mame/src/mess/drivers/x68k.c

2955 lines
118 KiB
C

// Preliminary X68000 driver for MESS
// Started 18/11/2006
// Written by Barry Rodewald
/*
*** Basic memory map
0x000000 - 0xbfffff RAM (Max 12MB), vector table from ROM at 0xff0000 maps to 0x000000 at reset only
0xc00000 - 0xdfffff Graphic VRAM
0xe00000 - 0xe1ffff Text VRAM Plane 1
0xe20000 - 0xe3ffff Text VRAM Plane 2
0xe40000 - 0xe5ffff Text VRAM Plane 3
0xe60000 - 0xe7ffff Text VRAM Plane 4
0xe80000 CRTC
0xe82000 Video Controller
0xe84000 DMA Controller
0xe86000 Supervisor Area set
0xe88000 MFP
0xe8a000 RTC
0xe8c000 Printer
0xe8e000 System Port (?)
0xe90000 FM Sound source
0xe92000 ADPCM
0xe94000 FDC
0xe96000 HDC
0xe96021 SCSI (internal model)
0xe98000 SCC
0xe9a000 Serial I/O (PPI)
0xe9c000 I/O controller
[Expansions]
0xe9c000 / 0xe9e000 FPU (Optional, X68000 only)
0xea0000 SCSI
0xeaf900 FAX
0xeafa00 / 0xeafa10 MIDI (1st/2nd)
0xeafb00 Serial
0xeafc00/10/20/30 EIA232E
0xeafd00 EIA232E
0xeafe00 GPIB (?)
0xec0000 - 0xecffff User I/O Expansion
0xeb0000 - 0xeb7fff Sprite registers
0xeb8000 - 0xebffff Sprite VRAM
0xed0000 - 0xed3fff SRAM
0xf00000 - 0xfb0000 ROM (CGROM.DAT)
0xfe0000 - 0xffffff ROM (IPLROM.DAT)
*** System hardware
CPU : X68000: 68000 at 10MHz
X68000 XVI: 68000 at 16MHz
X68030: 68EC030 at 25MHz
RAM : between 1MB and 4MB stock, expandable to 12MB
FDD : 2x 5.25", Compact models use 2x 3.5" drives.
FDC : NEC uPD72065 (hopefully backwards compatible enough for the existing uPD765A core :))
HDD : HD models have up to an 81MB HDD.
HDC : Fujitsu MB89352A (SCSI)
SCC : Serial controller - Zilog z85C30 (Dual channel, 1 for RS232, 1 for mouse)
PPI : Parallel controller - NEC 8255 (Printer, Joystick)
Sound : FM - YM2151, with YM3012 DAC
ADPCM - Okidata MSM6258
DMA : Hitachi HD63450, DMA I/O for FDD, HDD, Expansion slots, and ADPCM
MFP : Motorola MC68901 - monitor sync, serial port, RTC, soft power, FM synth, IRQs, keyboard
RTC : Ricoh RP5C15
...plus a number of custom chips for video and other stuff...
*** Current status (28/12/08)
FDC/FDD : Uses the uPD765A code with a small patch to handle Sense Interrupt Status being invalid if not in seek mode
Extra uPD72065 commands not yet implemented, although I have yet to see them used.
MFP : Largely works, as far as the X68000 goes.
PPI : Joystick controls work okay.
HDC/HDD : SCSI is not implemented, not a requirement at this point.
RTC : Seems to work. (Tested using SX-Window's Timer application)
DMA : Works fine.
Sound : FM works, ADPCM mostly works (timing(?) issues in a few games).
SCC : Works enough to get the mouse running, although only with the IPL v1.0 BIOS
Video : Text mode works, but is rather slow, especially scrolling up (uses multple "raster copy" commands).
Graphic layers work.
BG tiles and sprites work, but many games have the sprites offset by a small amount (some by a lot :))
Still a few minor priority issues around.
Other issues:
Bus error exceptions are a bit late at times. Currently using a fake bus error for MIDI expansion checks. These
are used determine if a piece of expansion hardware is present.
Keyboard doesn't work properly (MFP USART).
Supervisor area set isn't implemented.
Some minor game-specific issues (at 28/12/08):
Pacmania: Black squares on the maze (transparency?).
Salamander: System error when using keys in-game. No error if a joystick is used.
Some text is drawn incorrectly.
Dragon Buster: Text is black and unreadable. (Text layer actually covers it)
Tetris: Black dots over screen (text layer).
Parodius Da!: Black squares in areas.
More detailed documentation at http://x68kdev.emuvibes.com/iomap.html - if you can stand broken english :)
*/
#include "emu.h"
#include "cpu/m68000/m68000.h"
#include "machine/i8255.h"
#include "machine/mc68901.h"
#include "machine/upd765.h"
#include "sound/2151intf.h"
#include "sound/okim6258.h"
#include "machine/8530scc.h"
#include "machine/hd63450.h"
#include "machine/rp5c15.h"
#include "machine/mb89352.h"
#include "imagedev/flopdrv.h"
#include "formats/basicdsk.h"
#include "formats/dim_dsk.h"
#include "machine/x68k_hdc.h"
#include "includes/x68k.h"
#include "machine/ram.h"
#include "machine/nvram.h"
#include "machine/x68kexp.h"
#include "machine/x68k_neptunex.h"
#include "machine/x68k_scsiext.h"
#include "machine/scsibus.h"
#include "machine/scsihd.h"
#include "x68000.lh"
//emu_timer* mfp_timer[4];
//emu_timer* mfp_irq;
// MFP is clocked at 4MHz, so at /4 prescaler the timer is triggered after 1us (4 cycles)
// No longer necessary with the new MFP core
#ifdef UNUSED_FUNCTION
static attotime prescale(int val)
{
switch(val)
{
case 0: return attotime::from_nsec(0);
case 1: return attotime::from_nsec(1000);
case 2: return attotime::from_nsec(2500);
case 3: return attotime::from_nsec(4000);
case 4: return attotime::from_nsec(12500);
case 5: return attotime::from_nsec(16000);
case 6: return attotime::from_nsec(25000);
case 7: return attotime::from_nsec(50000);
default:
fatalerror("out of range\n");
}
}
#endif
static void mfp_init(running_machine &machine)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_mfp.tadr = state->m_mfp.tbdr = state->m_mfp.tcdr = state->m_mfp.tddr = 0xff;
state->m_mfp.irqline = 6; // MFP is connected to 68000 IRQ line 6
state->m_mfp.current_irq = -1; // No current interrupt
#if 0
mfp_timer[0] = machine.scheduler().timer_alloc(FUNC(mfp_timer_a_callback));
mfp_timer[1] = machine.scheduler().timer_alloc(FUNC(mfp_timer_b_callback));
mfp_timer[2] = machine.scheduler().timer_alloc(FUNC(mfp_timer_c_callback));
mfp_timer[3] = machine.scheduler().timer_alloc(FUNC(mfp_timer_d_callback));
mfp_irq = machine.scheduler().timer_alloc(FUNC(mfp_update_irq));
mfp_irq->adjust(attotime::zero, 0, attotime::from_usec(32));
#endif
}
#ifdef UNUSED_FUNCTION
TIMER_CALLBACK(mfp_update_irq)
{
x68k_state *state = machine.driver_data<x68k_state>();
int x;
if((state->m_ioc.irqstatus & 0xc0) != 0)
return;
// check for pending IRQs, in priority order
if(state->m_mfp.ipra != 0)
{
for(x=7;x>=0;x--)
{
if((state->m_mfp.ipra & (1 << x)) && (state->m_mfp.imra & (1 << x)))
{
state->m_current_irq_line = state->m_mfp.irqline;
state->m_mfp.current_irq = x + 8;
// assert IRQ line
// if(state->m_mfp.iera & (1 << x))
{
state->m_current_vector[6] = (state->m_mfp.vr & 0xf0) | (x+8);
machine.device("maincpu")->execute().set_input_line_and_vector(state->m_mfp.irqline,ASSERT_LINE,(state->m_mfp.vr & 0xf0) | (x + 8));
// logerror("MFP: Sent IRQ vector 0x%02x (IRQ line %i)\n",(state->m_mfp.vr & 0xf0) | (x+8),state->m_mfp.irqline);
return; // one at a time only
}
}
}
}
if(state->m_mfp.iprb != 0)
{
for(x=7;x>=0;x--)
{
if((state->m_mfp.iprb & (1 << x)) && (state->m_mfp.imrb & (1 << x)))
{
state->m_current_irq_line = state->m_mfp.irqline;
state->m_mfp.current_irq = x;
// assert IRQ line
// if(state->m_mfp.ierb & (1 << x))
{
state->m_current_vector[6] = (state->m_mfp.vr & 0xf0) | x;
machine.device("maincpu")->execute().set_input_line_and_vector(state->m_mfp.irqline,ASSERT_LINE,(state->m_mfp.vr & 0xf0) | x);
// logerror("MFP: Sent IRQ vector 0x%02x (IRQ line %i)\n",(state->m_mfp.vr & 0xf0) | x,state->m_mfp.irqline);
return; // one at a time only
}
}
}
}
}
void mfp_trigger_irq(running_machine &machine, int irq)
{
x68k_state *state = machine.driver_data<x68k_state>();
// check if interrupt is enabled
if(irq > 7)
{
if(!(state->m_mfp.iera & (1 << (irq-8))))
return; // not enabled, no action taken
}
else
{
if(!(state->m_mfp.ierb & (1 << irq)))
return; // not enabled, no action taken
}
// set requested IRQ as pending
if(irq > 7)
state->m_mfp.ipra |= (1 << (irq-8));
else
state->m_mfp.iprb |= (1 << irq);
// check for IRQs to be called
// mfp_update_irq(0);
}
TIMER_CALLBACK(mfp_timer_a_callback)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_mfp.timer[0].counter--;
if(state->m_mfp.timer[0].counter == 0)
{
state->m_mfp.timer[0].counter = state->m_mfp.tadr;
mfp_trigger_irq(MFP_IRQ_TIMERA);
}
}
TIMER_CALLBACK(mfp_timer_b_callback)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_mfp.timer[1].counter--;
if(state->m_mfp.timer[1].counter == 0)
{
state->m_mfp.timer[1].counter = state->m_mfp.tbdr;
mfp_trigger_irq(MFP_IRQ_TIMERB);
}
}
TIMER_CALLBACK(mfp_timer_c_callback)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_mfp.timer[2].counter--;
if(state->m_mfp.timer[2].counter == 0)
{
state->m_mfp.timer[2].counter = state->m_mfp.tcdr;
mfp_trigger_irq(MFP_IRQ_TIMERC);
}
}
TIMER_CALLBACK(mfp_timer_d_callback)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_mfp.timer[3].counter--;
if(state->m_mfp.timer[3].counter == 0)
{
state->m_mfp.timer[3].counter = state->m_mfp.tddr;
mfp_trigger_irq(MFP_IRQ_TIMERD);
}
}
void mfp_set_timer(int timer, unsigned char data)
{
if((data & 0x07) == 0x0000)
{ // Timer stop
mfp_timer[timer]->adjust(attotime::zero);
logerror("MFP: Timer #%i stopped. \n",timer);
return;
}
mfp_timer[timer]->adjust(attotime::zero, 0, prescale(data & 0x07));
logerror("MFP: Timer #%i set to %2.1fus\n",timer, prescale(data & 0x07).as_double() * 1000000);
}
#endif
// LED timer callback
static TIMER_CALLBACK( x68k_led_callback )
{
x68k_state *state = machine.driver_data<x68k_state>();
int drive;
if(state->m_led_state == 0)
state->m_led_state = 1;
else
state->m_led_state = 0;
if(state->m_led_state == 1)
{
for(drive=0;drive<4;drive++)
output_set_indexed_value("ctrl_drv",drive,state->m_fdc.led_ctrl[drive] ? 0 : 1);
}
else
{
for(drive=0;drive<4;drive++)
output_set_indexed_value("ctrl_drv",drive,1);
}
}
// 4 channel DMA controller (Hitachi HD63450)
static WRITE16_HANDLER( x68k_dmac_w )
{
device_t* device = space.machine().device("hd63450");
hd63450_w(device, space, offset, data, mem_mask);
}
static READ16_HANDLER( x68k_dmac_r )
{
device_t* device = space.machine().device("hd63450");
return hd63450_r(device, space, offset, mem_mask);
}
static void x68k_keyboard_ctrl_w(x68k_state *state, int data)
{
/* Keyboard control commands:
00xxxxxx - TV Control
Not of much use as yet
01000xxy - y = Mouse control signal
01001xxy - y = Keyboard enable
010100xy - y = Sharp X1 display compatibility mode
010101xx - xx = LED brightness (00 = bright, 11 = dark)
010110xy - y = Display control enable
010111xy - y = Display control via the Opt. 2 key enable
0110xxxx - xxxx = Key delay (default 500ms)
100 * (delay time) + 200ms
0111xxxx - xxxx = Key repeat rate (default 110ms)
(repeat rate)^2*5 + 30ms
1xxxxxxx - xxxxxxx = keyboard LED status
b6 = "full size"
b5 = hiragana
b4 = insert
b3 = caps
b2 = code input
b1 = romaji input
b0 = kana
*/
if(data & 0x80) // LED status
{
output_set_value("key_led_kana",(data & 0x01) ? 0 : 1);
output_set_value("key_led_romaji",(data & 0x02) ? 0 : 1);
output_set_value("key_led_code",(data & 0x04) ? 0 : 1);
output_set_value("key_led_caps",(data & 0x08) ? 0 : 1);
output_set_value("key_led_insert",(data & 0x10) ? 0 : 1);
output_set_value("key_led_hiragana",(data & 0x20) ? 0 : 1);
output_set_value("key_led_fullsize",(data & 0x40) ? 0 : 1);
logerror("KB: LED status set to %02x\n",data & 0x7f);
}
if((data & 0xc0) == 0) // TV control
{
// nothing for now
}
if((data & 0xf8) == 0x48) // Keyboard enable
{
state->m_keyboard.enabled = data & 0x01;
logerror("KB: Keyboard enable bit = %i\n",state->m_keyboard.enabled);
}
if((data & 0xf0) == 0x60) // Key delay time
{
state->m_keyboard.delay = data & 0x0f;
logerror("KB: Keypress delay time is now %ims\n",(data & 0x0f)*100+200);
}
if((data & 0xf0) == 0x70) // Key repeat rate
{
state->m_keyboard.repeat = data & 0x0f;
logerror("KB: Keypress repeat rate is now %ims\n",((data & 0x0f)^2)*5+30);
}
}
static int x68k_keyboard_pop_scancode(x68k_state *state)
{
int ret;
if(state->m_keyboard.keynum == 0) // no scancodes in USART buffer
return 0x00;
state->m_keyboard.keynum--;
ret = state->m_keyboard.buffer[state->m_keyboard.tailpos++];
if(state->m_keyboard.tailpos > 15)
state->m_keyboard.tailpos = 0;
logerror("MFP: Keyboard buffer pop 0x%02x\n",ret);
return ret;
}
static void x68k_keyboard_push_scancode(running_machine &machine,unsigned char code)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_keyboard.keynum++;
if(state->m_keyboard.keynum >= 1)
{ // keyboard buffer full
if(state->m_keyboard.enabled != 0)
{
state->m_mfp.rsr |= 0x80; // Buffer full
// mfp_trigger_irq(MFP_IRQ_RX_FULL);
if(machine.root_device().ioport("options")->read() & 0x01)
{
state->m_current_vector[6] = 0x4c;
machine.device("maincpu")->execute().set_input_line_and_vector(6,ASSERT_LINE,0x4c);
logerror("MFP: Receive buffer full IRQ sent\n");
}
}
}
state->m_keyboard.buffer[state->m_keyboard.headpos++] = code;
if(state->m_keyboard.headpos > 15)
{
state->m_keyboard.headpos = 0;
// mfp_trigger_irq(MFP_IRQ_RX_ERROR);
state->m_current_vector[6] = 0x4b;
// machine.device("maincpu")->execute().set_input_line_and_vector(6,ASSERT_LINE,0x4b);
}
}
static TIMER_CALLBACK(x68k_keyboard_poll)
{
x68k_state *state = machine.driver_data<x68k_state>();
int x;
static const char *const keynames[] = { "key1", "key2", "key3", "key4" };
for(x=0;x<0x80;x++)
{
// adjust delay/repeat timers
if(state->m_keyboard.keytime[x] > 0)
{
state->m_keyboard.keytime[x] -= 5;
}
if(!(machine.root_device().ioport(keynames[x / 32])->read() & (1 << (x % 32))))
{
if(state->m_keyboard.keyon[x] != 0)
{
x68k_keyboard_push_scancode(machine,0x80 + x);
state->m_keyboard.keytime[x] = 0;
state->m_keyboard.keyon[x] = 0;
state->m_keyboard.last_pressed = 0;
logerror("KB: Released key 0x%02x\n",x);
}
}
// check to see if a key is being held
if(state->m_keyboard.keyon[x] != 0 && state->m_keyboard.keytime[x] == 0 && state->m_keyboard.last_pressed == x)
{
if(machine.root_device().ioport(keynames[state->m_keyboard.last_pressed / 32])->read() & (1 << (state->m_keyboard.last_pressed % 32)))
{
x68k_keyboard_push_scancode(machine,state->m_keyboard.last_pressed);
state->m_keyboard.keytime[state->m_keyboard.last_pressed] = (state->m_keyboard.repeat^2)*5+30;
logerror("KB: Holding key 0x%02x\n",state->m_keyboard.last_pressed);
}
}
if((machine.root_device().ioport(keynames[x / 32])->read() & (1 << (x % 32))))
{
if(state->m_keyboard.keyon[x] == 0)
{
x68k_keyboard_push_scancode(machine,x);
state->m_keyboard.keytime[x] = state->m_keyboard.delay * 100 + 200;
state->m_keyboard.keyon[x] = 1;
state->m_keyboard.last_pressed = x;
logerror("KB: Pushed key 0x%02x\n",x);
}
}
}
}
#ifdef UNUSED_FUNCTION
void mfp_recv_data(int data)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_mfp.rsr |= 0x80; // Buffer full
state->m_mfp.tsr |= 0x80;
state->m_mfp.usart.recv_buffer = 0x00; // TODO: set up keyboard data
state->m_mfp.vector = state->m_current_vector[6] = (state->m_mfp.vr & 0xf0) | 0x0c;
// mfp_trigger_irq(MFP_IRQ_RX_FULL);
// logerror("MFP: Receive buffer full IRQ sent\n");
}
#endif
// mouse input
// port B of the Z8530 SCC
// typically read from the SCC data port on receive buffer full interrupt per byte
static int x68k_read_mouse(running_machine &machine)
{
x68k_state *state = machine.driver_data<x68k_state>();
scc8530_t *scc = machine.device<scc8530_t>("scc");
char val = 0;
char ipt = 0;
if(!(scc->get_reg_b(5) & 0x02))
return 0xff;
switch(state->m_mouse.inputtype)
{
case 0:
ipt = machine.root_device().ioport("mouse1")->read();
break;
case 1:
val = machine.root_device().ioport("mouse2")->read();
ipt = val - state->m_mouse.last_mouse_x;
state->m_mouse.last_mouse_x = val;
break;
case 2:
val = machine.root_device().ioport("mouse3")->read();
ipt = val - state->m_mouse.last_mouse_y;
state->m_mouse.last_mouse_y = val;
break;
}
state->m_mouse.inputtype++;
if(state->m_mouse.inputtype > 2)
{
int i_val = scc->get_reg_b(0);
state->m_mouse.inputtype = 0;
state->m_mouse.bufferempty = 1;
i_val &= ~0x01;
scc->set_reg_b(0, i_val);
logerror("SCC: mouse buffer empty\n");
}
return ipt;
}
/*
0xe98001 - Z8530 command port B
0xe98003 - Z8530 data port B (mouse input)
0xe98005 - Z8530 command port A
0xe98007 - Z8530 data port A (RS232)
*/
static READ16_HANDLER( x68k_scc_r )
{
scc8530_t *scc = space.machine().device<scc8530_t>("scc");
offset %= 4;
switch(offset)
{
case 0:
return scc->reg_r(space, 0);
case 1:
return x68k_read_mouse(space.machine());
case 2:
return scc->reg_r(space, 1);
case 3:
return scc->reg_r(space, 3);
default:
return 0xff;
}
}
static WRITE16_HANDLER( x68k_scc_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
scc8530_t *scc = space.machine().device<scc8530_t>("scc");
offset %= 4;
switch(offset)
{
case 0:
scc->reg_w(space, 0,(UINT8)data);
if((scc->get_reg_b(5) & 0x02) != state->m_scc_prev)
{
if(scc->get_reg_b(5) & 0x02) // Request to Send
{
int val = scc->get_reg_b(0);
state->m_mouse.bufferempty = 0;
val |= 0x01;
scc->set_reg_b(0,val);
}
}
break;
case 1:
scc->reg_w(space, 2,(UINT8)data);
break;
case 2:
scc->reg_w(space, 1,(UINT8)data);
break;
case 3:
scc->reg_w(space, 3,(UINT8)data);
break;
}
state->m_scc_prev = scc->get_reg_b(5) & 0x02;
}
static TIMER_CALLBACK(x68k_scc_ack)
{
x68k_state *state = machine.driver_data<x68k_state>();
scc8530_t *scc = machine.device<scc8530_t>("scc");
if(state->m_mouse.bufferempty != 0) // nothing to do if the mouse data buffer is empty
return;
// if((state->m_ioc.irqstatus & 0xc0) != 0)
// return;
// hard-code the IRQ vector for now, until the SCC code is more complete
if((scc->get_reg_a(9) & 0x08) || (scc->get_reg_b(9) & 0x08)) // SCC reg WR9 is the same for both channels
{
if((scc->get_reg_b(1) & 0x18) != 0) // if bits 3 and 4 of WR1 are 0, then Rx IRQs are disabled on this channel
{
if(scc->get_reg_b(5) & 0x02) // RTS signal
{
state->m_mouse.irqactive = 1;
state->m_current_vector[5] = 0x54;
state->m_current_irq_line = 5;
machine.device("maincpu")->execute().set_input_line_and_vector(5,ASSERT_LINE,0x54);
}
}
}
}
static void x68k_set_adpcm(running_machine &machine)
{
x68k_state *state = machine.driver_data<x68k_state>();
device_t *dev = machine.device("hd63450");
UINT32 rate = 0;
switch(state->m_adpcm.rate & 0x0c)
{
case 0x00:
rate = 7812/2;
break;
case 0x04:
rate = 10417/2;
break;
case 0x08:
rate = 15625/2;
break;
default:
logerror("PPI: Invalid ADPCM sample rate set.\n");
rate = 15625/2;
}
if(state->m_adpcm.clock != 0)
rate = rate/2;
hd63450_set_timer(dev,3,attotime::from_hz(rate));
}
// Megadrive 3 button gamepad
// According to XM6, bits 4 and 7 are always 1 (is this correct?)
