mame/src/tools/chdman.cpp
Vas Crabb a1d35e5abf Cleaned up bitmap API.
Made const-qualified pixel accessors (pix, pixt, raw_pixptr) return
const-qualified references/pointers to pixesl, and added non-const
versions.  This makes bitmap more like standard library containers where
const protects the content as well as the dimensions.

Made the templated pixt accessor protected - having it public makes it
too easy to inadvertently get a pointer to the wrong location.

Removed the pix(8|16|32|64) accessors from the specific bitmaps.  You
could only use the "correct" one anyway, and having the "incorrect" ones
available prevented explicit instantiations of the class template
because the static assertions would fail.  You can still see the pixel
type in the bitmap class names, and you can't assign the result of
&pix(y, x) to the wrong kind of pointer without a cast.

Added fill member functions to the specific bitmap template, and added
a explicit instantiations.  This allows the bitmap size check to be
skipped on most bitmap fills, although the clipping check is still
there.  Also fixed a couple of places that were trying to fill an
indexed 16-bit bitmap with rgb_t::black() exposed by this (replaced with
zero to get the same net effect).  The explicit template instantiations
in the .cpp file mean the compiler can inline the function if necessary,
but don't need to generate a local out-of-line body if it chooses not
to.

Extended the size of the fill value parameter in the base bitmap class
to 64 bits so it works correctly for 64-bit bitmaps.

Fixed places where IE15 and VGM visualiser weren't accounting for row
bytes potentially being larger than width.

Fixed an off-by-one in an HP-DIO card where it was treating the Topcat
cursor right edge as exclusive.

Updated everything to work with the API changes, reduced the scope of
many variables, added more const, and replaced a few fill/copy loops
with stuff from <algorithm>.
2020-09-27 14:00:42 +10:00

