY2;
info.video_timescale = fps_times_1million / interlace_factor;
info.video_sampletime = 1000000;
info.video_width = width;
info.video_height = height * interlace_factor;
info.video_depth = 16;
info.audio_format = 0;
info.audio_timescale = rate;
info.audio_sampletime = 1;
info.audio_channels = channels;
info.audio_samplebits = 16;
info.audio_samplerate = rate;
// verify output file doesn't exist
auto output_file_str = params.find(OPTION_OUTPUT);
if (output_file_str != params.end())
check_existing_output_file(params, output_file_str->second->c_str());
// print some info
printf("Output File: %s\n", output_file_str->second->c_str());
printf("Input CHD: %s\n", params.find(OPTION_INPUT)->second->c_str());
if (input_start != 0 || input_end != input_chd.hunk_count())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(input_end - input_start).c_str());
}
// catch errors so we can close & delete the output file
avi_file::ptr output_file;
try
{
// process output file
avi_file::error avierr = avi_file::create(*output_file_str->second, info, output_file);
if (avierr != avi_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_file_str->second->c_str());
// create the codec configuration
avhuff_decompress_config avconfig;
std::vector<int16_t> audio_data[16];
uint32_t actsamples;
avconfig.maxsamples = max_samples_per_frame;
avconfig.actsamples = &actsamples;
for (int chnum = 0; chnum < ARRAY_LENGTH(audio_data); chnum++)
{
audio_data[chnum].resize(std::max(1U,max_samples_per_frame));
avconfig.audio[chnum] = &audio_data[chnum][0];
}
// iterate over frames
bitmap_yuy16 fullbitmap(width, height * interlace_factor);
for (uint64_t framenum = input_start; framenum < input_end; framenum++)
{
progress(framenum == input_start, "Extracting, %.1f%% complete... \r", 100.0 * double(framenum - input_start) / double(input_end - input_start));
// set up the fake bitmap for this frame
avconfig.video.wrap(&fullbitmap.pix(framenum % interlace_factor), fullbitmap.width(), fullbitmap.height() / interlace_factor, fullbitmap.rowpixels() * interlace_factor);
input_chd.codec_configure(CHD_CODEC_AVHUFF, AVHUFF_CODEC_DECOMPRESS_CONFIG, &avconfig);
// read the hunk into the buffers
chd_error err = input_chd.read_hunk(framenum, nullptr);
if (err != CHDERR_NONE)
{
uint64_t filepos = static_cast<util::core_file &>(input_chd).tell();
report_error(1, "Error reading hunk %d at offset %d from CHD file (%s): %s\n", framenum, filepos, params.find(OPTION_INPUT)->second->c_str(), chd_file::error_string(err));
}
// write audio
for (int chnum = 0; chnum < channels; chnum++)
{
avi_file::error avierr = output_file->append_sound_samples(chnum, avconfig.audio[chnum], actsamples, 0);
if (avierr != avi_file::error::NONE)
report_error(1, "Error writing samples for hunk %d to file (%s): %s\n", framenum, output_file_str->second->c_str(), avi_file::error_string(avierr));
}
// write video
if ((framenum + 1) % interlace_factor == 0)
{
avi_file::error avierr = output_file->append_video_frame(fullbitmap);
if (avierr != avi_file::error::NONE)
report_error(1, "Error writing video for hunk %d to file (%s): %s\n", framenum, output_file_str->second->c_str(), avi_file::error_string(avierr));
}
}
// close and return
output_file.reset();
printf("Extraction complete \n");
}
catch (...)