// Bits 4 and 5 of PPI port C control each controller's multiplexer
// Button inputs (Start, A, B and C) are read in bits 5 and 6 (rather than 4
// and 5 like on a Megadrive)
static UINT8 md_3button_r(device_t* device, int port)
{
x68k_state *state = device->machine().driver_data<x68k_state>();
if(port == 1)
{
UINT8 porta = device->machine().root_device().ioport("md3b")->read() & 0xff;
UINT8 portb = (state->ioport("md3b")->read() >> 8) & 0xff;
if(state->m_mdctrl.mux1 & 0x10)
{
return porta | 0x90;
}
else
{
return (portb & 0x60) | (porta & 0x03) | 0x90;
}
}
if(port == 2)
{
UINT8 porta = (device->machine().root_device().ioport("md3b")->read() >> 16) & 0xff;
UINT8 portb = (device->machine().root_device().ioport("md3b")->read() >> 24) & 0xff;
if(state->m_mdctrl.mux2 & 0x20)
{
return porta | 0x90;
}
else
{
return (portb & 0x60) | (porta & 0x03) | 0x90;
}
}
return 0xff;
}
// Megadrive 6 button gamepad
static TIMER_CALLBACK(md_6button_port1_timeout)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_mdctrl.seq1 = 0;
}
static TIMER_CALLBACK(md_6button_port2_timeout)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_mdctrl.seq2 = 0;
}
static void md_6button_init(running_machine &machine)
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_mdctrl.io_timeout1 = machine.scheduler().timer_alloc(FUNC(md_6button_port1_timeout));
state->m_mdctrl.io_timeout2 = machine.scheduler().timer_alloc(FUNC(md_6button_port2_timeout));
}
static UINT8 md_6button_r(device_t* device, int port)
{
x68k_state *state = device->machine().driver_data<x68k_state>();
if(port == 1)
{
UINT8 porta = device->machine().root_device().ioport("md6b")->read() & 0xff;
UINT8 portb = (device->machine().root_device().ioport("md6b")->read() >> 8) & 0xff;
UINT8 extra = state->ioport("md6b_extra")->read() & 0x0f;
switch(state->m_mdctrl.seq1)
{
case 1:
default:
if(state->m_mdctrl.mux1 & 0x10)
{
return porta | 0x90;
}
else
{
return (portb & 0x60) | (porta & 0x03) | 0x90;
}
case 2:
if(state->m_mdctrl.mux1 & 0x10)
{
return porta | 0x90;
}
else
{
return (portb & 0x60) | 0x90;
}
case 3:
if(state->m_mdctrl.mux1 & 0x10)
{
return (porta & 0x60) | (extra & 0x0f) | 0x90;
}
else
{
return (portb & 0x60) | 0x9f;
}
}
}
if(port == 2)
{
UINT8 porta = (device->machine().root_device().ioport("md6b")->read() >> 16) & 0xff;
UINT8 portb = (device->machine().root_device().ioport("md6b")->read() >> 24) & 0xff;
UINT8 extra = (device->machine().root_device().ioport("md6b_extra")->read() >> 4) & 0x0f;
switch(state->m_mdctrl.seq2)
{
case 1:
default:
if(state->m_mdctrl.mux2 & 0x20)
{
return porta | 0x90;
}
else
{
return (portb & 0x60) | (porta & 0x03) | 0x90;
}
case 2:
if(state->m_mdctrl.mux2 & 0x20)
{
return porta | 0x90;
}
else
{
return (portb & 0x60) | 0x90;
}
case 3:
if(state->m_mdctrl.mux2 & 0x20)
{
return (porta & 0x60) | (extra & 0x0f) | 0x90;
}
else
{
return (portb & 0x60) | 0x9f;
}
}
}
return 0xff;
}
// XPD-1LR dual D-pad controller.
// Sold with Video Game Anthology Vol 4: Libble Rabble.
// Also compatible with Video Game Anthology Vol 5: Crazy Climber 1 & 2
// Uses the same input multiplexer hardware as Megadrive controllers
// Output is the same as for standard controllers, but when ctl is high,
// the directions refer to the right D-pad, and when low, the left D-pad
// The buttons are read the same as normal, regardless of ctl.
static UINT8 xpd1lr_r(device_t* device, int port)
{
x68k_state *state = device->machine().driver_data<x68k_state>();
if(port == 1)
{
UINT8 porta = device->machine().root_device().ioport("xpd1lr")->read() & 0xff;
UINT8 portb = (state->ioport("xpd1lr")->read() >> 8) & 0xff;
if(state->m_mdctrl.mux1 & 0x10)
{
return porta;
}
else
{
return portb | (porta & 0x60);
}
}
if(port == 2)
{
UINT8 porta = (device->machine().root_device().ioport("xpd1lr")->read() >> 16) & 0xff;
UINT8 portb = (device->machine().root_device().ioport("xpd1lr")->read() >> 24) & 0xff;
if(state->m_mdctrl.mux2 & 0x20)
{
return porta;
}
else
{
return portb | (porta & 0x60);
}
}
return 0xff;
}
// Judging from the XM6 source code, PPI ports A and B are joystick inputs
static READ8_DEVICE_HANDLER( ppi_port_a_r )
{
x68k_state *state = device->machine().driver_data<x68k_state>();
int ctrl = device->machine().root_device().ioport("ctrltype")->read() & 0x0f;
switch(ctrl)
{
case 0x00: // standard MSX/FM-Towns joystick
if(state->m_joy.joy1_enable == 0)
return state->ioport("joy1")->read();
else
return 0xff;
case 0x01: // 3-button Megadrive gamepad
return md_3button_r(device,1);
case 0x02: // 6-button Megadrive gamepad
return md_6button_r(device,1);
case 0x03: // XPD-1LR
return xpd1lr_r(device,1);
}
return 0xff;
}
static READ8_DEVICE_HANDLER( ppi_port_b_r )
{
x68k_state *state = device->machine().driver_data<x68k_state>();
int ctrl = device->machine().root_device().ioport("ctrltype")->read() & 0xf0;
switch(ctrl)
{
case 0x00: // standard MSX/FM-Towns joystick
if(state->m_joy.joy2_enable == 0)
return state->ioport("joy2")->read();
else
return 0xff;
case 0x10: // 3-button Megadrive gamepad
return md_3button_r(device,2);
case 0x20: // 6-button Megadrive gamepad
return md_6button_r(device,2);
case 0x30: // XPD-1LR
return xpd1lr_r(device,2);
}
return 0xff;
}
static READ8_DEVICE_HANDLER( ppi_port_c_r )
{
x68k_state *state = device->machine().driver_data<x68k_state>();
return state->m_ppi_port[2];
}
/* PPI port C (Joystick control, R/W)
bit 7 - IOC7 - Function B operation of joystick 1 (?)
bit 6 - IOC6 - Function A operation of joystick 1 (?)
bit 5 - IOC5 - Enable Joystick 2
bit 4 - IOC4 - Enable Joystick 1
bits 3,2 - ADPCM Sample rate
bits 1,0 - ADPCM Pan
*/
static WRITE8_DEVICE_HANDLER( ppi_port_c_w )
{
x68k_state *state = device->machine().driver_data<x68k_state>();
// ADPCM / Joystick control
device_t *oki = device->machine().device("okim6258");
state->m_ppi_port[2] = data;
if((data & 0x0f) != (state->m_ppi_prev & 0x0f))
{
state->m_adpcm.pan = data & 0x03;
state->m_adpcm.rate = data & 0x0c;
x68k_set_adpcm(device->machine());
okim6258_set_divider(oki, (data >> 2) & 3);
}
// The joystick enable bits also handle the multiplexer for various controllers
state->m_joy.joy1_enable = data & 0x10;
state->m_mdctrl.mux1 = data & 0x10;
if((state->m_ppi_prev & 0x10) == 0x00 && (data & 0x10) == 0x10)
{
state->m_mdctrl.seq1++;
state->m_mdctrl.io_timeout1->adjust(device->machine().device<cpu_device>("maincpu")->cycles_to_attotime(8192));
}
state->m_joy.joy2_enable = data & 0x20;
state->m_mdctrl.mux2 = data & 0x20;
if((state->m_ppi_prev & 0x20) == 0x00 && (data & 0x20) == 0x20)
{
state->m_mdctrl.seq2++;
state->m_mdctrl.io_timeout2->adjust(device->machine().device<cpu_device>("maincpu")->cycles_to_attotime(8192));
}
state->m_ppi_prev = data;
state->m_joy.ioc6 = data & 0x40;
state->m_joy.ioc7 = data & 0x80;
}
// NEC uPD72065 at 0xe94000
static WRITE16_HANDLER( x68k_fdc_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
device_t *fdc = space.machine().device("upd72065");
unsigned int drive, x;
switch(offset)
{
case 0x00:
case 0x01:
upd765_data_w(fdc, space, 0,data);
break;
case 0x02: // drive option signal control
x = data & 0x0f;
for(drive=0;drive<4;drive++)
{
if(state->m_fdc.selected_drive & (1 << drive))
{
if(!(x & (1 << drive))) // functions take place on 1->0 transitions of drive bits only
{
state->m_fdc.led_ctrl[drive] = data & 0x80; // blinking drive LED if no disk inserted
state->m_fdc.led_eject[drive] = data & 0x40; // eject button LED (on when set to 0)
output_set_indexed_value("eject_drv",drive,(data & 0x40) ? 1 : 0);
if(data & 0x20) // ejects disk
{
(dynamic_cast<device_image_interface *>(floppy_get_device(space.machine(), drive)))->unload();
floppy_mon_w(floppy_get_device(space.machine(), drive), ASSERT_LINE);
}
}
}
}
state->m_fdc.selected_drive = data & 0x0f;
logerror("FDC: signal control set to %02x\n",data);
break;
case 0x03:
state->m_fdc.media_density[data & 0x03] = data & 0x10;
state->m_fdc.motor[data & 0x03] = data & 0x80;
floppy_mon_w(floppy_get_device(space.machine(), data & 0x03), !BIT(data, 7));
if(data & 0x80)
{
for(drive=0;drive<4;drive++) // enable motor for this drive
{
if(drive == (data & 0x03))
{
floppy_mon_w(floppy_get_device(space.machine(), drive), CLEAR_LINE);
output_set_indexed_value("access_drv",drive,0);
}
else
output_set_indexed_value("access_drv",drive,1);
}
}
else // BIOS code suggests that setting bit 7 of this port to 0 disables the motor of all floppy drives
{
for(drive=0;drive<4;drive++)
{
floppy_mon_w(floppy_get_device(space.machine(), drive), ASSERT_LINE);
output_set_indexed_value("access_drv",drive,1);
}
}
floppy_drive_set_ready_state(floppy_get_device(space.machine(), 0),1,1);
floppy_drive_set_ready_state(floppy_get_device(space.machine(), 1),1,1);
floppy_drive_set_ready_state(floppy_get_device(space.machine(), 2),1,1);
floppy_drive_set_ready_state(floppy_get_device(space.machine(), 3),1,1);
#if 0
for(drive=0;drive<4;drive++)
{
if(floppy_drive_get_flag_state(floppy_get_device(machine, drive),FLOPPY_DRIVE_MOTOR_ON))
output_set_indexed_value("access_drv",drive,0);
else
output_set_indexed_value("access_drv",drive,1);
}
#endif
logerror("FDC: Drive #%i: Drive selection set to %02x\n",data & 0x03,data);
break;
default:
// logerror("FDC: [%08x] Wrote %04x to invalid FDC port %04x\n",space.device().safe_pc(),data,offset);
break;
}
}
static READ16_HANDLER( x68k_fdc_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
unsigned int ret;
int x;
device_t *fdc = space.machine().device("upd72065");
switch(offset)
{
case 0x00:
return upd765_status_r(fdc, space, 0);
case 0x01:
return upd765_data_r(fdc, space, 0);
case 0x02:
ret = 0x00;
for(x=0;x<4;x++)
{
if(state->m_fdc.selected_drive & (1 << x))
{
ret = 0x00;
if(state->m_fdc.disk_inserted[x] != 0)
{
ret |= 0x80;
}
// bit 7 = disk inserted
// bit 6 = disk error (in insertion, presumably)
logerror("FDC: Drive #%i Disk check - returning %02x\n",x,ret);
}
}
return ret;
case 0x03:
logerror("FDC: IOC selection is write-only\n");
return 0xff;
default:
logerror("FDC: Read from invalid FDC port %04x\n",offset);
return 0xff;
}
}
static WRITE_LINE_DEVICE_HANDLER( fdc_irq )
{
x68k_state *drvstate = device->machine().driver_data<x68k_state>();
if((drvstate->m_ioc.irqstatus & 0x04) && state == ASSERT_LINE)
{
drvstate->m_current_vector[1] = drvstate->m_ioc.fdcvector;
drvstate->m_ioc.irqstatus |= 0x80;
drvstate->m_current_irq_line = 1;
logerror("FDC: IRQ triggered\n");
device->machine().device("maincpu")->execute().set_input_line_and_vector(1, ASSERT_LINE, drvstate->m_current_vector[1]);
}
}
static int x68k_fdc_read_byte(running_machine &machine,int addr)
{
x68k_state *state = machine.driver_data<x68k_state>();
int data = -1;
device_t *fdc = machine.device("upd72065");
if(state->m_fdc.drq_state != 0)
data = upd765_dack_r(fdc, state->generic_space(), 0);
// logerror("FDC: DACK reading\n");
return data;
}
static void x68k_fdc_write_byte(running_machine &machine,int addr, int data)
{
device_t *fdc = machine.device("upd72065");
upd765_dack_w(fdc, machine.driver_data()->generic_space(), 0, data);
}
static WRITE_LINE_DEVICE_HANDLER ( fdc_drq )
{
x68k_state *drvstate = device->machine().driver_data<x68k_state>();
drvstate->m_fdc.drq_state = state;
}
static WRITE16_HANDLER( x68k_fm_w )
{
switch(offset)
{
case 0x00:
case 0x01:
ym2151_w(space.machine().device("ym2151"), space, offset, data);
break;
}
}
static READ16_HANDLER( x68k_fm_r )
{
if(offset == 0x01)
return ym2151_r(space.machine().device("ym2151"), space, 1);
return 0xffff;
}
static WRITE8_DEVICE_HANDLER( x68k_ct_w )
{
x68k_state *state = device->machine().driver_data<x68k_state>();
device_t *fdc = device->machine().device("upd72065");
device_t *okim = device->machine().device("okim6258");
// CT1 and CT2 bits from YM2151 port 0x1b
// CT1 - ADPCM clock - 0 = 8MHz, 1 = 4MHz
// CT2 - 1 = Set ready state of FDC
upd765_ready_w(fdc,data & 0x01);
state->m_adpcm.clock = data & 0x02;
x68k_set_adpcm(device->machine());
okim6258_set_clock(okim, data & 0x02 ? 4000000 : 8000000);
}
/*
Custom I/O controller at 0xe9c000
0xe9c001 (R) - Interrupt status
0xe9c001 (W) - Interrupt mask (low nibble only)
- bit 7 = FDC interrupt
- bit 6 = FDD interrupt
- bit 5 = Printer Busy signal
- bit 4 = HDD interrupt
- bit 3 = HDD interrupts enabled
- bit 2 = FDC interrupts enabled
- bit 1 = FDD interrupts enabled
- bit 0 = Printer interrupts enabled
0xe9c003 (W) - Interrupt vector
- bits 7-2 = vector
- bits 1,0 = device (00 = FDC, 01 = FDD, 10 = HDD, 11 = Printer)
*/
static WRITE16_HANDLER( x68k_ioc_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
switch(offset)
{
case 0x00:
state->m_ioc.irqstatus = data & 0x0f;
logerror("I/O: Status register write %02x\n",data);
break;
case 0x01:
switch(data & 0x03)
{
case 0x00:
state->m_ioc.fdcvector = data & 0xfc;
logerror("IOC: FDC IRQ vector = 0x%02x\n",data & 0xfc);
break;
case 0x01:
state->m_ioc.fddvector = data & 0xfc;
logerror("IOC: FDD IRQ vector = 0x%02x\n",data & 0xfc);
break;
case 0x02:
state->m_ioc.hdcvector = data & 0xfc;
logerror("IOC: HDD IRQ vector = 0x%02x\n",data & 0xfc);
break;
case 0x03:
state->m_ioc.prnvector = data & 0xfc;
logerror("IOC: Printer IRQ vector = 0x%02x\n",data & 0xfc);
break;
}
break;
}
}
static READ16_HANDLER( x68k_ioc_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
switch(offset)
{
case 0x00:
logerror("I/O: Status register read\n");
return (state->m_ioc.irqstatus & 0xdf) | 0x20;
default:
return 0x00;
}
}
/*
System ports at 0xe8e000
Port 1 (0xe8e001) - Monitor contrast (bits 3-0)
Port 2 (0xe8e003) - Display / 3D scope control
- bit 3 - Display control signal (0 = on)
- bit 1 - 3D scope left shutter (0 = closed)
- bit 0 - 3D scope right shutter
Port 3 (0xe8e005) - Colour image unit control (bits 3-0)
Port 4 (0xe8e007) - Keyboard/NMI/Dot clock
- bit 3 - (R) 1 = Keyboard connected, (W) 1 = Key data can be transmitted
- bit 1 - NMI Reset
- bit 0 - HRL - high resolution dot clock - 1 = 1/2, 1/4, 1/8, 0 = 1/2, 1/3, 1/6 (normal)
Port 5 (0xe8e009) - ROM (bits 7-4)/DRAM (bits 3-0) wait, X68030 only
Port 6 (0xe8e00b) - CPU type and clock speed (XVI or later only, X68000 returns 0xFF)
- bits 7-4 - CPU Type (1100 = 68040, 1101 = 68030, 1110 = 68020, 1111 = 68000)
- bits 3-0 - clock speed (1001 = 50MHz, 40, 33, 25, 20, 16, 1111 = 10MHz)
Port 7 (0xe8e00d) - SRAM write enable - if 0x31 is written to this port, writing to SRAM is allowed.