3051 lines
100 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
CHD compression frontend
****************************************************************************/
#include <stdio.h> // must be stdio.h and here otherwise issues with I64FMT in MINGW
// osd
#include "osdcore.h"
// lib/util
#include "avhuff.h"
#include "aviio.h"
#include "bitmap.h"
#include "chdcd.h"
#include "corefile.h"
#include "hashing.h"
#include "md5.h"
#include "vbiparse.h"
#include <cassert>
#include <cctype>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iostream>
#include <limits>
#include <memory>
#include <new>
#include <unordered_map>
//**************************************************************************
// CONSTANTS & DEFINES
//**************************************************************************
// MINGW has adopted the MSVC formatting for 64-bit ints as of GCC 4.4 and deprecated it as of GCC 9.3
#if defined(WIN32) && defined(__GNUC__) && ((__GNUC__ < 9) || ((__GNUC__ == 9) && (__GNUC_MINOR__ < 3)))
#define I64FMT "I64"
#elif !defined(__APPLE__) && defined(__LP64__)
#define I64FMT "l"
#else
#define I64FMT "ll"
#endif
// default hard disk sector size
const uint32_t IDE_SECTOR_SIZE = 512;
// temporary input buffer size
const uint32_t TEMP_BUFFER_SIZE = 32 * 1024 * 1024;
// modes
const int MODE_NORMAL = 0;
const int MODE_CUEBIN = 1;
const int MODE_GDI = 2;
// command modifier
#define REQUIRED "~"
// command strings
#define COMMAND_HELP "help"
#define COMMAND_INFO "info"
#define COMMAND_VERIFY "verify"
#define COMMAND_CREATE_RAW "createraw"
#define COMMAND_CREATE_HD "createhd"
#define COMMAND_CREATE_CD "createcd"
#define COMMAND_CREATE_LD "createld"
#define COMMAND_EXTRACT_RAW "extractraw"
#define COMMAND_EXTRACT_HD "extracthd"
#define COMMAND_EXTRACT_CD "extractcd"
#define COMMAND_EXTRACT_LD "extractld"
#define COMMAND_COPY "copy"
#define COMMAND_ADD_METADATA "addmeta"
#define COMMAND_DEL_METADATA "delmeta"
#define COMMAND_DUMP_METADATA "dumpmeta"
#define COMMAND_LIST_TEMPLATES "listtemplates"
// option strings
#define OPTION_INPUT "input"
#define OPTION_OUTPUT "output"
#define OPTION_OUTPUT_BIN "outputbin"
#define OPTION_OUTPUT_FORCE "force"
#define OPTION_INPUT_START_BYTE "inputstartbyte"
#define OPTION_INPUT_START_HUNK "inputstarthunk"
#define OPTION_INPUT_START_FRAME "inputstartframe"
#define OPTION_INPUT_LENGTH_BYTES "inputbytes"
#define OPTION_INPUT_LENGTH_HUNKS "inputhunks"
#define OPTION_INPUT_LENGTH_FRAMES "inputframes"
#define OPTION_HUNK_SIZE "hunksize"
#define OPTION_UNIT_SIZE "unitsize"
#define OPTION_COMPRESSION "compression"
#define OPTION_INPUT_PARENT "inputparent"
#define OPTION_OUTPUT_PARENT "outputparent"
#define OPTION_IDENT "ident"
#define OPTION_CHS "chs"
#define OPTION_SECTOR_SIZE "sectorsize"
#define OPTION_TAG "tag"
#define OPTION_INDEX "index"
#define OPTION_VALUE_TEXT "valuetext"
#define OPTION_VALUE_FILE "valuefile"
#define OPTION_NO_CHECKSUM "nochecksum"
#define OPTION_VERBOSE "verbose"
#define OPTION_FIX "fix"
#define OPTION_NUMPROCESSORS "numprocessors"
#define OPTION_SIZE "size"
#define OPTION_TEMPLATE "template"
//**************************************************************************
// FUNCTION PROTOTYPES
//**************************************************************************
typedef std::unordered_map<std::string, std::string *> parameters_map;
template <typename Format, typename... Params> static void report_error(int error, Format &&fmt, Params &&...args);
static void do_info(parameters_map &params);
static void do_verify(parameters_map &params);
static void do_create_raw(parameters_map &params);
static void do_create_hd(parameters_map &params);
static void do_create_cd(parameters_map &params);
static void do_create_ld(parameters_map &params);
static void do_copy(parameters_map &params);
static void do_extract_raw(parameters_map &params);
static void do_extract_cd(parameters_map &params);
static void do_extract_ld(parameters_map &params);
static void do_add_metadata(parameters_map &params);
static void do_del_metadata(parameters_map &params);
static void do_dump_metadata(parameters_map &params);
static void do_list_templates(parameters_map &params);
//**************************************************************************
// TYPE DEFINITIONS
//**************************************************************************
// ======================> option_description
struct option_description
{
const char *name;
const char *shortname;
bool parameter;
const char *description;
};
// ======================> command_description
struct command_description
{
const char *name;
void (*handler)(parameters_map &);
const char *description;
const char *valid_options[16];
};
// ======================> avi_info
struct avi_info
{
uint32_t fps_times_1million;
uint32_t width;
uint32_t height;
bool interlaced;
uint32_t channels;
uint32_t rate;
uint32_t max_samples_per_frame;
uint32_t bytes_per_frame;
};
// ======================> hd_template
struct hd_template
{
const char *manufacturer;
const char *model;
uint32_t cylinders;
uint32_t heads;
uint32_t sectors;
uint32_t sector_size;