{
// delete the output file
output_file.reset();
osd_file::remove(*output_file_str->second);
throw;
}
}
//-------------------------------------------------
// do_add_metadata - add metadata to a CHD from a
// file
//-------------------------------------------------
static void do_add_metadata(parameters_t &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd, true);
// process tag
chd_metadata_tag tag = CHD_MAKE_TAG('?','?','?','?');
auto tag_str = params.find(OPTION_TAG);
if (tag_str != params.end())
{
tag_str->second->append(" ");
tag = CHD_MAKE_TAG((*tag_str->second)[0], (*tag_str->second)[1], (*tag_str->second)[2], (*tag_str->second)[3]);
}
// process index
uint32_t index = 0;
auto index_str = params.find(OPTION_INDEX);
if (index_str != params.end())
index = atoi(index_str->second->c_str());
// process text input
auto text_str = params.find(OPTION_VALUE_TEXT);
std::string text;
if (text_str != params.end())
{
text = *text_str->second;
if (text[0] == '"' && text[text.length() - 1] == '"')
text.substr(1, text.length() - 2);
}
// process file input
auto file_str = params.find(OPTION_VALUE_FILE);
std::vector<uint8_t> file;
if (file_str != params.end())
{
osd_file::error filerr = util::core_file::load(file_str->second->c_str(), file);
if (filerr != osd_file::error::NONE)
report_error(1, "Error reading metadata file (%s)", file_str->second->c_str());
}
// make sure we have one or the other
if (text_str == params.end() && file_str == params.end())
report_error(1, "Error: missing either --valuetext/-vt or --valuefile/-vf parameters");
if (text_str != params.end() && file_str != params.end())
report_error(1, "Error: both --valuetext/-vt or --valuefile/-vf parameters specified; only one permitted");
// process no checksum
uint8_t flags = CHD_MDFLAGS_CHECKSUM;
if (params.find(OPTION_NO_CHECKSUM) != params.end())
flags &= ~CHD_MDFLAGS_CHECKSUM;
// print some info
printf("Input file: %s\n", params.find(OPTION_INPUT)->second->c_str());
printf("Tag: %c%c%c%c\n", (tag >> 24) & 0xff, (tag >> 16) & 0xff, (tag >> 8) & 0xff, tag & 0xff);
printf("Index: %d\n", index);
if (text_str != params.end())
printf("Text: %s\n", text.c_str());
else
printf("Data: %s (%d bytes)\n", file_str->second->c_str(), int(file.size()));
// write the metadata
chd_error err;
if (text_str != params.end())
err = input_chd.write_metadata(tag, index, text, flags);
else
err = input_chd.write_metadata(tag, index, file, flags);
if (err != CHDERR_NONE)
report_error(1, "Error adding metadata: %s", chd_file::error_string(err));
else
printf("Metadata added\n");
}
//-------------------------------------------------
// do_del_metadata - remove metadata from a CHD
//-------------------------------------------------
static void do_del_metadata(parameters_t &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd, true);
// process tag
chd_metadata_tag tag = CHD_MAKE_TAG('?','?','?','?');
auto tag_str = params.find(OPTION_TAG);
if (tag_str != params.end())
{
tag_str->second->append(" ");
tag = CHD_MAKE_TAG((*tag_str->second)[0], (*tag_str->second)[1], (*tag_str->second)[2], (*tag_str->second)[3]);
}
// process index
uint32_t index = 0;
auto index_str = params.find(OPTION_INDEX);
if (index_str != params.end())
index = atoi(index_str->second->c_str());
// print some info
printf("Input file: %s\n", params.find(OPTION_INPUT)->second->c_str());
printf("Tag: %c%c%c%c\n", (tag >> 24) & 0xff, (tag >> 16) & 0xff, (tag >> 8) & 0xff, tag & 0xff);
printf("Index: %d\n", index);
// write the metadata
chd_error err = input_chd.delete_metadata(tag, index);
if (err != CHDERR_NONE)
report_error(1, "Error removing metadata: %s", chd_file::error_string(err));
else
printf("Metadata removed\n");
}
//-------------------------------------------------
// do_dump_metadata - dump metadata from a CHD
//-------------------------------------------------
static void do_dump_metadata(parameters_t &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// verify output file doesn't exist
auto output_file_str = params.find(OPTION_OUTPUT);
if (output_file_str != params.end())
check_existing_output_file(params, output_file_str->second->c_str());
// process tag
chd_metadata_tag tag = CHD_MAKE_TAG('?','?','?','?');
auto tag_str = params.find(OPTION_TAG);
if (tag_str != params.end())
{
tag_str->second->append(" ");
tag = CHD_MAKE_TAG((*tag_str->second)[0], (*tag_str->second)[1], (*tag_str->second)[2], (*tag_str->second)[3]);
}
// process index
uint32_t index = 0;
auto index_str = params.find(OPTION_INDEX);
if (index_str != params.end())
index = atoi(index_str->second->c_str());
// write the metadata
std::vector<uint8_t> buffer;
chd_error err = input_chd.read_metadata(tag, index, buffer);
if (err != CHDERR_NONE)
report_error(1, "Error reading metadata: %s", chd_file::error_string(err));
// catch errors so we can close & delete the output file
util::core_file::ptr output_file;
try
{
// create the file
if (output_file_str != params.end())
{
osd_file::error filerr = util::core_file::open(*output_file_str->second, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE, output_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_file_str->second->c_str());
// output the metadata
uint32_t count = output_file->write(&buffer[0], buffer.size());
if (count != buffer.size())
report_error(1, "Error writing file (%s)", output_file_str->second->c_str());
output_file.reset();
// provide some feedback
printf("File (%s) written, %s bytes\n", output_file_str->second->c_str(), big_int_string(buffer.size()).c_str());
}
// flush to stdout
else
{
fwrite(&buffer[0], 1, buffer.size(), stdout);
fflush(stdout);
}
}
catch (...)