Any other value, then SRAM is read only.
Port 8 (0xe8e00f) - Power off control - write 0x00, 0x0f, 0x0f sequentially to switch power off.
*/
static WRITE16_HANDLER( x68k_sysport_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
switch(offset)
{
case 0x00:
state->m_sysport.contrast = data & 0x0f; // often used for screen fades / blanking
// TODO: implement a decent, not slow, brightness control
break;
case 0x01:
state->m_sysport.monitor = data & 0x08;
break;
case 0x03:
state->m_sysport.keyctrl = data & 0x08; // bit 3 = enable keyboard data transmission
break;
case 0x06:
state->m_sysport.sram_writeprotect = data;
break;
default:
// logerror("SYS: [%08x] Wrote %04x to invalid or unimplemented system port %04x\n",space.device().safe_pc(),data,offset);
break;
}
}
static READ16_HANDLER( x68k_sysport_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
int ret = 0;
switch(offset)
{
case 0x00: // monitor contrast setting (bits3-0)
return state->m_sysport.contrast;
case 0x01: // monitor control (bit3) / 3D Scope (bits1,0)
ret |= state->m_sysport.monitor;
return ret;
case 0x03: // bit 3 = key control (is 1 if keyboard is connected)
return 0x08;
case 0x05: // CPU type and speed
return state->m_sysport.cputype;
default:
logerror("Read from invalid or unimplemented system port %04x\n",offset);
return 0xff;
}
}
#ifdef UNUSED_FUNCTION
static READ16_HANDLER( x68k_mfp_r )
{
device_t *x68k_mfp = space.machine().device(MC68901_TAG);
return mc68901_register_r(x68k_mfp, offset);
}
#endif
static READ16_HANDLER( x68k_mfp_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
// Initial settings indicate that IRQs are generated for FM (YM2151), Receive buffer error or full,
// MFP Timer C, and the power switch
// logerror("MFP: [%08x] Reading offset %i\n",space.device().safe_pc(),offset);
switch(offset)
{
#if 0
case 0x00: // GPIP - General purpose I/O register (read-only)
ret = 0x23;
if(machine.primary_screen->vpos() == state->m_crtc.reg[9])
ret |= 0x40;
if(state->m_crtc.vblank == 0)
ret |= 0x10; // Vsync signal (low if in vertical retrace)
// if(state->m_mfp.isrb & 0x08)
// ret |= 0x08; // FM IRQ signal
if(machine.primary_screen->hpos() > state->m_crtc.width - 32)
ret |= 0x80; // Hsync signal
// logerror("MFP: [%08x] Reading offset %i (ret=%02x)\n",space.device().safe_pc(),offset,ret);
return ret; // bit 5 is always 1
case 3:
return state->m_mfp.iera;
case 4:
return state->m_mfp.ierb;
case 5:
return state->m_mfp.ipra;
case 6:
return state->m_mfp.iprb;
case 7:
if(state->m_mfp.eoi_mode == 0) // forced low in auto EOI mode
return 0;
else
return state->m_mfp.isra;
case 8:
if(state->m_mfp.eoi_mode == 0) // forced low in auto EOI mode
return 0;
else
return state->m_mfp.isrb;
case 9:
return state->m_mfp.imra;
case 10:
return state->m_mfp.imrb;
case 15: // TADR
return state->m_mfp.timer[0].counter; // Timer data registers return their main counter values
case 16: // TBDR
return state->m_mfp.timer[1].counter;
case 17: // TCDR
return state->m_mfp.timer[2].counter;
case 18: // TDDR
return state->m_mfp.timer[3].counter;
#endif
case 21: // RSR
return state->m_mfp.rsr;
case 22: // TSR
return state->m_mfp.tsr | 0x80; // buffer is typically empty?
case 23:
return x68k_keyboard_pop_scancode(state);
default:
if (ACCESSING_BITS_0_7) return state->m_mfpdev->read(space, offset);
}
return 0xffff;
}
static WRITE16_HANDLER( x68k_mfp_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
/* For the Interrupt registers, the bits are set out as such:
Reg A - bit 7: GPIP7 (HSync)
bit 6: GPIP6 (CRTC CIRQ)
bit 5: Timer A
bit 4: Receive buffer full
bit 3: Receive error
bit 2: Transmit buffer empty
bit 1: Transmit error
bit 0: Timer B
Reg B - bit 7: GPIP5 (Unused, always 1)
bit 6: GPIP4 (VSync)
bit 5: Timer C
bit 4: Timer D
bit 3: GPIP3 (FM IRQ)
bit 2: GPIP2 (Power switch)
bit 1: GPIP1 (EXPON)
bit 0: GPIP0 (Alarm)
*/
switch(offset)
{
#if 0
case 0: // GPDR
// All bits are inputs generally, so no action taken.
break;
case 1: // AER
state->m_mfp.aer = data;
break;
case 2: // DDR
state->m_mfp.ddr = data; // usually all bits are 0 (input)
break;
case 3: // IERA
state->m_mfp.iera = data;
break;
case 4: // IERB
state->m_mfp.ierb = data;
break;
case 5: // IPRA
state->m_mfp.ipra = data;
break;
case 6: // IPRB
state->m_mfp.iprb = data;
break;
case 7:
state->m_mfp.isra = data;
break;
case 8:
state->m_mfp.isrb = data;
break;
case 9:
state->m_mfp.imra = data;
// mfp_update_irq(0);
// logerror("MFP: IRQ Mask A write: %02x\n",data);
break;
case 10:
state->m_mfp.imrb = data;
// mfp_update_irq(0);
// logerror("MFP: IRQ Mask B write: %02x\n",data);
break;
case 11: // VR
state->m_mfp.vr = 0x40;//data; // High 4 bits = high 4 bits of IRQ vector
state->m_mfp.eoi_mode = data & 0x08; // 0 = Auto, 1 = Software End-of-interrupt
if(state->m_mfp.eoi_mode == 0) // In-service registers are cleared if this bit is cleared.
{
state->m_mfp.isra = 0;
state->m_mfp.isrb = 0;
}
break;
case 12: // TACR
state->m_mfp.tacr = data;
mfp_set_timer(0,data & 0x0f);
break;
case 13: // TBCR
state->m_mfp.tbcr = data;
mfp_set_timer(1,data & 0x0f);
break;
case 14: // TCDCR
state->m_mfp.tcdcr = data;
mfp_set_timer(2,(data & 0x70)>>4);
mfp_set_timer(3,data & 0x07);
break;
case 15: // TADR
state->m_mfp.tadr = data;
state->m_mfp.timer[0].counter = data;
break;
case 16: // TBDR
state->m_mfp.tbdr = data;
state->m_mfp.timer[1].counter = data;
break;
case 17: // TCDR
state->m_mfp.tcdr = data;
state->m_mfp.timer[2].counter = data;
break;
case 18: // TDDR
state->m_mfp.tddr = data;
state->m_mfp.timer[3].counter = data;
break;
case 20:
state->m_mfp.ucr = data;
break;
#endif
case 21:
if(data & 0x01)
state->m_mfp.usart.recv_enable = 1;
else
state->m_mfp.usart.recv_enable = 0;
break;
case 22:
if(data & 0x01)
state->m_mfp.usart.send_enable = 1;
else
state->m_mfp.usart.send_enable = 0;
break;
case 23:
if(state->m_mfp.usart.send_enable != 0)
{
// Keyboard control command.
state->m_mfp.usart.send_buffer = data;
x68k_keyboard_ctrl_w(state, data);
// logerror("MFP: [%08x] USART Sent data %04x\n",space.device().safe_pc(),data);
}
break;
default:
if (ACCESSING_BITS_0_7) state->m_mfpdev->write(space, offset, data & 0xff);
return;
}
}
static WRITE16_HANDLER( x68k_ppi_w )
{
i8255_device *ppi = space.machine().device<i8255_device>("ppi8255");
ppi->write(space,offset & 0x03,data);
}
static READ16_HANDLER( x68k_ppi_r )
{
i8255_device *ppi = space.machine().device<i8255_device>("ppi8255");
return ppi->read(space,offset & 0x03);
}
static READ16_HANDLER( x68k_rtc_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
return state->m_rtc->read(space, offset);
}
static WRITE16_HANDLER( x68k_rtc_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
state->m_rtc->write(space, offset, data);
}
static WRITE_LINE_DEVICE_HANDLER( x68k_rtc_alarm_irq )
{
x68k_state *drvstate = device->machine().driver_data<x68k_state>();
if(drvstate->m_mfp.aer & 0x01)
{
if(state == 1)
{
drvstate->m_mfp.gpio |= 0x01;
drvstate->m_mfpdev->i0_w(1);
//mfp_trigger_irq(MFP_IRQ_GPIP0); // RTC ALARM
}
}
else
{
if(state == 0)
{
drvstate->m_mfp.gpio &= ~0x01;
drvstate->m_mfpdev->i0_w(0);
//mfp_trigger_irq(MFP_IRQ_GPIP0); // RTC ALARM
}
}
}
static WRITE16_HANDLER( x68k_sram_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
if(state->m_sysport.sram_writeprotect == 0x31)
{
COMBINE_DATA(state->m_nvram16 + offset);
}
}
static READ16_HANDLER( x68k_sram_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
// HACKS!
// if(offset == 0x5a/2) // 0x5a should be 0 if no SASI HDs are present.