};
// ======================> metadata_index_info
struct metadata_index_info
{
chd_metadata_tag tag;
uint32_t index;
};
// ======================> fatal_error
class fatal_error : public std::exception
{
public:
fatal_error(int error)
: m_error(error) { }
int error() const { return m_error; }
private:
int m_error;
};
// ======================> chd_zero_compressor
class chd_zero_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_zero_compressor(std::uint64_t offset = 0, std::uint64_t maxoffset = 0)
: m_offset(offset)
, m_maxoffset(maxoffset)
{
}
// read interface
virtual std::uint32_t read_data(void *dest, std::uint64_t offset, std::uint32_t length) override
{
offset += m_offset;
if (offset >= m_maxoffset)
return 0;
if (offset + length > m_maxoffset)
length = m_maxoffset - offset;
std::memset(dest, 0, length);
return length;
}
private:
// internal state
std::uint64_t m_offset;
std::uint64_t m_maxoffset;
};
// ======================> chd_rawfile_compressor
class chd_rawfile_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_rawfile_compressor(util::core_file &file, std::uint64_t offset = 0, std::uint64_t maxoffset = std::numeric_limits<std::uint64_t>::max())
: m_file(file)
, m_offset(offset)
, m_maxoffset((std::min)(maxoffset, file.size()))
{
}
// read interface
virtual std::uint32_t read_data(void *dest, std::uint64_t offset, std::uint32_t length) override
{
offset += m_offset;
if (offset >= m_maxoffset)
return 0;
if (offset + length > m_maxoffset)
length = m_maxoffset - offset;
m_file.seek(offset, SEEK_SET);
return m_file.read(dest, length);
}
private:
// internal state
util::core_file & m_file;
std::uint64_t m_offset;
std::uint64_t m_maxoffset;
};
// ======================> chd_chdfile_compressor
class chd_chdfile_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_chdfile_compressor(chd_file &file, uint64_t offset = 0, uint64_t maxoffset = ~0)
: m_toc(nullptr),
m_file(file),
m_offset(offset),
m_maxoffset(std::min(maxoffset, file.logical_bytes())) { }
// read interface
virtual uint32_t read_data(void *dest, uint64_t offset, uint32_t length)
{
offset += m_offset;
if (offset >= m_maxoffset)
return 0;
if (offset + length > m_maxoffset)
length = m_maxoffset - offset;
chd_error err = m_file.read_bytes(offset, dest, length);
if (err != CHDERR_NONE)
throw err;
// if we have TOC - detect audio sectors and swap data
if (m_toc)
{
assert(offset % CD_FRAME_SIZE == 0);
assert(length % CD_FRAME_SIZE == 0);
int startlba = offset / CD_FRAME_SIZE;
int lenlba = length / CD_FRAME_SIZE;
uint8_t *_dest = reinterpret_cast<uint8_t *>(dest);
for (int chdlba = 0; chdlba < lenlba; chdlba++)
{
// find current frame's track number
int tracknum = m_toc->numtrks;
for (int track = 0; track < m_toc->numtrks; track++)
if ((chdlba + startlba) < m_toc->tracks[track + 1].chdframeofs)
{
tracknum = track;
break;
}
// is it audio ?
if (m_toc->tracks[tracknum].trktype != CD_TRACK_AUDIO)
continue;
// byteswap if yes
int dataoffset = chdlba * CD_FRAME_SIZE;
for (uint32_t swapindex = dataoffset; swapindex < (dataoffset + CD_MAX_SECTOR_DATA); swapindex += 2)
{
uint8_t temp = _dest[swapindex];
_dest[swapindex] = _dest[swapindex + 1];
_dest[swapindex + 1] = temp;
}
}
}
return length;
}
const cdrom_toc * m_toc;
private:
// internal state
chd_file & m_file;
uint64_t m_offset;
uint64_t m_maxoffset;
};
// ======================> chd_cd_compressor
class chd_cd_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_cd_compressor(cdrom_toc &toc, chdcd_track_input_info &info)
: m_file(),
m_toc(toc),
m_info(info) { }
~chd_cd_compressor()
{
}
// read interface
virtual uint32_t read_data(void *_dest, uint64_t offset, uint32_t length)
{
// verify assumptions made below
assert(offset % CD_FRAME_SIZE == 0);
assert(length % CD_FRAME_SIZE == 0);
// initialize destination to 0 so that unused areas are filled
uint8_t *dest = reinterpret_cast<uint8_t *>(_dest);
memset(dest, 0, length);
// find out which track we're starting in
uint64_t startoffs = 0;
uint32_t length_remaining = length;
for (int tracknum = 0; tracknum < m_toc.numtrks; tracknum++)
{
const cdrom_track_info &trackinfo = m_toc.tracks[tracknum];
uint64_t endoffs = startoffs + (uint64_t)(trackinfo.frames + trackinfo.extraframes) * CD_FRAME_SIZE;
if (offset >= startoffs && offset < endoffs)
{
// if we don't already have this file open, open it now
if (!m_file || m_lastfile.compare(m_info.track[tracknum].fname)!=0)
{
m_file.reset();
m_lastfile = m_info.track[tracknum].fname;
osd_file::error filerr = util::core_file::open(m_lastfile, OPEN_FLAG_READ, m_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Error opening input file (%s)'", m_lastfile.c_str());
}
// iterate over frames
uint64_t bytesperframe = trackinfo.datasize + trackinfo.subsize;
uint64_t src_track_start = m_info.track[tracknum].offset;
uint64_t src_track_end = src_track_start + bytesperframe * (uint64_t)trackinfo.frames;
uint64_t pad_track_start = src_track_end - ((uint64_t)m_toc.tracks[tracknum].padframes * bytesperframe);
while (length_remaining != 0 && offset < endoffs)
{
// determine start of current frame