{
// delete the output file
output_file.reset();
osd_file::remove(*output_file_str->second);
throw;
}
}
//-------------------------------------------------
// do_dump_metadata - dump metadata from a CHD
//-------------------------------------------------
static void do_list_templates(parameters_t &params)
{
printf("\n");
printf("ID Manufacturer Model Cylinders Heads Sectors Sector Size Total Size\n");
printf("------------------------------------------------------------------------------------\n");
for (int id = 0; id < ARRAY_LENGTH(s_hd_templates); id++)
{
printf("%2d %-13s %-15s %9d %5d %7d %11d %7d MB\n",
id,
s_hd_templates[id].manufacturer,
s_hd_templates[id].model,
s_hd_templates[id].cylinders,
s_hd_templates[id].heads,
s_hd_templates[id].sectors,
s_hd_templates[id].sector_size,
(s_hd_templates[id].cylinders * s_hd_templates[id].heads * s_hd_templates[id].sectors * s_hd_templates[id].sector_size) / 1024 / 1024
);
}
}
//-------------------------------------------------
// main - entry point
//-------------------------------------------------
int CLIB_DECL main(int argc, char *argv[])
{
// print the header
extern const char build_version[];
printf("chdman - MAME Compressed Hunks of Data (CHD) manager %s\n", build_version);
// handle help specially
if (argc < 2)
return print_help(argv[0]);
int argnum = 1;
const char *command = argv[argnum++];
bool help = (strcmp(command, COMMAND_HELP) == 0);
if (help)
{
if (argc <= 2)
return print_help(argv[0]);
command = argv[argnum++];
}
// iterate over commands to find our match
for (auto & s_command : s_commands)
if (strcmp(command, s_command.name) == 0)
{
const command_description &desc = s_command;
// print help if that was requested
if (help)
return print_help(argv[0], desc);
// otherwise, verify the parameters
parameters_t parameters;
while (argnum < argc)
{
// should be an option name
const char *arg = argv[argnum++];
if (arg[0] != '-')
return print_help(argv[0], desc, "Expected option, not parameter");
// iterate over valid options
int valid;
for (valid = 0; valid < ARRAY_LENGTH(desc.valid_options); valid++)
{
// reduce to the option name
const char *validname = desc.valid_options[valid];
if (validname == nullptr)
break;
if (*validname == REQUIRED[0])
validname++;
// find the matching option description
int optnum;
for (optnum = 0; optnum < ARRAY_LENGTH(s_options); optnum++)
if (strcmp(s_options[optnum].name, validname) == 0)
break;
assert(optnum != ARRAY_LENGTH(s_options));
// do we match?
const option_description &odesc = s_options[optnum];
if ((arg[1] == '-' && strcmp(odesc.name, &arg[2]) == 0) ||
(arg[1] != '-' && odesc.shortname != nullptr && strcmp(odesc.shortname, &arg[1]) == 0))
{
// if we need a parameter, consume it
const char *param = "";
if (odesc.parameter)
{
if (argnum >= argc || argv[argnum][0] == '-')
return print_help(argv[0], desc, "Option is missing parameter");
param = argv[argnum++];
}
// add to the map
if (!parameters.insert(std::make_pair(odesc.name, new std::string(param))).second)
return print_help(argv[0], desc, "Multiple parameters of the same type specified");
break;
}
}
// if not valid, error
if (valid == ARRAY_LENGTH(desc.valid_options))
return print_help(argv[0], desc, "Option not valid for this command");
}
// make sure we got all our required parameters
for (int valid = 0; valid < ARRAY_LENGTH(desc.valid_options); valid++)
{
const char *validname = desc.valid_options[valid];
if (validname == nullptr)
break;
if (*validname == REQUIRED[0] && parameters.find(++validname) == parameters.end())
return print_help(argv[0], desc, "Required parameters missing");
}
// all clear, run the command
try
{
(*s_command.handler)(parameters);
return 0;
}
catch (chd_error &err)
{
fprintf(stderr, "CHD error occurred (main): %s\n", chd_file::error_string(err));
return 1;
}
catch (fatal_error &err)
{
fprintf(stderr, "Fatal error occurred: %d\n", err.error());
return err.error();
}
catch (std::exception& ex)
{
fprintf(stderr, "Unhandled exception: %s\n", ex.what());
return 1;
}
}
// print generic help if nothing found
return print_help(argv[0]);
}