// return 0x0000;
if(offset == 0x08/2)
return space.machine().device<ram_device>(RAM_TAG)->size() >> 16; // RAM size
#if 0
if(offset == 0x46/2)
return 0x0024;
if(offset == 0x6e/2)
return 0xff00;
if(offset == 0x70/2)
return 0x0700;
#endif
return state->m_nvram16[offset];
}
static READ32_HANDLER( x68k_sram32_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
if(offset == 0x08/4)
return (space.machine().device<ram_device>(RAM_TAG)->size() & 0xffff0000); // RAM size
#if 0
if(offset == 0x46/2)
return 0x0024;
if(offset == 0x6e/2)
return 0xff00;
if(offset == 0x70/2)
return 0x0700;
#endif
return state->m_nvram32[offset];
}
static WRITE32_HANDLER( x68k_sram32_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
if(state->m_sysport.sram_writeprotect == 0x31)
{
COMBINE_DATA(state->m_nvram32 + offset);
}
}
static WRITE16_HANDLER( x68k_vid_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
int val;
if(offset < 0x100) // Graphic layer palette
{
COMBINE_DATA(state->m_video.gfx_pal+offset);
val = state->m_video.gfx_pal[offset];
palette_set_color_rgb(space.machine(),offset,(val & 0x07c0) >> 3,(val & 0xf800) >> 8,(val & 0x003e) << 2);
return;
}
if(offset >= 0x100 && offset < 0x200) // Text / Sprites / Tilemap palette
{
COMBINE_DATA(state->m_video.text_pal+(offset-0x100));
val = state->m_video.text_pal[offset-0x100];
palette_set_color_rgb(space.machine(),offset,(val & 0x07c0) >> 3,(val & 0xf800) >> 8,(val & 0x003e) << 2);
return;
}
switch(offset)
{
case 0x200:
COMBINE_DATA(state->m_video.reg);
break;
case 0x280: // priority levels
COMBINE_DATA(state->m_video.reg+1);
if(ACCESSING_BITS_0_7)
{
state->m_video.gfxlayer_pri[0] = data & 0x0003;
state->m_video.gfxlayer_pri[1] = (data & 0x000c) >> 2;
state->m_video.gfxlayer_pri[2] = (data & 0x0030) >> 4;
state->m_video.gfxlayer_pri[3] = (data & 0x00c0) >> 6;
}
if(ACCESSING_BITS_8_15)
{
state->m_video.gfx_pri = (data & 0x0300) >> 8;
state->m_video.text_pri = (data & 0x0c00) >> 10;
state->m_video.sprite_pri = (data & 0x3000) >> 12;
if(state->m_video.gfx_pri == 3)
state->m_video.gfx_pri--;
if(state->m_video.text_pri == 3)
state->m_video.text_pri--;
if(state->m_video.sprite_pri == 3)
state->m_video.sprite_pri--;
}
break;
case 0x300:
COMBINE_DATA(state->m_video.reg+2);
break;
default:
logerror("VC: Invalid video controller write (offset = 0x%04x, data = %04x)\n",offset,data);
}
}
static READ16_HANDLER( x68k_vid_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
if(offset < 0x100)
return state->m_video.gfx_pal[offset];
if(offset >= 0x100 && offset < 0x200)
return state->m_video.text_pal[offset-0x100];
switch(offset)
{
case 0x200:
return state->m_video.reg[0];
case 0x280:
return state->m_video.reg[1];
case 0x300:
return state->m_video.reg[2];
default:
logerror("VC: Invalid video controller read (offset = 0x%04x)\n",offset);
}
return 0xff;
}
static READ16_HANDLER( x68k_areaset_r )
{
// register is write-only
return 0xffff;
}
static WRITE16_HANDLER( x68k_areaset_w )
{
// TODO
logerror("SYS: Supervisor area set: 0x%02x\n",data & 0xff);
}
static WRITE16_HANDLER( x68k_enh_areaset_w )
{
// TODO
logerror("SYS: Enhanced Supervisor area set (from %iMB): 0x%02x\n",(offset + 1) * 2,data & 0xff);
}
static TIMER_CALLBACK(x68k_bus_error)
{
int val = param;
int v;
UINT8 *ram = machine.device<ram_device>(RAM_TAG)->pointer();
if(strcmp(machine.system().name,"x68030") == 0)
v = 0x0b;
else
v = 0x09;
if(ram[v] != 0x02) // normal vector for bus errors points to 02FF0540
{
machine.device("maincpu")->execute().set_input_line(M68K_LINE_BUSERROR, ASSERT_LINE);
machine.device("maincpu")->execute().set_input_line(M68K_LINE_BUSERROR, CLEAR_LINE);
popmessage("Bus error: Unused RAM access [%08x]", val);
}
}
static READ16_HANDLER( x68k_rom0_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
/* this location contains the address of some expansion device ROM, if no ROM exists,
then access causes a bus error */
state->m_current_vector[2] = 0x02; // bus error
state->m_current_irq_line = 2;
// space.machine().device("maincpu")->execute().set_input_line_and_vector(2,ASSERT_LINE,state->m_current_vector[2]);
if(state->ioport("options")->read() & 0x02)
{
offset *= 2;
if(ACCESSING_BITS_0_7)
offset++;
space.machine().scheduler().timer_set(space.machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), FUNC(x68k_bus_error), 0xbffffc+offset);
}
return 0xff;
}
static WRITE16_HANDLER( x68k_rom0_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
/* this location contains the address of some expansion device ROM, if no ROM exists,
then access causes a bus error */
state->m_current_vector[2] = 0x02; // bus error
state->m_current_irq_line = 2;
// space.machine().device("maincpu")->execute().set_input_line_and_vector(2,ASSERT_LINE,state->m_current_vector[2]);
if(state->ioport("options")->read() & 0x02)
{
offset *= 2;
if(ACCESSING_BITS_0_7)
offset++;
space.machine().scheduler().timer_set(space.machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), FUNC(x68k_bus_error), 0xbffffc+offset);
}
}
static READ16_HANDLER( x68k_emptyram_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
/* this location is unused RAM, access here causes a bus error
Often a method for detecting amount of installed RAM, is to read or write at 1MB intervals, until a bus error occurs */
state->m_current_vector[2] = 0x02; // bus error
state->m_current_irq_line = 2;
// space.machine().device("maincpu")->execute().set_input_line_and_vector(2,ASSERT_LINE,state->m_current_vector[2]);
if(state->ioport("options")->read() & 0x02)
{
offset *= 2;
if(ACCESSING_BITS_0_7)
offset++;
space.machine().scheduler().timer_set(space.machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), FUNC(x68k_bus_error), offset);
}
return 0xff;
}
static WRITE16_HANDLER( x68k_emptyram_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
/* this location is unused RAM, access here causes a bus error
Often a method for detecting amount of installed RAM, is to read or write at 1MB intervals, until a bus error occurs */
state->m_current_vector[2] = 0x02; // bus error
state->m_current_irq_line = 2;
// space.machine().device("maincpu")->execute().set_input_line_and_vector(2,ASSERT_LINE,state->m_current_vector[2]);
if(state->ioport("options")->read() & 0x02)
{
offset *= 2;
if(ACCESSING_BITS_0_7)
offset++;
space.machine().scheduler().timer_set(space.machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), FUNC(x68k_bus_error), offset);
}
}
static READ16_HANDLER( x68k_exp_r )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
/* These are expansion devices, if not present, they cause a bus error */
if(state->ioport("options")->read() & 0x02)
{
state->m_current_vector[2] = 0x02; // bus error
state->m_current_irq_line = 2;
offset *= 2;
if(ACCESSING_BITS_0_7)
offset++;
space.machine().scheduler().timer_set(space.machine().device<cpu_device>("maincpu")->cycles_to_attotime(16), FUNC(x68k_bus_error), 0xeafa00+offset);
// machine.device("maincpu")->execute().set_input_line_and_vector(2,ASSERT_LINE,state->m_current_vector[2]);
}
return 0xffff;
}
static WRITE16_HANDLER( x68k_exp_w )
{
x68k_state *state = space.machine().driver_data<x68k_state>();
/* These are expansion devices, if not present, they cause a bus error */
if(state->ioport("options")->read() & 0x02)
{
state->m_current_vector[2] = 0x02; // bus error
state->m_current_irq_line = 2;
offset *= 2;
if(ACCESSING_BITS_0_7)
offset++;
space.machine().scheduler().timer_set(space.machine().device<cpu_device>("maincpu")->cycles_to_attotime(16), FUNC(x68k_bus_error), 0xeafa00+offset);
// machine.device("maincpu")->execute().set_input_line_and_vector(2,ASSERT_LINE,state->m_current_vector[2]);
}
}
static void x68k_dma_irq(running_machine &machine, int channel)
{
x68k_state *state = machine.driver_data<x68k_state>();
device_t *device = machine.device("hd63450");
state->m_current_vector[3] = hd63450_get_vector(device, channel);
state->m_current_irq_line = 3;
logerror("DMA#%i: DMA End (vector 0x%02x)\n",channel,state->m_current_vector[3]);
machine.device("maincpu")->execute().set_input_line_and_vector(3,ASSERT_LINE,state->m_current_vector[3]);
}
static void x68k_dma_end(running_machine &machine, int channel,int irq)
{
if(irq != 0)
{
x68k_dma_irq(machine, channel);
}
}
static void x68k_dma_error(running_machine &machine, int channel, int irq)
{
x68k_state *state = machine.driver_data<x68k_state>();
device_t *device = machine.device("hd63450");
if(irq != 0)
{
state->m_current_vector[3] = hd63450_get_error_vector(device,channel);
state->m_current_irq_line = 3;
machine.device("maincpu")->execute().set_input_line_and_vector(3,ASSERT_LINE,state->m_current_vector[3]);
}
}
static void x68k_fm_irq(device_t *device, int irq)
{
x68k_state *state = device->machine().driver_data<x68k_state>();
if(irq == CLEAR_LINE)
{
state->m_mfp.gpio |= 0x08;
state->m_mfpdev->i3_w(1);
}
else
{
state->m_mfp.gpio &= ~0x08;
state->m_mfpdev->i3_w(0);
}
}
READ8_MEMBER( x68k_state::mfp_gpio_r )
{
UINT8 data = m_mfp.gpio;
data &= ~(m_crtc.hblank << 7);
data &= ~(m_crtc.vblank << 4);
data |= 0x23; // GPIP5 is unused, always 1
// m_mfpdev->tai_w(state->m_crtc.vblank);
return data;
}
static WRITE8_DEVICE_HANDLER( x68030_adpcm_w )
{
switch(offset)
{
case 0x00:
okim6258_ctrl_w(device,space,0,data);
break;
case 0x01:
okim6258_data_w(device,space,0,data);
break;
}
}
static WRITE_LINE_DEVICE_HANDLER( mfp_irq_callback )
{
x68k_state *drvstate = device->machine().driver_data<x68k_state>();
if(drvstate->m_mfp_prev == CLEAR_LINE && state == CLEAR_LINE) // eliminate unnecessary calls to set the IRQ line for speed reasons
return;
if(state != CLEAR_LINE)
state = HOLD_LINE; // to get around erroneous spurious interrupt
// if((state->m_ioc.irqstatus & 0xc0) != 0) // if the FDC is busy, then we don't want to miss that IRQ
// return;
device->machine().device("maincpu")->execute().set_input_line(6, state);
drvstate->m_current_vector[6] = 0;
drvstate->m_mfp_prev = state;
}
INTERRUPT_GEN_MEMBER(x68k_state::x68k_vsync_irq)
{
#if 0
x68k_state *state = machine.driver_data<x68k_state>();
if(m_mfp.ierb & 0x40)
{
m_mfp.isrb |= 0x40;
m_current_vector[6] = (m_mfp.vr & 0xf0) | 0x06; // GPIP4 (V-DISP)
m_current_irq_line = 6;
mfp_timer_a_callback(0); // Timer A is usually always in event count mode, and is tied to V-DISP
mfp_trigger_irq(MFP_IRQ_GPIP4);
}
if(m_crtc.height == 256)
machine.primary_screen->update_partial(256);//m_crtc.reg[4]/2);
else
machine.primary_screen->update_partial(512);//m_crtc.reg[4]);
#endif
}
static IRQ_CALLBACK(x68k_int_ack)
{
x68k_state *state = device->machine().driver_data<x68k_state>();
if(irqline == 6) // MFP
{
state->m_mfp.current_irq = -1;
if(state->m_current_vector[6] != 0x4b && state->m_current_vector[6] != 0x4c)
state->m_current_vector[6] = state->m_mfpdev->get_vector();
else
device->machine().device("maincpu")->execute().set_input_line_and_vector(irqline,CLEAR_LINE,state->m_current_vector[irqline]);
logerror("SYS: IRQ acknowledged (vector=0x%02x, line = %i)\n",state->m_current_vector[6],irqline);
return state->m_current_vector[6];
}
device->machine().device("maincpu")->execute().set_input_line_and_vector(irqline,CLEAR_LINE,state->m_current_vector[irqline]);
if(irqline == 1) // IOSC
{
state->m_ioc.irqstatus &= ~0xf0;
}
if(irqline == 5) // SCC
{
state->m_mouse.irqactive = 0;
}
logerror("SYS: IRQ acknowledged (vector=0x%02x, line = %i)\n",state->m_current_vector[irqline],irqline);
return state->m_current_vector[irqline];
}
static WRITE_LINE_DEVICE_HANDLER( x68k_scsi_irq )
{
x68k_state *tstate = device->machine().driver_data<x68k_state>();
// TODO : Internal SCSI IRQ vector 0x6c, External SCSI IRQ vector 0xf6, IRQs go through the IOSC (IRQ line 1)
if(state != 0)
{
tstate->m_current_vector[1] = 0x6c;
tstate->m_current_irq_line = 1;
device->machine().device("maincpu")->execute().set_input_line_and_vector(1,ASSERT_LINE,tstate->m_current_vector[1]);
}
}
static WRITE_LINE_DEVICE_HANDLER( x68k_scsi_drq )
{
// TODO
}
static ADDRESS_MAP_START(x68k_map, AS_PROGRAM, 16, x68k_state )
// AM_RANGE(0x000000, 0xbfffff) AM_RAMBANK(1)
AM_RANGE(0xbffffc, 0xbfffff) AM_READWRITE_LEGACY(x68k_rom0_r, x68k_rom0_w)
// AM_RANGE(0xc00000, 0xdfffff) AM_READWRITE_LEGACY(x68k_gvram_r, x68k_gvram_w) AM_SHARE("gvram")
// AM_RANGE(0xe00000, 0xe7ffff) AM_READWRITE_LEGACY(x68k_tvram_r, x68k_tvram_w) AM_SHARE("tvram")
AM_RANGE(0xc00000, 0xdfffff) AM_RAMBANK("bank2") AM_SHARE("gvram16")
AM_RANGE(0xe00000, 0xe7ffff) AM_RAMBANK("bank3") AM_SHARE("tvram16")
AM_RANGE(0xe80000, 0xe81fff) AM_READWRITE_LEGACY(x68k_crtc_r, x68k_crtc_w)
AM_RANGE(0xe82000, 0xe83fff) AM_READWRITE_LEGACY(x68k_vid_r, x68k_vid_w)
AM_RANGE(0xe84000, 0xe85fff) AM_READWRITE_LEGACY(x68k_dmac_r, x68k_dmac_w)
AM_RANGE(0xe86000, 0xe87fff) AM_READWRITE_LEGACY(x68k_areaset_r, x68k_areaset_w)
AM_RANGE(0xe88000, 0xe89fff) AM_READWRITE_LEGACY(x68k_mfp_r, x68k_mfp_w)
AM_RANGE(0xe8a000, 0xe8bfff) AM_READWRITE_LEGACY(x68k_rtc_r, x68k_rtc_w)
// AM_RANGE(0xe8c000, 0xe8dfff) AM_READWRITE_LEGACY(x68k_printer_r, x68k_printer_w)
AM_RANGE(0xe8e000, 0xe8ffff) AM_READWRITE_LEGACY(x68k_sysport_r, x68k_sysport_w)
AM_RANGE(0xe90000, 0xe91fff) AM_READWRITE_LEGACY(x68k_fm_r, x68k_fm_w)
AM_RANGE(0xe92000, 0xe92001) AM_DEVREADWRITE8_LEGACY("okim6258", okim6258_status_r, okim6258_ctrl_w, 0x00ff)
AM_RANGE(0xe92002, 0xe92003) AM_DEVREADWRITE8_LEGACY("okim6258", okim6258_status_r, okim6258_data_w, 0x00ff)
AM_RANGE(0xe94000, 0xe95fff) AM_READWRITE_LEGACY(x68k_fdc_r, x68k_fdc_w)
AM_RANGE(0xe96000, 0xe9601f) AM_DEVREADWRITE("x68k_hdc", x68k_hdc_image_device, hdc_r, hdc_w)
AM_RANGE(0xe98000, 0xe99fff) AM_READWRITE_LEGACY(x68k_scc_r, x68k_scc_w)
AM_RANGE(0xe9a000, 0xe9bfff) AM_READWRITE_LEGACY(x68k_ppi_r, x68k_ppi_w)
AM_RANGE(0xe9c000, 0xe9dfff) AM_READWRITE_LEGACY(x68k_ioc_r, x68k_ioc_w)
AM_RANGE(0xea0000, 0xea1fff) AM_READWRITE_LEGACY(x68k_exp_r, x68k_exp_w) // external SCSI ROM and controller
AM_RANGE(0xeafa00, 0xeafa1f) AM_READWRITE_LEGACY(x68k_exp_r, x68k_exp_w)
AM_RANGE(0xeafa80, 0xeafa89) AM_READWRITE_LEGACY(x68k_areaset_r, x68k_enh_areaset_w)
AM_RANGE(0xeb0000, 0xeb7fff) AM_READWRITE_LEGACY(x68k_spritereg_r, x68k_spritereg_w)
AM_RANGE(0xeb8000, 0xebffff) AM_READWRITE_LEGACY(x68k_spriteram_r, x68k_spriteram_w)
AM_RANGE(0xece000, 0xece3ff) AM_READWRITE_LEGACY(x68k_exp_r, x68k_exp_w) // User I/O
// AM_RANGE(0xed0000, 0xed3fff) AM_READWRITE_LEGACY(sram_r, sram_w)
AM_RANGE(0xed0000, 0xed3fff) AM_RAMBANK("bank4") AM_SHARE("nvram16")
AM_RANGE(0xed4000, 0xefffff) AM_NOP
AM_RANGE(0xf00000, 0xfbffff) AM_ROM
AM_RANGE(0xfc0000, 0xfdffff) AM_READWRITE_LEGACY(x68k_exp_r, x68k_exp_w) // internal SCSI ROM
AM_RANGE(0xfe0000, 0xffffff) AM_ROM
ADDRESS_MAP_END
static ADDRESS_MAP_START(x68kxvi_map, AS_PROGRAM, 16, x68k_state )
// AM_RANGE(0x000000, 0xbfffff) AM_RAMBANK(1)
AM_RANGE(0xbffffc, 0xbfffff) AM_READWRITE_LEGACY(x68k_rom0_r, x68k_rom0_w)
// AM_RANGE(0xc00000, 0xdfffff) AM_READWRITE_LEGACY(x68k_gvram_r, x68k_gvram_w) AM_SHARE("gvram")
// AM_RANGE(0xe00000, 0xe7ffff) AM_READWRITE_LEGACY(x68k_tvram_r, x68k_tvram_w) AM_SHARE("tvram")
AM_RANGE(0xc00000, 0xdfffff) AM_RAMBANK("bank2") AM_SHARE("gvram16")
AM_RANGE(0xe00000, 0xe7ffff) AM_RAMBANK("bank3") AM_SHARE("tvram16")
AM_RANGE(0xe80000, 0xe81fff) AM_READWRITE_LEGACY(x68k_crtc_r, x68k_crtc_w)
AM_RANGE(0xe82000, 0xe83fff) AM_READWRITE_LEGACY(x68k_vid_r, x68k_vid_w)
AM_RANGE(0xe84000, 0xe85fff) AM_READWRITE_LEGACY(x68k_dmac_r, x68k_dmac_w)
AM_RANGE(0xe86000, 0xe87fff) AM_READWRITE_LEGACY(x68k_areaset_r, x68k_areaset_w)
AM_RANGE(0xe88000, 0xe89fff) AM_READWRITE_LEGACY(x68k_mfp_r, x68k_mfp_w)
AM_RANGE(0xe8a000, 0xe8bfff) AM_READWRITE_LEGACY(x68k_rtc_r, x68k_rtc_w)
// AM_RANGE(0xe8c000, 0xe8dfff) AM_READWRITE_LEGACY(x68k_printer_r, x68k_printer_w)
AM_RANGE(0xe8e000, 0xe8ffff) AM_READWRITE_LEGACY(x68k_sysport_r, x68k_sysport_w)
AM_RANGE(0xe90000, 0xe91fff) AM_READWRITE_LEGACY(x68k_fm_r, x68k_fm_w)
AM_RANGE(0xe92000, 0xe92001) AM_DEVREADWRITE8_LEGACY("okim6258", okim6258_status_r, okim6258_ctrl_w, 0x00ff)
AM_RANGE(0xe92002, 0xe92003) AM_DEVREADWRITE8_LEGACY("okim6258", okim6258_status_r, okim6258_data_w, 0x00ff)
AM_RANGE(0xe94000, 0xe95fff) AM_READWRITE_LEGACY(x68k_fdc_r, x68k_fdc_w)
// AM_RANGE(0xe96000, 0xe9601f) AM_DEVREADWRITE_LEGACY("x68k_hdc",x68k_hdc_r, x68k_hdc_w)
AM_RANGE(0xe96020, 0xe9603f) AM_DEVREADWRITE8("scsi:mb89352",mb89352_device,mb89352_r,mb89352_w,0x00ff)
AM_RANGE(0xe98000, 0xe99fff) AM_READWRITE_LEGACY(x68k_scc_r, x68k_scc_w)
AM_RANGE(0xe9a000, 0xe9bfff) AM_READWRITE_LEGACY(x68k_ppi_r, x68k_ppi_w)
AM_RANGE(0xe9c000, 0xe9dfff) AM_READWRITE_LEGACY(x68k_ioc_r, x68k_ioc_w)
AM_RANGE(0xea0000, 0xea1fff) AM_READWRITE_LEGACY(x68k_exp_r, x68k_exp_w) // external SCSI ROM and controller
AM_RANGE(0xeafa00, 0xeafa1f) AM_READWRITE_LEGACY(x68k_exp_r, x68k_exp_w)
AM_RANGE(0xeafa80, 0xeafa89) AM_READWRITE_LEGACY(x68k_areaset_r, x68k_enh_areaset_w)
AM_RANGE(0xeb0000, 0xeb7fff) AM_READWRITE_LEGACY(x68k_spritereg_r, x68k_spritereg_w)
AM_RANGE(0xeb8000, 0xebffff) AM_READWRITE_LEGACY(x68k_spriteram_r, x68k_spriteram_w)
AM_RANGE(0xece000, 0xece3ff) AM_READWRITE_LEGACY(x68k_exp_r, x68k_exp_w) // User I/O
// AM_RANGE(0xed0000, 0xed3fff) AM_READWRITE_LEGACY(sram_r, sram_w)
AM_RANGE(0xed0000, 0xed3fff) AM_RAMBANK("bank4") AM_SHARE("nvram16")
AM_RANGE(0xed4000, 0xefffff) AM_NOP
AM_RANGE(0xf00000, 0xfbffff) AM_ROM
AM_RANGE(0xfc0000, 0xfdffff) AM_ROM // internal SCSI ROM
AM_RANGE(0xfe0000, 0xffffff) AM_ROM
ADDRESS_MAP_END
static ADDRESS_MAP_START(x68030_map, AS_PROGRAM, 32, x68k_state )
ADDRESS_MAP_GLOBAL_MASK(0x00ffffff) // Still only has 24-bit address space
// AM_RANGE(0x000000, 0xbfffff) AM_RAMBANK(1)
AM_RANGE(0xbffffc, 0xbfffff) AM_READWRITE16_LEGACY(x68k_rom0_r, x68k_rom0_w,0xffffffff)
// AM_RANGE(0xc00000, 0xdfffff) AM_READWRITE_LEGACY(x68k_gvram_r, x68k_gvram_w) AM_SHARE("gvram")
// AM_RANGE(0xe00000, 0xe7ffff) AM_READWRITE_LEGACY(x68k_tvram_r, x68k_tvram_w) AM_SHARE("tvram")
AM_RANGE(0xc00000, 0xdfffff) AM_RAMBANK("bank2") AM_SHARE("gvram32")
AM_RANGE(0xe00000, 0xe7ffff) AM_RAMBANK("bank3") AM_SHARE("tvram32")
AM_RANGE(0xe80000, 0xe81fff) AM_READWRITE16_LEGACY(x68k_crtc_r, x68k_crtc_w,0xffffffff)
AM_RANGE(0xe82000, 0xe83fff) AM_READWRITE16_LEGACY(x68k_vid_r, x68k_vid_w,0xffffffff)
AM_RANGE(0xe84000, 0xe85fff) AM_READWRITE16_LEGACY(x68k_dmac_r, x68k_dmac_w,0xffffffff)
AM_RANGE(0xe86000, 0xe87fff) AM_READWRITE16_LEGACY(x68k_areaset_r, x68k_areaset_w,0xffffffff)
AM_RANGE(0xe88000, 0xe89fff) AM_READWRITE16_LEGACY(x68k_mfp_r, x68k_mfp_w,0xffffffff)
AM_RANGE(0xe8a000, 0xe8bfff) AM_READWRITE16_LEGACY(x68k_rtc_r, x68k_rtc_w,0xffffffff)
// AM_RANGE(0xe8c000, 0xe8dfff) AM_READWRITE_LEGACY(x68k_printer_r, x68k_printer_w)
AM_RANGE(0xe8e000, 0xe8ffff) AM_READWRITE16_LEGACY(x68k_sysport_r, x68k_sysport_w,0xffffffff)
AM_RANGE(0xe90000, 0xe91fff) AM_READWRITE16_LEGACY(x68k_fm_r, x68k_fm_w,0xffffffff)
AM_RANGE(0xe92000, 0xe92003) AM_DEVREADWRITE8_LEGACY("okim6258", okim6258_status_r, x68030_adpcm_w, 0x00ff00ff)
AM_RANGE(0xe94000, 0xe95fff) AM_READWRITE16_LEGACY(x68k_fdc_r, x68k_fdc_w,0xffffffff)
// AM_RANGE(0xe96000, 0xe9601f) AM_DEVREADWRITE16_LEGACY("x68k_hdc",x68k_hdc_r, x68k_hdc_w,0xffffffff)
AM_RANGE(0xe96020, 0xe9603f) AM_DEVREADWRITE8("scsi:mb89352",mb89352_device,mb89352_r,mb89352_w,0x00ff00ff)
AM_RANGE(0xe98000, 0xe99fff) AM_READWRITE16_LEGACY(x68k_scc_r, x68k_scc_w,0xffffffff)
AM_RANGE(0xe9a000, 0xe9bfff) AM_READWRITE16_LEGACY(x68k_ppi_r, x68k_ppi_w,0xffffffff)
AM_RANGE(0xe9c000, 0xe9dfff) AM_READWRITE16_LEGACY(x68k_ioc_r, x68k_ioc_w,0xffffffff)
AM_RANGE(0xea0000, 0xea1fff) AM_NOP//AM_READWRITE16_LEGACY(x68k_exp_r, x68k_exp_w,0xffffffff) // external SCSI ROM and controller
AM_RANGE(0xeafa00, 0xeafa1f) AM_READWRITE16_LEGACY(x68k_exp_r, x68k_exp_w,0xffffffff)
AM_RANGE(0xeafa80, 0xeafa8b) AM_READWRITE16_LEGACY(x68k_areaset_r, x68k_enh_areaset_w,0xffffffff)
AM_RANGE(0xeb0000, 0xeb7fff) AM_READWRITE16_LEGACY(x68k_spritereg_r, x68k_spritereg_w,0xffffffff)
AM_RANGE(0xeb8000, 0xebffff) AM_READWRITE16_LEGACY(x68k_spriteram_r, x68k_spriteram_w,0xffffffff)
AM_RANGE(0xece000, 0xece3ff) AM_READWRITE16_LEGACY(x68k_exp_r, x68k_exp_w,0xffffffff) // User I/O
// AM_RANGE(0xed0000, 0xed3fff) AM_READWRITE_LEGACY(sram_r, sram_w)
AM_RANGE(0xed0000, 0xed3fff) AM_RAMBANK("bank4") AM_SHARE("nvram32")
AM_RANGE(0xed4000, 0xefffff) AM_NOP
AM_RANGE(0xf00000, 0xfbffff) AM_ROM
AM_RANGE(0xfc0000, 0xfdffff) AM_ROM // internal SCSI ROM
AM_RANGE(0xfe0000, 0xffffff) AM_ROM
ADDRESS_MAP_END
WRITE_LINE_MEMBER( x68k_state::mfp_tdo_w )
{
m_mfpdev->tc_w(state);
m_mfpdev->rc_w(state);
}
static MC68901_INTERFACE( mfp_interface )
{
4000000, /* timer clock */
0, /* receive clock */
0, /* transmit clock */
DEVCB_LINE(mfp_irq_callback), /* interrupt */
DEVCB_DRIVER_MEMBER(x68k_state, mfp_gpio_r), /* GPIO read */
DEVCB_NULL, /* GPIO write */
DEVCB_NULL, /* TAO */
DEVCB_NULL, /* TBO */
DEVCB_NULL, /* TCO */
DEVCB_DRIVER_LINE_MEMBER(x68k_state, mfp_tdo_w), /* TDO */
DEVCB_NULL, /* serial input */
DEVCB_NULL, /* serial output */
DEVCB_NULL,
DEVCB_NULL
};
static I8255A_INTERFACE( ppi_interface )
{
DEVCB_HANDLER(ppi_port_a_r),
DEVCB_NULL,
DEVCB_HANDLER(ppi_port_b_r),
DEVCB_NULL,
DEVCB_HANDLER(ppi_port_c_r),
DEVCB_HANDLER(ppi_port_c_w)
};
static const hd63450_intf dmac_interface =
{
"maincpu", // CPU - 68000
{attotime::from_usec(32),attotime::from_nsec(450),attotime::from_usec(4),attotime::from_hz(15625/2)}, // Cycle steal mode timing (guesstimate)
{attotime::from_usec(32),attotime::from_nsec(450),attotime::from_nsec(50),attotime::from_nsec(50)}, // Burst mode timing (guesstimate)
x68k_dma_end,
x68k_dma_error,
{ x68k_fdc_read_byte, 0, 0, 0 },
{ x68k_fdc_write_byte, 0, 0, 0 }
// { 0, 0, 0, 0 },
// { 0, 0, 0, 0 }
};
static const upd765_interface fdc_interface =
{
DEVCB_LINE(fdc_irq),
DEVCB_LINE(fdc_drq),
NULL,
UPD765_RDY_PIN_CONNECTED,
{FLOPPY_0,FLOPPY_1,FLOPPY_2,FLOPPY_3}
};
static const ym2151_interface x68k_ym2151_interface =
{
DEVCB_LINE(x68k_fm_irq),
DEVCB_HANDLER(x68k_ct_w) // CT1, CT2 from YM2151 port 0x1b
};
static const okim6258_interface x68k_okim6258_interface =
{
FOSC_DIV_BY_512,
TYPE_4BITS,
OUTPUT_10BITS,
};
static RP5C15_INTERFACE( rtc_intf )
{
DEVCB_LINE(x68k_rtc_alarm_irq),
DEVCB_NULL
};
static INPUT_PORTS_START( x68000 )
PORT_START("ctrltype")
PORT_CONFNAME(0x0f, 0x00, "Joystick Port 1")
PORT_CONFSETTING(0x00, "Standard 2-button MSX/FM-Towns joystick")
PORT_CONFSETTING(0x01, "3-button Megadrive gamepad")
PORT_CONFSETTING(0x02, "6-button Megadrive gamepad")
PORT_CONFSETTING(0x03, "XPD-1LR dual D-pad gamepad")
PORT_CONFNAME(0xf0, 0x00, "Joystick Port 2")
PORT_CONFSETTING(0x00, "Standard 2-button MSX/FM-Towns joystick")
PORT_CONFSETTING(0x10, "3-button Megadrive gamepad")
PORT_CONFSETTING(0x20, "6-button Megadrive gamepad")
PORT_CONFSETTING(0x30, "XPD-1LR dual D-pad gamepad")
// TODO: Sharp Cyber Stick (CZ-8NJ2) support
PORT_START( "joy1" )
PORT_BIT( 0x01, IP_ACTIVE_LOW, IPT_JOYSTICK_UP ) PORT_CODE(JOYCODE_Y_UP_SWITCH) PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x00)
PORT_BIT( 0x02, IP_ACTIVE_LOW, IPT_JOYSTICK_DOWN ) PORT_CODE(JOYCODE_Y_DOWN_SWITCH) PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x00)
PORT_BIT( 0x04, IP_ACTIVE_LOW, IPT_JOYSTICK_LEFT ) PORT_CODE(JOYCODE_X_LEFT_SWITCH) PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x00)
PORT_BIT( 0x08, IP_ACTIVE_LOW, IPT_JOYSTICK_RIGHT ) PORT_CODE(JOYCODE_X_RIGHT_SWITCH) PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x00)
PORT_BIT( 0x10, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x00)
PORT_BIT( 0x20, IP_ACTIVE_LOW, IPT_BUTTON1 ) PORT_CODE(JOYCODE_BUTTON1) PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x00)
PORT_BIT( 0x40, IP_ACTIVE_LOW, IPT_BUTTON2 ) PORT_CODE(JOYCODE_BUTTON2) PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x00)
PORT_BIT( 0x80, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x00)
PORT_START( "joy2" )
PORT_BIT( 0x01, IP_ACTIVE_LOW, IPT_JOYSTICK_UP ) PORT_CODE(JOYCODE_Y_UP_SWITCH) PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x00)
PORT_BIT( 0x02, IP_ACTIVE_LOW, IPT_JOYSTICK_DOWN ) PORT_CODE(JOYCODE_Y_DOWN_SWITCH) PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x00)
PORT_BIT( 0x04, IP_ACTIVE_LOW, IPT_JOYSTICK_LEFT ) PORT_CODE(JOYCODE_X_LEFT_SWITCH) PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x00)
PORT_BIT( 0x08, IP_ACTIVE_LOW, IPT_JOYSTICK_RIGHT ) PORT_CODE(JOYCODE_X_RIGHT_SWITCH) PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x00)
PORT_BIT( 0x10, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x00)
PORT_BIT( 0x20, IP_ACTIVE_LOW, IPT_BUTTON1 ) PORT_CODE(JOYCODE_BUTTON1) PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x00)
PORT_BIT( 0x40, IP_ACTIVE_LOW, IPT_BUTTON2 ) PORT_CODE(JOYCODE_BUTTON2) PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x00)
PORT_BIT( 0x80, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x00)
PORT_START( "key1" )
PORT_BIT( 0x00000001, IP_ACTIVE_HIGH, IPT_UNUSED) // unused
PORT_BIT( 0x00000002, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("ESC") PORT_CODE(KEYCODE_ESC) PORT_CHAR(27) /* ESC */
PORT_BIT( 0x00000004, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("1 ! \xE3\x83\x8C") PORT_CODE(KEYCODE_1) PORT_CHAR('1') PORT_CHAR('!') /* 1 ! */
PORT_BIT( 0x00000008, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("2 \" \xE3\x83\x95") PORT_CODE(KEYCODE_2) PORT_CHAR('2') PORT_CHAR('\"') /* 2 " */
PORT_BIT( 0x00000010, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("3 # \xE3\x82\xA2 \xE3\x82\xA1") PORT_CODE(KEYCODE_3) PORT_CHAR('3') PORT_CHAR('#') /* 3 # */
PORT_BIT( 0x00000020, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("4 $ \xE3\x82\xA6 \xE3\x82\xA5") PORT_CODE(KEYCODE_4) PORT_CHAR('4') PORT_CHAR('$') /* 4 $ */
PORT_BIT( 0x00000040, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("5 % \xE3\x82\xA8 \xE3\x82\xA7") PORT_CODE(KEYCODE_5) PORT_CHAR('5') PORT_CHAR('%') /* 5 % */
PORT_BIT( 0x00000080, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("6 & \xE3\x82\xAA \xE3\x82\xA9") PORT_CODE(KEYCODE_6) PORT_CHAR('6') PORT_CHAR('&') /* 6 & */
PORT_BIT( 0x00000100, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("7 \' \xE3\x83\xA4 \xE3\x83\xA3") PORT_CODE(KEYCODE_7) PORT_CHAR('7') PORT_CHAR('\'') /* 7 ' */
PORT_BIT( 0x00000200, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("8 ( \xE3\x83\xA6 \xE3\x83\xA5") PORT_CODE(KEYCODE_8) PORT_CHAR('8') PORT_CHAR('(') /* 8 ( */
PORT_BIT( 0x00000400, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("9 ) \xE3\x83\xA8 \xE3\x83\xA7") PORT_CODE(KEYCODE_9) PORT_CHAR('9') PORT_CHAR(')') /* 9 ) */
PORT_BIT( 0x00000800, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("0 \xE3\x83\xAF \xE3\x83\xB2") PORT_CODE(KEYCODE_0) PORT_CHAR('0') /* 0 */
PORT_BIT( 0x00001000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("- = \xE3\x83\x9B") PORT_CODE(KEYCODE_MINUS) PORT_CHAR('-') PORT_CHAR('=') /* - = */
PORT_BIT( 0x00002000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("^ \xE3\x83\x98") PORT_CHAR('^') /* ^ */
PORT_BIT( 0x00004000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("\xC2\xA5 \xE3\x83\xBC |") PORT_CODE(KEYCODE_BACKSLASH) PORT_CHAR('\\') PORT_CHAR('|') /* Yen | */
PORT_BIT( 0x00008000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_CODE(KEYCODE_BACKSPACE) PORT_CHAR(8) /* Backspace */
PORT_BIT( 0x00010000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_CODE(KEYCODE_TAB) PORT_CHAR(9) /* Tab */
PORT_BIT( 0x00020000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Q \xE3\x82\xBF") PORT_CODE(KEYCODE_Q) PORT_CHAR('Q') /* Q */
PORT_BIT( 0x00040000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("W \xE3\x83\x86") PORT_CODE(KEYCODE_W) PORT_CHAR('W') /* W */
PORT_BIT( 0x00080000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("E \xE3\x82\xA4 \xE3\x82\xA3") PORT_CODE(KEYCODE_E) PORT_CHAR('E') /* E */
PORT_BIT( 0x00100000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("R \xE3\x82\xB9") PORT_CODE(KEYCODE_R) PORT_CHAR('R') /* R */
PORT_BIT( 0x00200000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("T \xE3\x82\xAB") PORT_CODE(KEYCODE_T) PORT_CHAR('T') /* T */
PORT_BIT( 0x00400000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Y \xE3\x83\xB3") PORT_CODE(KEYCODE_Y) PORT_CHAR('Y') /* Y */
PORT_BIT( 0x00800000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("U \xE3\x83\x8A") PORT_CODE(KEYCODE_U) PORT_CHAR('U') /* U */
PORT_BIT( 0x01000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("I \xE3\x83\x8B") PORT_CODE(KEYCODE_I) PORT_CHAR('I') /* I */
PORT_BIT( 0x02000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("O \xE3\x83\xA9") PORT_CODE(KEYCODE_O) PORT_CHAR('O') /* O */
PORT_BIT( 0x04000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("P \xE3\x82\xBB") PORT_CODE(KEYCODE_P) PORT_CHAR('P') /* P */
PORT_BIT( 0x08000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("@ ` \xE3\x82\x9B") PORT_CHAR('@') PORT_CHAR('`') /* @ */
PORT_BIT( 0x10000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("[ { \xE3\x82\x9C \xE3\x80\x8C") PORT_CODE(KEYCODE_OPENBRACE) PORT_CHAR('[') PORT_CHAR('{') /* [ { */
PORT_BIT( 0x20000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_CODE(KEYCODE_ENTER) PORT_CHAR(13) /* Return */
PORT_BIT( 0x40000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("A \xE3\x83\x81") PORT_CODE(KEYCODE_A) PORT_CHAR('A') /* A */
PORT_BIT( 0x80000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("S \xE3\x83\x88") PORT_CODE(KEYCODE_S) PORT_CHAR('S') /* S */
PORT_START( "key2" )
PORT_BIT( 0x00000001, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("D \xE3\x82\xB7") PORT_CODE(KEYCODE_D) PORT_CHAR('D') /* D */
PORT_BIT( 0x00000002, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F \xE3\x83\x8F") PORT_CODE(KEYCODE_F) PORT_CHAR('F') /* F */
PORT_BIT( 0x00000004, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("G \xE3\x82\xAD") PORT_CODE(KEYCODE_G) PORT_CHAR('G') /* G */
PORT_BIT( 0x00000008, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("H \xE3\x82\xAF") PORT_CODE(KEYCODE_H) PORT_CHAR('H') /* H */
PORT_BIT( 0x00000010, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("J \xE3\x83\x9E") PORT_CODE(KEYCODE_J) PORT_CHAR('J') /* J */
PORT_BIT( 0x00000020, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("K \xE3\x83\x8E") PORT_CODE(KEYCODE_K) PORT_CHAR('K') /* K */
PORT_BIT( 0x00000040, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("L \xE3\x83\xAA") PORT_CODE(KEYCODE_L) PORT_CHAR('L') /* L */
PORT_BIT( 0x00000080, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("; + \xE3\x83\xAC") PORT_CODE(KEYCODE_COLON) PORT_CHAR(';') PORT_CHAR('+') /* ; + */
PORT_BIT( 0x00000100, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME(": * \xE3\x82\xB1") PORT_CODE(KEYCODE_QUOTE) PORT_CHAR(':') PORT_CHAR('*') /* : * */
PORT_BIT( 0x00000200, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("] } \xE3\x83\xA0 \xE3\x80\x8D") PORT_CODE(KEYCODE_CLOSEBRACE) PORT_CHAR(']') PORT_CHAR('}') /* ] } */
PORT_BIT( 0x00000400, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Z \xE3\x83\x84 \xE3\x83\x83") PORT_CODE(KEYCODE_Z) PORT_CHAR('Z') /* Z */
PORT_BIT( 0x00000800, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("X \xE3\x82\xB5") PORT_CODE(KEYCODE_X) PORT_CHAR('X') /* X */
PORT_BIT( 0x00001000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("C \xE3\x82\xBD") PORT_CODE(KEYCODE_C) PORT_CHAR('C') /* C */
PORT_BIT( 0x00002000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("V \xE3\x83\x92") PORT_CODE(KEYCODE_V) PORT_CHAR('V') /* V */
PORT_BIT( 0x00004000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("B \xE3\x82\xB3") PORT_CODE(KEYCODE_B) PORT_CHAR('B') /* B */
PORT_BIT( 0x00008000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("N \xE3\x83\x9F") PORT_CODE(KEYCODE_N) PORT_CHAR('N') /* N */
PORT_BIT( 0x00010000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("M \xE3\x83\xA2") PORT_CODE(KEYCODE_M) PORT_CHAR('M') /* M */
PORT_BIT( 0x00020000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME(", < \xE3\x83\x8D \xE3\x80\x81") PORT_CODE(KEYCODE_COMMA) PORT_CHAR(',') PORT_CHAR('<') /* , < */
PORT_BIT( 0x00040000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME(". > \xE3\x83\xAB \xE3\x80\x82") PORT_CODE(KEYCODE_STOP) PORT_CHAR('.') PORT_CHAR('>') /* . > */
PORT_BIT( 0x00080000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("/ ? \xE3\x83\xA1 \xE3\x83\xBB") PORT_CODE(KEYCODE_SLASH) PORT_CHAR('/') PORT_CHAR('?') /* / ? */
PORT_BIT( 0x00100000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("_ \xE3\x83\xAD") PORT_CHAR('_') /* Underscore (shifted only?) */
PORT_BIT( 0x00200000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Space") PORT_CODE(KEYCODE_SPACE) PORT_CHAR(' ') /* Space */
PORT_BIT( 0x00400000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Home") PORT_CODE(KEYCODE_HOME) /* Home */
PORT_BIT( 0x00800000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Delete") PORT_CODE(KEYCODE_DEL) /* Del */
PORT_BIT( 0x01000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Roll Up") PORT_CODE(KEYCODE_PGUP) /* Roll Up */
PORT_BIT( 0x02000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Roll Down") PORT_CODE(KEYCODE_PGDN) /* Roll Down */
PORT_BIT( 0x04000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Undo") PORT_CODE(KEYCODE_END) /* Undo */
PORT_BIT( 0x08000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Cursor Left") PORT_CODE(KEYCODE_LEFT) /* Left */
PORT_BIT( 0x10000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Cursor Up") PORT_CODE(KEYCODE_UP) /* Up */
PORT_BIT( 0x20000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Cursor Right") PORT_CODE(KEYCODE_RIGHT) /* Right */
PORT_BIT( 0x40000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Cursor Down") PORT_CODE(KEYCODE_DOWN) /* Down */
PORT_BIT( 0x80000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey CLR") PORT_CODE(KEYCODE_NUMLOCK) /* CLR */
PORT_START( "key3" )
PORT_BIT( 0x00000001, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey /") PORT_CODE(KEYCODE_SLASH_PAD) /* / (numpad) */
PORT_BIT( 0x00000002, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey *") PORT_CODE(KEYCODE_ASTERISK) /* * (numpad) */
PORT_BIT( 0x00000004, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey -") PORT_CODE(KEYCODE_MINUS_PAD) /* - (numpad) */
PORT_BIT( 0x00000008, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 7") PORT_CODE(KEYCODE_7_PAD) /* 7 (numpad) */
PORT_BIT( 0x00000010, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 8") PORT_CODE(KEYCODE_8_PAD) /* 8 (numpad) */
PORT_BIT( 0x00000020, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 9") PORT_CODE(KEYCODE_9_PAD) /* 9 (numpad) */
PORT_BIT( 0x00000040, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey +") PORT_CODE(KEYCODE_PLUS_PAD) /* + (numpad) */
PORT_BIT( 0x00000080, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 4") PORT_CODE(KEYCODE_4_PAD) /* 4 (numpad) */
PORT_BIT( 0x00000100, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 5") PORT_CODE(KEYCODE_5_PAD) /* 5 (numpad) */
PORT_BIT( 0x00000200, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 6") PORT_CODE(KEYCODE_6_PAD) /* 6 (numpad) */
PORT_BIT( 0x00000400, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey =") /* = (numpad) */
PORT_BIT( 0x00000800, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 1") PORT_CODE(KEYCODE_1_PAD) /* 1 (numpad) */
PORT_BIT( 0x00001000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 2") PORT_CODE(KEYCODE_2_PAD) /* 2 (numpad) */
PORT_BIT( 0x00002000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 3") PORT_CODE(KEYCODE_3_PAD) /* 3 (numpad) */
PORT_BIT( 0x00004000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey Enter") PORT_CODE(KEYCODE_ENTER_PAD) /* Enter (numpad) */
PORT_BIT( 0x00008000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey 0") PORT_CODE(KEYCODE_0_PAD) /* 0 (numpad) */
PORT_BIT( 0x00010000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey ,") /* , (numpad) */
PORT_BIT( 0x00020000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Tenkey .") PORT_CODE(KEYCODE_DEL_PAD) /* 2 (numpad) */
PORT_BIT( 0x00040000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("\xE8\xA8\x98\xE5\x8F\xB7 (Symbolic input)") /* Sign / Symbolic input (babelfish translation) */
PORT_BIT( 0x00080000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("\xE7\x99\xBB\xE9\x8C\xB2 (Register)") /* Register (babelfish translation) */
PORT_BIT( 0x00100000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Help") /* Help */
PORT_BIT( 0x00200000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("XF1") PORT_CODE(KEYCODE_F11) /* XF1 */
PORT_BIT( 0x00400000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("XF2") PORT_CODE(KEYCODE_F12) /* XF2 */
PORT_BIT( 0x00800000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("XF3") /* XF3 */
PORT_BIT( 0x01000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("XF4") /* XF4 */
PORT_BIT( 0x02000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("XF5") /* XF5 */
PORT_BIT( 0x04000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("\xe3\x81\x8b\xe3\x81\xaa (Kana)") /* Kana */
PORT_BIT( 0x08000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("\xe3\x83\xad\xe3\x83\xbc\xe3\x83\x9e\xe5\xad\x97 (Romaji)") /* Romaji */
PORT_BIT( 0x10000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("\xE3\x82\xB3\xE3\x83\xBC\xE3\x83\x89 (Code input)") /* Code input */
PORT_BIT( 0x20000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Caps") PORT_CODE(KEYCODE_CAPSLOCK) /* Caps lock */
PORT_BIT( 0x40000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Insert") PORT_CODE(KEYCODE_INSERT) /* Insert */
PORT_BIT( 0x80000000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("\xE3\x81\xB2\xE3\x82\x89\xE3\x81\x8C\xE3\x81\xAA (Hiragana)") /* Hiragana */
PORT_START( "key4" )
PORT_BIT( 0x00000001, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("\xE5\x85\xA8\xE8\xA7\x92 (Full size)") /* Full size (babelfish translation) */
PORT_BIT( 0x00000002, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Break") /* Break */
PORT_BIT( 0x00000004, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Copy") /* Copy */
PORT_BIT( 0x00000008, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F1") PORT_CODE(KEYCODE_F1) /* F1 */
PORT_BIT( 0x00000010, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F2") PORT_CODE(KEYCODE_F2) /* F2 */
PORT_BIT( 0x00000020, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F3") PORT_CODE(KEYCODE_F3) /* F3 */
PORT_BIT( 0x00000040, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F4") PORT_CODE(KEYCODE_F4) /* F4 */
PORT_BIT( 0x00000080, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F5") PORT_CODE(KEYCODE_F5) /* F5 */
PORT_BIT( 0x00000100, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F6") PORT_CODE(KEYCODE_F6) /* F6 */
PORT_BIT( 0x00000200, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F7") PORT_CODE(KEYCODE_F7) /* F7 */
PORT_BIT( 0x00000400, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F8") PORT_CODE(KEYCODE_F8) /* F8 */
PORT_BIT( 0x00000800, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F9") PORT_CODE(KEYCODE_F9) /* F9 */
PORT_BIT( 0x00001000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("F10") PORT_CODE(KEYCODE_F10) /* F10 */
// 0x6d reserved
// 0x6e reserved
// 0x6f reserved
PORT_BIT( 0x00010000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Shift") PORT_CODE(KEYCODE_LSHIFT) /* Shift */
PORT_BIT( 0x00020000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Ctrl") PORT_CODE(KEYCODE_LCONTROL) /* Ctrl */
PORT_BIT( 0x00040000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Opt. 1") PORT_CODE(KEYCODE_PRTSCR) /* Opt1 */
PORT_BIT( 0x00080000, IP_ACTIVE_HIGH, IPT_KEYBOARD ) PORT_NAME("Opt. 2") PORT_CODE(KEYCODE_PAUSE) /* Opt2 */
PORT_START("options")
PORT_CONFNAME( 0x01, 0x01, "Enable keyboard hack")
PORT_CONFSETTING( 0x00, DEF_STR( Off ))
PORT_CONFSETTING( 0x01, DEF_STR( On ))
PORT_CONFNAME( 0x02, 0x02, "Enable fake bus errors")
PORT_CONFSETTING( 0x00, DEF_STR( Off ))
PORT_CONFSETTING( 0x02, DEF_STR( On ))
PORT_CONFNAME( 0x04, 0x04, "Enable partial updates on each HSync")
PORT_CONFSETTING( 0x00, DEF_STR( Off ))
PORT_CONFSETTING( 0x04, DEF_STR( On ))
PORT_START("mouse1") // mouse buttons
PORT_BIT( 0x00000001, IP_ACTIVE_HIGH, IPT_BUTTON9) PORT_NAME("Left mouse button") PORT_CODE(MOUSECODE_BUTTON1)
PORT_BIT( 0x00000002, IP_ACTIVE_HIGH, IPT_BUTTON10) PORT_NAME("Right mouse button") PORT_CODE(MOUSECODE_BUTTON2)
PORT_START("mouse2") // X-axis
PORT_BIT( 0xff, 0x00, IPT_MOUSE_X) PORT_SENSITIVITY(100) PORT_KEYDELTA(0) PORT_PLAYER(1)
PORT_START("mouse3") // Y-axis
PORT_BIT( 0xff, 0x00, IPT_MOUSE_Y) PORT_SENSITIVITY(100) PORT_KEYDELTA(0) PORT_PLAYER(1)
// 3-button Megadrive gamepad
PORT_START("md3b")
PORT_BIT( 0x00000001, IP_ACTIVE_LOW, IPT_JOYSTICK_UP ) PORT_NAME("MD Pad 1 Up") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000002, IP_ACTIVE_LOW, IPT_JOYSTICK_DOWN ) PORT_NAME("MD Pad 1 Down") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000004, IP_ACTIVE_LOW, IPT_JOYSTICK_LEFT ) PORT_NAME("MD Pad 1 Left") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000008, IP_ACTIVE_LOW, IPT_JOYSTICK_RIGHT ) PORT_NAME("MD Pad 1 Right") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000010, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000020, IP_ACTIVE_LOW, IPT_BUTTON2 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 B Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000040, IP_ACTIVE_LOW, IPT_BUTTON3 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 C Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000080, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000100, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000200, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000400, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00000800, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00001000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00002000, IP_ACTIVE_LOW, IPT_BUTTON1 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 A Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00004000, IP_ACTIVE_LOW, IPT_START ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 Start Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00008000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x01)
PORT_BIT( 0x00010000, IP_ACTIVE_LOW, IPT_JOYSTICK_UP ) PORT_NAME("MD Pad 2 Up") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x00020000, IP_ACTIVE_LOW, IPT_JOYSTICK_DOWN ) PORT_NAME("MD Pad 2 Down") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x00040000, IP_ACTIVE_LOW, IPT_JOYSTICK_LEFT ) PORT_NAME("MD Pad 2 Left") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x00080000, IP_ACTIVE_LOW, IPT_JOYSTICK_RIGHT ) PORT_NAME("MD Pad 2 Right") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x00100000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x00200000, IP_ACTIVE_LOW, IPT_BUTTON2 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 B Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x00400000, IP_ACTIVE_LOW, IPT_BUTTON3 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 C Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x00800000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x01000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x02000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x04000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x08000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x10000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x20000000, IP_ACTIVE_LOW, IPT_BUTTON1 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 A Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x40000000, IP_ACTIVE_LOW, IPT_START ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 Start Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
PORT_BIT( 0x80000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x10)
// 6-button Megadrive gamepad
PORT_START("md6b")
PORT_BIT( 0x00000001, IP_ACTIVE_LOW, IPT_JOYSTICK_UP ) PORT_NAME("MD Pad 1 Up") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000002, IP_ACTIVE_LOW, IPT_JOYSTICK_DOWN ) PORT_NAME("MD Pad 1 Down") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000004, IP_ACTIVE_LOW, IPT_JOYSTICK_LEFT ) PORT_NAME("MD Pad 1 Left") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000008, IP_ACTIVE_LOW, IPT_JOYSTICK_RIGHT ) PORT_NAME("MD Pad 1 Right") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000010, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000020, IP_ACTIVE_LOW, IPT_BUTTON2 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 B Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000040, IP_ACTIVE_LOW, IPT_BUTTON3 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 C Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000080, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000100, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000200, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000400, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00000800, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00001000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00002000, IP_ACTIVE_LOW, IPT_BUTTON1 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 A Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00004000, IP_ACTIVE_LOW, IPT_START ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 Start Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00008000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x00010000, IP_ACTIVE_LOW, IPT_JOYSTICK_UP ) PORT_NAME("MD Pad 2 Up") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x00020000, IP_ACTIVE_LOW, IPT_JOYSTICK_DOWN ) PORT_NAME("MD Pad 2 Down") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x00040000, IP_ACTIVE_LOW, IPT_JOYSTICK_LEFT ) PORT_NAME("MD Pad 2 Left") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x00080000, IP_ACTIVE_LOW, IPT_JOYSTICK_RIGHT ) PORT_NAME("MD Pad 2 Right") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x00100000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x00200000, IP_ACTIVE_LOW, IPT_BUTTON2 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 B Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x00400000, IP_ACTIVE_LOW, IPT_BUTTON3 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 C Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x00800000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x01000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x02000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x04000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x08000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x10000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x20000000, IP_ACTIVE_LOW, IPT_BUTTON1 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 A Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x40000000, IP_ACTIVE_LOW, IPT_START ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 Start Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x80000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
// extra inputs
PORT_START("md6b_extra")
PORT_BIT( 0x0001, IP_ACTIVE_LOW, IPT_BUTTON6 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 Z Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x0002, IP_ACTIVE_LOW, IPT_BUTTON5 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 Y Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x0004, IP_ACTIVE_LOW, IPT_BUTTON4 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 X Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x0008, IP_ACTIVE_LOW, IPT_BUTTON7 ) PORT_PLAYER(1) PORT_NAME("MD Pad 1 Mode Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x02)
PORT_BIT( 0x0010, IP_ACTIVE_LOW, IPT_BUTTON6 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 Z Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x0020, IP_ACTIVE_LOW, IPT_BUTTON5 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 Y Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x0040, IP_ACTIVE_LOW, IPT_BUTTON4 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 X Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
PORT_BIT( 0x0080, IP_ACTIVE_LOW, IPT_BUTTON7 ) PORT_PLAYER(2) PORT_NAME("MD Pad 2 Mode Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x20)
// Dempa/Micomsoft XPD-1LR (dual D-pad gamepad sold with Libble Rabble)
PORT_START("xpd1lr")
PORT_BIT( 0x00000001, IP_ACTIVE_LOW, IPT_JOYSTICKLEFT_UP ) PORT_NAME("XPD Pad 1 Left/Up") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000002, IP_ACTIVE_LOW, IPT_JOYSTICKLEFT_DOWN ) PORT_NAME("XPD Pad 1 Left/Down") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000004, IP_ACTIVE_LOW, IPT_JOYSTICKLEFT_LEFT ) PORT_NAME("XPD Pad 1 Left/Left") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000008, IP_ACTIVE_LOW, IPT_JOYSTICKLEFT_RIGHT ) PORT_NAME("XPD Pad 1 Left/Right") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000010, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000020, IP_ACTIVE_LOW, IPT_BUTTON2 ) PORT_PLAYER(1) PORT_NAME("XPD Pad 1 B Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000040, IP_ACTIVE_LOW, IPT_BUTTON1 ) PORT_PLAYER(1) PORT_NAME("XPD Pad 1 A Button") PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000080, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000100, IP_ACTIVE_LOW, IPT_JOYSTICKRIGHT_UP ) PORT_NAME("XPD Pad 1 Right/Up") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000200, IP_ACTIVE_LOW, IPT_JOYSTICKRIGHT_DOWN ) PORT_NAME("XPD Pad 1 Right/Down") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000400, IP_ACTIVE_LOW, IPT_JOYSTICKRIGHT_LEFT ) PORT_NAME("XPD Pad 1 Right/Left") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00000800, IP_ACTIVE_LOW, IPT_JOYSTICKRIGHT_RIGHT ) PORT_NAME("XPD Pad 1 Right/Right") PORT_8WAY PORT_PLAYER(1) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00001000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00002000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00004000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00008000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0x0f, EQUALS, 0x03)
PORT_BIT( 0x00010000, IP_ACTIVE_LOW, IPT_JOYSTICKLEFT_UP ) PORT_NAME("XPD Pad 2 Left/Up") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x00020000, IP_ACTIVE_LOW, IPT_JOYSTICKLEFT_DOWN ) PORT_NAME("XPD Pad 2 Left/Down") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x00040000, IP_ACTIVE_LOW, IPT_JOYSTICKLEFT_LEFT ) PORT_NAME("XPD Pad 2 Left/Left") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x00080000, IP_ACTIVE_LOW, IPT_JOYSTICKLEFT_RIGHT ) PORT_NAME("XPD Pad 2 Left/Right") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x00100000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x00200000, IP_ACTIVE_LOW, IPT_BUTTON2 ) PORT_PLAYER(2) PORT_NAME("XPD Pad 2 B Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x00400000, IP_ACTIVE_LOW, IPT_BUTTON1 ) PORT_PLAYER(2) PORT_NAME("XPD Pad 2 A Button") PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x00800000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x01000000, IP_ACTIVE_LOW, IPT_JOYSTICKRIGHT_UP ) PORT_NAME("XPD Pad 2 Right/Up") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x02000000, IP_ACTIVE_LOW, IPT_JOYSTICKRIGHT_DOWN ) PORT_NAME("XPD Pad 2 Right/Down") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x04000000, IP_ACTIVE_LOW, IPT_JOYSTICKRIGHT_LEFT ) PORT_NAME("XPD Pad 2 Right/Left") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x08000000, IP_ACTIVE_LOW, IPT_JOYSTICKRIGHT_RIGHT ) PORT_NAME("XPD Pad 2 Right/Right") PORT_8WAY PORT_PLAYER(2) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x10000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x20000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x40000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
PORT_BIT( 0x80000000, IP_ACTIVE_LOW, IPT_UNUSED ) PORT_CONDITION("ctrltype", 0xf0, EQUALS, 0x30)
INPUT_PORTS_END
static void x68k_load_proc(device_image_interface &image)
{
x68k_state *state = image.device().machine().driver_data<x68k_state>();
if(state->m_ioc.irqstatus & 0x02)
{
state->m_current_vector[1] = 0x61;
state->m_ioc.irqstatus |= 0x40;
state->m_current_irq_line = 1;
image.device().machine().device("maincpu")->execute().set_input_line_and_vector(1,ASSERT_LINE,state->m_current_vector[1]); // Disk insert/eject interrupt
logerror("IOC: Disk image inserted\n");
}
state->m_fdc.disk_inserted[floppy_get_drive(&image.device())] = 1;
}
static void x68k_unload_proc(device_image_interface &image)
{
x68k_state *state = image.device().machine().driver_data<x68k_state>();
if(state->m_ioc.irqstatus & 0x02)
{
state->m_current_vector[1] = 0x61;
state->m_ioc.irqstatus |= 0x40;
state->m_current_irq_line = 1;
image.device().machine().device("maincpu")->execute().set_input_line_and_vector(1,ASSERT_LINE,state->m_current_vector[1]); // Disk insert/eject interrupt
}
state->m_fdc.disk_inserted[floppy_get_drive(&image.device())] = 0;
}
static TIMER_CALLBACK( x68k_net_irq )
{
x68k_state *state = machine.driver_data<x68k_state>();
state->m_current_vector[2] = 0xf9;
state->m_current_irq_line = 2;
machine.device("maincpu")->execute().set_input_line_and_vector(2,ASSERT_LINE,state->m_current_vector[2]);
}
static void x68k_irq2_line(device_t* device,int state)
{
x68k_state *tstate = device->machine().driver_data<x68k_state>();
if(state==ASSERT_LINE)
{
tstate->m_net_timer->adjust(attotime::from_usec(16));
}
else
device->machine().device("maincpu")->execute().set_input_line_and_vector(2,CLEAR_LINE,tstate->m_current_vector[2]);
logerror("EXP: IRQ2 set to %i\n",state);
}
static LEGACY_FLOPPY_OPTIONS_START( x68k )
LEGACY_FLOPPY_OPTION( img2d, "xdf,hdm,2hd", "XDF disk image", basicdsk_identify_default, basicdsk_construct_default, NULL,
HEADS([2])
TRACKS([77])
SECTORS([8])
SECTOR_LENGTH([1024])
FIRST_SECTOR_ID([1]))
LEGACY_FLOPPY_OPTION( dim, "dim", "DIM floppy disk image", dim_dsk_identify, dim_dsk_construct, NULL, NULL)
LEGACY_FLOPPY_OPTIONS_END
static const floppy_interface x68k_floppy_interface =
{
DEVCB_NULL,
DEVCB_NULL,
DEVCB_NULL,
DEVCB_NULL,
DEVCB_NULL,
FLOPPY_STANDARD_5_25_DSHD,
LEGACY_FLOPPY_OPTIONS_NAME(x68k),
"floppy_5_25",
NULL
};
static const mb89352_interface x68k_scsi_intf =
{
DEVCB_LINE(x68k_scsi_irq),
DEVCB_LINE(x68k_scsi_drq)
};
static X68K_EXPANSION_INTERFACE(x68k_exp_intf)
{
DEVCB_LINE(x68k_irq2_line),
DEVCB_CPU_INPUT_LINE("maincpu", M68K_IRQ_4),
DEVCB_CPU_INPUT_LINE("maincpu", INPUT_LINE_NMI),
DEVCB_NULL // RESET
};
static SLOT_INTERFACE_START(x68000_exp_cards)
SLOT_INTERFACE("neptunex",X68K_NEPTUNEX) // Neptune-X ethernet adapter (ISA NE2000 bridge)
SLOT_INTERFACE("cz6bs1",X68K_SCSIEXT) // Sharp CZ-6BS1 SCSI-1 controller
SLOT_INTERFACE_END
MACHINE_RESET_MEMBER(x68k_state,x68000)
{
/* The last half of the IPLROM is mapped to 0x000000 on reset only
Just copying the inital stack pointer and program counter should
more or less do the same job */
int drive;
UINT8* romdata = memregion("user2")->base();
attotime irq_time;
memset(machine().device<ram_device>(RAM_TAG)->pointer(),0,machine().device<ram_device>(RAM_TAG)->size());
memcpy(machine().device<ram_device>(RAM_TAG)->pointer(),romdata,8);
// init keyboard
m_keyboard.delay = 500; // 3*100+200
m_keyboard.repeat = 110; // 4^2*5+30
// check for disks
for(drive=0;drive<4;drive++)
{
device_image_interface *image = dynamic_cast<device_image_interface *>(floppy_get_device(machine(), drive));
if(image->exists())
m_fdc.disk_inserted[drive] = 1;
else
m_fdc.disk_inserted[drive] = 0;
}
// initialise CRTC, set registers to defaults for the standard text mode (768x512)
m_crtc.reg[0] = 137; // Horizontal total (in characters)
m_crtc.reg[1] = 14; // Horizontal sync end
m_crtc.reg[2] = 28; // Horizontal start
m_crtc.reg[3] = 124; // Horizontal end
m_crtc.reg[4] = 567; // Vertical total
m_crtc.reg[5] = 5; // Vertical sync end
m_crtc.reg[6] = 40; // Vertical start
m_crtc.reg[7] = 552; // Vertical end
m_crtc.reg[8] = 27; // Horizontal adjust
mfp_init(machine());
m_scanline = machine().primary_screen->vpos();// = m_crtc.reg[6]; // Vertical start
// start VBlank timer
m_crtc.vblank = 1;
irq_time = machine().primary_screen->time_until_pos(m_crtc.reg[6],2);
m_vblank_irq->adjust(irq_time);
// start HBlank timer
m_scanline_timer->adjust(machine().primary_screen->scan_period(), 1);
m_mfp.gpio = 0xfb;
// reset output values
output_set_value("key_led_kana",1);
output_set_value("key_led_romaji",1);
output_set_value("key_led_code",1);
output_set_value("key_led_caps",1);
output_set_value("key_led_insert",1);
output_set_value("key_led_hiragana",1);
output_set_value("key_led_fullsize",1);
for(drive=0;drive<4;drive++)
{
output_set_indexed_value("eject_drv",drive,1);
output_set_indexed_value("ctrl_drv",drive,1);
output_set_indexed_value("access_drv",drive,1);
floppy_install_unload_proc(floppy_get_device(machine(), drive), x68k_unload_proc);
floppy_install_load_proc(floppy_get_device(machine(), drive), x68k_load_proc);
}
// reset CPU
machine().device("maincpu")->reset();
}
MACHINE_START_MEMBER(x68k_state,x68000)
{
address_space &space = *machine().device("maincpu")->memory().space(AS_PROGRAM);
/* Install RAM handlers */
m_spriteram = (UINT16*)(*memregion("user1"));
space.install_legacy_read_handler(0x000000,0xbffffb,0xffffffff,0,FUNC(x68k_emptyram_r));
space.install_legacy_write_handler(0x000000,0xbffffb,0xffffffff,0,FUNC(x68k_emptyram_w));
space.install_readwrite_bank(0x000000,machine().device<ram_device>(RAM_TAG)->size()-1,0xffffffff,0,"bank1");
membank("bank1")->set_base(machine().device<ram_device>(RAM_TAG)->pointer());
space.install_legacy_read_handler(0xc00000,0xdfffff,0xffffffff,0,FUNC(x68k_gvram_r));
space.install_legacy_write_handler(0xc00000,0xdfffff,0xffffffff,0,FUNC(x68k_gvram_w));
membank("bank2")->set_base(m_gvram16); // so that code in VRAM is executable - needed for Terra Cresta
space.install_legacy_read_handler(0xe00000,0xe7ffff,0xffffffff,0,FUNC(x68k_tvram_r));
space.install_legacy_write_handler(0xe00000,0xe7ffff,0xffffffff,0,FUNC(x68k_tvram_w));
membank("bank3")->set_base(m_tvram16); // so that code in VRAM is executable - needed for Terra Cresta
space.install_legacy_read_handler(0xed0000,0xed3fff,0xffffffff,0,FUNC(x68k_sram_r));
space.install_legacy_write_handler(0xed0000,0xed3fff,0xffffffff,0,FUNC(x68k_sram_w));
membank("bank4")->set_base(m_nvram16); // so that code in SRAM is executable, there is an option for booting from SRAM
// start keyboard timer
m_kb_timer->adjust(attotime::zero, 0, attotime::from_msec(5)); // every 5ms
// start mouse timer
m_mouse_timer->adjust(attotime::zero, 0, attotime::from_msec(1)); // a guess for now
m_mouse.inputtype = 0;
// start LED timer
m_led_timer->adjust(attotime::zero, 0, attotime::from_msec(400));
}
MACHINE_START_MEMBER(x68k_state,x68030)
{
address_space &space = *machine().device("maincpu")->memory().space(AS_PROGRAM);
/* Install RAM handlers */
m_spriteram = (UINT16*)(*memregion("user1"));
space.install_legacy_read_handler(0x000000,0xbffffb,0xffffffff,0,FUNC(x68k_rom0_r),0xffffffff);
space.install_legacy_write_handler(0x000000,0xbffffb,0xffffffff,0,FUNC(x68k_rom0_w),0xffffffff);
space.install_readwrite_bank(0x000000,machine().device<ram_device>(RAM_TAG)->size()-1,0xffffffff,0,"bank1");
membank("bank1")->set_base(machine().device<ram_device>(RAM_TAG)->pointer());
space.install_legacy_read_handler(0xc00000,0xdfffff,0xffffffff,0,FUNC(x68k_gvram32_r));
space.install_legacy_write_handler(0xc00000,0xdfffff,0xffffffff,0,FUNC(x68k_gvram32_w));
membank("bank2")->set_base(m_gvram32); // so that code in VRAM is executable - needed for Terra Cresta
space.install_legacy_read_handler(0xe00000,0xe7ffff,0xffffffff,0,FUNC(x68k_tvram32_r));
space.install_legacy_write_handler(0xe00000,0xe7ffff,0xffffffff,0,FUNC(x68k_tvram32_w));
membank("bank3")->set_base(m_tvram32); // so that code in VRAM is executable - needed for Terra Cresta
space.install_legacy_read_handler(0xed0000,0xed3fff,0xffffffff,0,FUNC(x68k_sram32_r));
space.install_legacy_write_handler(0xed0000,0xed3fff,0xffffffff,0,FUNC(x68k_sram32_w));
membank("bank4")->set_base(m_nvram32); // so that code in SRAM is executable, there is an option for booting from SRAM
// start keyboard timer
m_kb_timer->adjust(attotime::zero, 0, attotime::from_msec(5)); // every 5ms
// start mouse timer
m_mouse_timer->adjust(attotime::zero, 0, attotime::from_msec(1)); // a guess for now
m_mouse.inputtype = 0;
// start LED timer
m_led_timer->adjust(attotime::zero, 0, attotime::from_msec(400));
}
DRIVER_INIT_MEMBER(x68k_state,x68000)
{
unsigned char* rom = machine().root_device().memregion("maincpu")->base();
unsigned char* user2 = machine().root_device().memregion("user2")->base();
//FIXME
// m_gvram = auto_alloc_array(machine(), UINT16, 0x080000/sizeof(UINT16));
// m_tvram = auto_alloc_array(machine(), UINT16, 0x080000/sizeof(UINT16));
m_sram = auto_alloc_array(machine(), UINT16, 0x4000/sizeof(UINT16));
m_spritereg = auto_alloc_array_clear(machine(), UINT16, 0x8000/sizeof(UINT16));
#ifdef USE_PREDEFINED_SRAM
{
unsigned char* ramptr = memregion("user3")->base();
memcpy(m_sram,ramptr,0x4000);
}
#endif
// copy last half of BIOS to a user region, to use for inital startup
memcpy(user2,(rom+0xff0000),0x10000);
mfp_init(machine());
machine().device("maincpu")->execute().set_irq_acknowledge_callback(x68k_int_ack);
// init keyboard
m_keyboard.delay = 500; // 3*100+200
m_keyboard.repeat = 110; // 4^2*5+30
m_kb_timer = machine().scheduler().timer_alloc(FUNC(x68k_keyboard_poll));
m_scanline_timer = machine().scheduler().timer_alloc(FUNC(x68k_hsync));
m_raster_irq = machine().scheduler().timer_alloc(FUNC(x68k_crtc_raster_irq));
m_vblank_irq = machine().scheduler().timer_alloc(FUNC(x68k_crtc_vblank_irq));
m_mouse_timer = machine().scheduler().timer_alloc(FUNC(x68k_scc_ack));
m_led_timer = machine().scheduler().timer_alloc(FUNC(x68k_led_callback));
m_net_timer = machine().scheduler().timer_alloc(FUNC(x68k_net_irq));
// Initialise timers for 6-button MD controllers
md_6button_init(machine());
m_sysport.cputype = 0xff; // 68000, 10MHz
m_is_32bit = false;
}
DRIVER_INIT_MEMBER(x68k_state,x68kxvi)
{
DRIVER_INIT_CALL( x68000 );
m_sysport.cputype = 0xfe; // 68000, 16MHz
m_is_32bit = false;
}
DRIVER_INIT_MEMBER(x68k_state,x68030)
{
DRIVER_INIT_CALL( x68000 );
m_sysport.cputype = 0xdc; // 68030, 25MHz
m_is_32bit = true;
}
static MACHINE_CONFIG_FRAGMENT( x68000_base )
/* basic machine hardware */
MCFG_CPU_ADD("maincpu", M68000, 10000000) /* 10 MHz */
MCFG_CPU_PROGRAM_MAP(x68k_map)
MCFG_CPU_VBLANK_INT_DRIVER("screen", x68k_state, x68k_vsync_irq)
MCFG_QUANTUM_TIME(attotime::from_hz(60))
MCFG_MACHINE_START_OVERRIDE(x68k_state, x68000 )
MCFG_MACHINE_RESET_OVERRIDE(x68k_state, x68000 )
/* device hardware */
MCFG_MC68901_ADD(MC68901_TAG, 4000000, mfp_interface)
MCFG_I8255A_ADD( "ppi8255", ppi_interface )
MCFG_HD63450_ADD( "hd63450", dmac_interface )
MCFG_SCC8530_ADD( "scc", 5000000, line_cb_t() )
MCFG_RP5C15_ADD(RP5C15_TAG, XTAL_32_768kHz, rtc_intf)
/* video hardware */
MCFG_SCREEN_ADD("screen", RASTER)
MCFG_SCREEN_REFRESH_RATE(55.45)
MCFG_SCREEN_VBLANK_TIME(ATTOSECONDS_IN_USEC(2500)) /* not accurate */
// MCFG_GFXDECODE(x68k)
MCFG_SCREEN_SIZE(1096, 568) // inital setting
MCFG_SCREEN_VISIBLE_AREA(0, 767, 0, 511)
MCFG_SCREEN_UPDATE_DRIVER(x68k_state, screen_update_x68000)
MCFG_PALETTE_LENGTH(65536)
MCFG_PALETTE_INIT_OVERRIDE(x68k_state, x68000 )
MCFG_VIDEO_START_OVERRIDE(x68k_state, x68000 )
MCFG_DEFAULT_LAYOUT( layout_x68000 )
/* sound hardware */
MCFG_SPEAKER_STANDARD_STEREO("lspeaker", "rspeaker")
MCFG_SOUND_ADD("ym2151", YM2151, 4000000)
MCFG_SOUND_CONFIG(x68k_ym2151_interface)
MCFG_SOUND_ROUTE(0, "lspeaker", 0.50)
MCFG_SOUND_ROUTE(1, "rspeaker", 0.50)
MCFG_SOUND_ADD("okim6258", OKIM6258, 4000000)
MCFG_SOUND_CONFIG(x68k_okim6258_interface)
MCFG_SOUND_ROUTE(ALL_OUTPUTS, "lspeaker", 0.50)
MCFG_SOUND_ROUTE(ALL_OUTPUTS, "rspeaker", 0.50)
MCFG_UPD72065_ADD("upd72065", fdc_interface)
MCFG_LEGACY_FLOPPY_4_DRIVES_ADD(x68k_floppy_interface)
MCFG_SOFTWARE_LIST_ADD("flop_list","x68k_flop")
MCFG_X68K_EXPANSION_SLOT_ADD("exp",x68k_exp_intf,x68000_exp_cards,NULL,NULL)
/* internal ram */
MCFG_RAM_ADD(RAM_TAG)
MCFG_RAM_DEFAULT_SIZE("4M")
MCFG_RAM_EXTRA_OPTIONS("1M,2M,3M,5M,6M,7M,8M,9M,10M,11M,12M")
MACHINE_CONFIG_END
static MACHINE_CONFIG_START( x68000, x68k_state )
MCFG_FRAGMENT_ADD(x68000_base)
MCFG_NVRAM_ADD_0FILL("nvram16")
MCFG_X68KHDC_ADD( "x68k_hdc" )
MACHINE_CONFIG_END
static MACHINE_CONFIG_START( x68ksupr, x68k_state )
MCFG_FRAGMENT_ADD(x68000_base)
MCFG_NVRAM_ADD_0FILL("nvram16")
MCFG_CPU_MODIFY("maincpu")
MCFG_CPU_PROGRAM_MAP(x68kxvi_map)
MCFG_SCSIBUS_ADD("scsi")
MCFG_SCSIDEV_ADD("scsi:harddisk0", SCSIHD, SCSI_ID_0)
MCFG_SCSIDEV_ADD("scsi:harddisk1", SCSIHD, SCSI_ID_1)
MCFG_SCSIDEV_ADD("scsi:harddisk2", SCSIHD, SCSI_ID_2)
MCFG_SCSIDEV_ADD("scsi:harddisk3", SCSIHD, SCSI_ID_3)
MCFG_SCSIDEV_ADD("scsi:harddisk4", SCSIHD, SCSI_ID_4)
MCFG_SCSIDEV_ADD("scsi:harddisk5", SCSIHD, SCSI_ID_5)
MCFG_SCSIDEV_ADD("scsi:harddisk6", SCSIHD, SCSI_ID_6)
MCFG_MB89352A_ADD("scsi:mb89352",x68k_scsi_intf)
MACHINE_CONFIG_END
static MACHINE_CONFIG_START( x68kxvi, x68k_state )
MCFG_FRAGMENT_ADD(x68000_base)
MCFG_NVRAM_ADD_0FILL("nvram16")
MCFG_CPU_MODIFY("maincpu")
MCFG_CPU_CLOCK(16000000) /* 16 MHz */
MCFG_CPU_PROGRAM_MAP(x68kxvi_map)
MCFG_SCSIBUS_ADD("scsi")
MCFG_SCSIDEV_ADD("scsi:harddisk0", SCSIHD, SCSI_ID_0)
MCFG_SCSIDEV_ADD("scsi:harddisk1", SCSIHD, SCSI_ID_1)
MCFG_SCSIDEV_ADD("scsi:harddisk2", SCSIHD, SCSI_ID_2)
MCFG_SCSIDEV_ADD("scsi:harddisk3", SCSIHD, SCSI_ID_3)
MCFG_SCSIDEV_ADD("scsi:harddisk4", SCSIHD, SCSI_ID_4)
MCFG_SCSIDEV_ADD("scsi:harddisk5", SCSIHD, SCSI_ID_5)
MCFG_SCSIDEV_ADD("scsi:harddisk6", SCSIHD, SCSI_ID_6)
MCFG_MB89352A_ADD("scsi:mb89352",x68k_scsi_intf)
MACHINE_CONFIG_END
static MACHINE_CONFIG_START( x68030, x68k_state )
MCFG_FRAGMENT_ADD(x68000_base)
MCFG_CPU_REPLACE("maincpu", M68030, 25000000) /* 25 MHz 68EC030 */
MCFG_CPU_PROGRAM_MAP(x68030_map)
MCFG_MACHINE_START_OVERRIDE(x68k_state, x68030 )
MCFG_MACHINE_RESET_OVERRIDE(x68k_state, x68000 )
MCFG_NVRAM_ADD_0FILL("nvram32")
MCFG_SCSIBUS_ADD("scsi")
MCFG_SCSIDEV_ADD("scsi:harddisk0", SCSIHD, SCSI_ID_0)
MCFG_SCSIDEV_ADD("scsi:harddisk1", SCSIHD, SCSI_ID_1)
MCFG_SCSIDEV_ADD("scsi:harddisk2", SCSIHD, SCSI_ID_2)
MCFG_SCSIDEV_ADD("scsi:harddisk3", SCSIHD, SCSI_ID_3)
MCFG_SCSIDEV_ADD("scsi:harddisk4", SCSIHD, SCSI_ID_4)
MCFG_SCSIDEV_ADD("scsi:harddisk5", SCSIHD, SCSI_ID_5)
MCFG_SCSIDEV_ADD("scsi:harddisk6", SCSIHD, SCSI_ID_6)
MCFG_MB89352A_ADD("scsi:mb89352",x68k_scsi_intf)
MACHINE_CONFIG_END
ROM_START( x68000 )
ROM_REGION16_BE(0x1000000, "maincpu", 0) // 16MB address space
ROM_DEFAULT_BIOS("ipl10")
ROM_LOAD( "cgrom.dat", 0xf00000, 0xc0000, CRC(9f3195f1) SHA1(8d72c5b4d63bb14c5dbdac495244d659aa1498b6) )
ROM_SYSTEM_BIOS(0, "ipl10", "IPL-ROM V1.0 (87/05/07)")
ROMX_LOAD( "iplrom.dat", 0xfe0000, 0x20000, CRC(72bdf532) SHA1(0ed038ed2133b9f78c6e37256807424e0d927560), ROM_BIOS(1) )
ROM_SYSTEM_BIOS(1, "ipl11", "IPL-ROM V1.1 (91/01/11)")
ROMX_LOAD( "iplromxv.dat", 0xfe0000, 0x020000, CRC(00eeb408) SHA1(e33cdcdb69cd257b0b211ef46e7a8b144637db57), ROM_BIOS(2) )
ROM_SYSTEM_BIOS(2, "ipl12", "IPL-ROM V1.2 (91/10/24)")
ROMX_LOAD( "iplromco.dat", 0xfe0000, 0x020000, CRC(6c7ef608) SHA1(77511fc58798404701f66b6bbc9cbde06596eba7), ROM_BIOS(3) )
ROM_SYSTEM_BIOS(3, "ipl13", "IPL-ROM V1.3 (92/11/27)")
ROMX_LOAD( "iplrom30.dat", 0xfe0000, 0x020000, CRC(e8f8fdad) SHA1(239e9124568c862c31d9ec0605e32373ea74b86a), ROM_BIOS(4) )
ROM_REGION(0x8000, "user1",0) // For Background/Sprite decoding
ROM_FILL(0x0000,0x8000,0x00)
ROM_REGION(0x20000, "user2", 0)
ROM_FILL(0x000,0x20000,0x00)
ROM_END
ROM_START( x68ksupr )
ROM_REGION16_BE(0x1000000, "maincpu", 0) // 16MB address space
ROM_DEFAULT_BIOS("ipl11")
ROM_LOAD( "cgrom.dat", 0xf00000, 0xc0000, CRC(9f3195f1) SHA1(8d72c5b4d63bb14c5dbdac495244d659aa1498b6) )
ROM_SYSTEM_BIOS(0, "ipl10", "IPL-ROM V1.0 (87/05/07)")
ROMX_LOAD( "iplrom.dat", 0xfe0000, 0x20000, CRC(72bdf532) SHA1(0ed038ed2133b9f78c6e37256807424e0d927560), ROM_BIOS(1) )
ROM_SYSTEM_BIOS(1, "ipl11", "IPL-ROM V1.1 (91/01/11)")
ROMX_LOAD( "iplromxv.dat", 0xfe0000, 0x020000, CRC(00eeb408) SHA1(e33cdcdb69cd257b0b211ef46e7a8b144637db57), ROM_BIOS(2) )
ROM_SYSTEM_BIOS(2, "ipl12", "IPL-ROM V1.2 (91/10/24)")
ROMX_LOAD( "iplromco.dat", 0xfe0000, 0x020000, CRC(6c7ef608) SHA1(77511fc58798404701f66b6bbc9cbde06596eba7), ROM_BIOS(3) )
ROM_SYSTEM_BIOS(3, "ipl13", "IPL-ROM V1.3 (92/11/27)")
ROMX_LOAD( "iplrom30.dat", 0xfe0000, 0x020000, CRC(e8f8fdad) SHA1(239e9124568c862c31d9ec0605e32373ea74b86a), ROM_BIOS(4) )
ROM_LOAD("scsiinsu.bin",0xfc0000, 0x002000, CRC(f65a3e24) SHA1(15a17798839a3f7f361119205aebc301c2df5967) ) // Dumped from an X68000 Super HD
// ROM_LOAD("scsiexrom.dat",0xea0000, 0x002000, NO_DUMP )
ROM_REGION(0x8000, "user1",0) // For Background/Sprite decoding
ROM_FILL(0x0000,0x8000,0x00)
ROM_REGION(0x20000, "user2", 0)
ROM_FILL(0x000,0x20000,0x00)
ROM_END
ROM_START( x68kxvi )
ROM_REGION16_BE(0x1000000, "maincpu", 0) // 16MB address space
ROM_DEFAULT_BIOS("ipl11")
ROM_LOAD( "cgrom.dat", 0xf00000, 0xc0000, CRC(9f3195f1) SHA1(8d72c5b4d63bb14c5dbdac495244d659aa1498b6) )
ROM_SYSTEM_BIOS(0, "ipl10", "IPL-ROM V1.0 (87/05/07)")
ROMX_LOAD( "iplrom.dat", 0xfe0000, 0x20000, CRC(72bdf532) SHA1(0ed038ed2133b9f78c6e37256807424e0d927560), ROM_BIOS(1) )
ROM_SYSTEM_BIOS(1, "ipl11", "IPL-ROM V1.1 (91/01/11)")
ROMX_LOAD( "iplromxv.dat", 0xfe0000, 0x020000, CRC(00eeb408) SHA1(e33cdcdb69cd257b0b211ef46e7a8b144637db57), ROM_BIOS(2) )
ROM_SYSTEM_BIOS(2, "ipl12", "IPL-ROM V1.2 (91/10/24)")
ROMX_LOAD( "iplromco.dat", 0xfe0000, 0x020000, CRC(6c7ef608) SHA1(77511fc58798404701f66b6bbc9cbde06596eba7), ROM_BIOS(3) )
ROM_SYSTEM_BIOS(3, "ipl13", "IPL-ROM V1.3 (92/11/27)")
ROMX_LOAD( "iplrom30.dat", 0xfe0000, 0x020000, CRC(e8f8fdad) SHA1(239e9124568c862c31d9ec0605e32373ea74b86a), ROM_BIOS(4) )
ROM_LOAD("scsiinco.bin",0xfc0000, 0x002000, CRC(2485e14d) SHA1(101a9bba8ea4bb90965c144bcfd7182f889ab958) ) // Dumped from an X68000 XVI Compact
// ROM_LOAD("scsiexrom.dat",0xea0000, 0x002000, NO_DUMP )
ROM_REGION(0x8000, "user1",0) // For Background/Sprite decoding
ROM_FILL(0x0000,0x8000,0x00)
ROM_REGION(0x20000, "user2", 0)
ROM_FILL(0x000,0x20000,0x00)
ROM_END
ROM_START( x68030 )
ROM_REGION16_BE(0x1000000, "maincpu", 0) // 16MB address space
ROM_DEFAULT_BIOS("ipl13")
ROM_LOAD( "cgrom.dat", 0xf00000, 0xc0000, CRC(9f3195f1) SHA1(8d72c5b4d63bb14c5dbdac495244d659aa1498b6) )
ROM_SYSTEM_BIOS(0, "ipl10", "IPL-ROM V1.0 (87/05/07)")
ROMX_LOAD( "iplrom.dat", 0xfe0000, 0x20000, CRC(72bdf532) SHA1(0ed038ed2133b9f78c6e37256807424e0d927560), ROM_BIOS(1) )
ROM_SYSTEM_BIOS(1, "ipl11", "IPL-ROM V1.1 (91/01/11)")
ROMX_LOAD( "iplromxv.dat", 0xfe0000, 0x020000, CRC(00eeb408) SHA1(e33cdcdb69cd257b0b211ef46e7a8b144637db57), ROM_BIOS(2) )
ROM_SYSTEM_BIOS(2, "ipl12", "IPL-ROM V1.2 (91/10/24)")
ROMX_LOAD( "iplromco.dat", 0xfe0000, 0x020000, CRC(6c7ef608) SHA1(77511fc58798404701f66b6bbc9cbde06596eba7), ROM_BIOS(3) )
ROM_SYSTEM_BIOS(3, "ipl13", "IPL-ROM V1.3 (92/11/27)")
ROMX_LOAD( "iplrom30.dat", 0xfe0000, 0x020000, CRC(e8f8fdad) SHA1(239e9124568c862c31d9ec0605e32373ea74b86a), ROM_BIOS(4) )
ROM_LOAD("scsiinrom.dat",0xfc0000, 0x002000, CRC(1c6c889e) SHA1(3f063d4231cdf53da6adc4db96533725e260076a) BAD_DUMP )
// ROM_LOAD("scsiexrom.dat",0xea0000, 0x002000, NO_DUMP )
ROM_REGION(0x8000, "user1",0) // For Background/Sprite decoding
ROM_FILL(0x0000,0x8000,0x00)
ROM_REGION(0x20000, "user2", 0)
ROM_FILL(0x000,0x20000,0x00)
ROM_END
/* YEAR NAME PARENT COMPAT MACHINE INPUT INIT COMPANY FULLNAME FLAGS */
COMP( 1987, x68000, 0, 0, x68000, x68000, x68k_state, x68000, "Sharp", "X68000", GAME_IMPERFECT_GRAPHICS )
COMP( 1990, x68ksupr,x68000, 0, x68ksupr,x68000, x68k_state,x68000, "Sharp", "X68000 Super", GAME_IMPERFECT_GRAPHICS | GAME_NOT_WORKING )
COMP( 1991, x68kxvi,x68000, 0, x68kxvi,x68000, x68k_state, x68kxvi,"Sharp", "X68000 XVI", GAME_IMPERFECT_GRAPHICS | GAME_NOT_WORKING )
COMP( 1993, x68030, x68000, 0, x68030, x68000, x68k_state, x68030, "Sharp", "X68030", GAME_IMPERFECT_GRAPHICS | GAME_NOT_WORKING )