uint64_t src_frame_start = src_track_start + ((offset - startoffs) / CD_FRAME_SIZE) * bytesperframe;
if (src_frame_start < src_track_end)
{
// read it in, or pad if we're into the padframes
if (src_frame_start >= pad_track_start)
{
memset(dest, 0, bytesperframe);
}
else
{
m_file->seek(src_frame_start, SEEK_SET);
uint32_t count = m_file->read(dest, bytesperframe);
if (count != bytesperframe)
report_error(1, "Error reading input file (%s)'", m_lastfile.c_str());
}
// swap if appropriate
if (m_info.track[tracknum].swap)
for (uint32_t swapindex = 0; swapindex < 2352; swapindex += 2)
{
uint8_t temp = dest[swapindex];
dest[swapindex] = dest[swapindex + 1];
dest[swapindex + 1] = temp;
}
}
// advance
offset += CD_FRAME_SIZE;
dest += CD_FRAME_SIZE;
length_remaining -= CD_FRAME_SIZE;
if (length_remaining == 0)
break;
}
}
// next track starts after the previous one
startoffs = endoffs;
}
return length - length_remaining;
}
private:
// internal state
std::string m_lastfile;
util::core_file::ptr m_file;
cdrom_toc & m_toc;
chdcd_track_input_info & m_info;
};
// ======================> chd_avi_compressor
class chd_avi_compressor : public chd_file_compressor
{
public:
// construction/destruction
chd_avi_compressor(avi_file &file, avi_info &info, uint32_t first_frame, uint32_t num_frames)
: m_file(file),
m_info(info),
m_bitmap(info.width, info.height * (info.interlaced ? 2 : 1)),
m_start_frame(first_frame),
m_frame_count(num_frames),
m_ldframedata(num_frames * VBI_PACKED_BYTES),
m_rawdata(info.bytes_per_frame) { }
// getters
const std::vector<uint8_t> &ldframedata() const { return m_ldframedata; }
// read interface
virtual uint32_t read_data(void *_dest, uint64_t offset, uint32_t length)
{
uint8_t *dest = reinterpret_cast<uint8_t *>(_dest);
uint8_t interlace_factor = m_info.interlaced ? 2 : 1;
uint32_t length_remaining = length;
// iterate over frames
int32_t start_frame = offset / m_info.bytes_per_frame;
int32_t end_frame = (offset + length - 1) / m_info.bytes_per_frame;
for (int32_t framenum = start_frame; framenum <= end_frame; framenum++)
if (framenum < m_frame_count)
{
// determine effective frame number and first/last samples
int32_t effframe = m_start_frame + framenum;
uint32_t first_sample = (uint64_t(m_info.rate) * uint64_t(effframe) * uint64_t(1000000) + m_info.fps_times_1million - 1) / uint64_t(m_info.fps_times_1million);
uint32_t samples = (uint64_t(m_info.rate) * uint64_t(effframe + 1) * uint64_t(1000000) + m_info.fps_times_1million - 1) / uint64_t(m_info.fps_times_1million) - first_sample;
// loop over channels and read the samples
int channels = unsigned((std::min<std::size_t>)(m_info.channels, ARRAY_LENGTH(m_audio)));
EQUIVALENT_ARRAY(m_audio, int16_t *) samplesptr;
for (int chnum = 0; chnum < channels; chnum++)
{
// read the sound samples
m_audio[chnum].resize(samples);
samplesptr[chnum] = &m_audio[chnum][0];
avi_file::error avierr = m_file.read_sound_samples(chnum, first_sample, samples, &m_audio[chnum][0]);
if (avierr != avi_file::error::NONE)
report_error(1, "Error reading audio samples %d-%d from channel %d: %s", first_sample, samples, chnum, avi_file::error_string(avierr));
}
// read the video data
avi_file::error avierr = m_file.read_video_frame(effframe / interlace_factor, m_bitmap);
if (avierr != avi_file::error::NONE)
report_error(1, "Error reading AVI frame %d: %s", effframe / interlace_factor, avi_file::error_string(avierr));
bitmap_yuy16 subbitmap(&m_bitmap.pix(effframe % interlace_factor), m_bitmap.width(), m_bitmap.height() / interlace_factor, m_bitmap.rowpixels() * interlace_factor);
// update metadata for this frame
if (m_info.height == 524/2 || m_info.height == 624/2)
{
vbi_metadata vbi;
vbi_parse_all(&subbitmap.pix(0), subbitmap.rowpixels(), subbitmap.width(), 8, &vbi);
vbi_metadata_pack(&m_ldframedata[framenum * VBI_PACKED_BYTES], framenum, &vbi);
}
// assemble the data into final form
avhuff_error averr = avhuff_encoder::assemble_data(m_rawdata, subbitmap, channels, samples, samplesptr);
if (averr != AVHERR_NONE)
report_error(1, "Error assembling data for frame %d", framenum);
if (m_rawdata.size() < m_info.bytes_per_frame)
{
int old_size = m_rawdata.size();
m_rawdata.resize(m_info.bytes_per_frame);
memset(&m_rawdata[old_size], 0, m_info.bytes_per_frame - old_size);
}
// copy to the destination
uint64_t start_offset = uint64_t(framenum) * uint64_t(m_info.bytes_per_frame);
uint64_t end_offset = start_offset + m_info.bytes_per_frame;
uint32_t bytes_to_copy = (std::min<uint64_t>)(length_remaining, end_offset - offset);
memcpy(dest, &m_rawdata[offset - start_offset], bytes_to_copy);
// advance
offset += bytes_to_copy;
dest += bytes_to_copy;
length_remaining -= bytes_to_copy;
}
return length;
}
private:
// internal state
avi_file & m_file;
avi_info & m_info;
bitmap_yuy16 m_bitmap;
uint32_t m_start_frame;
uint32_t m_frame_count;
std::vector<int16_t> m_audio[8];
std::vector<uint8_t> m_ldframedata;
std::vector<uint8_t> m_rawdata;
};
//**************************************************************************
// GLOBAL VARIABLES
//**************************************************************************
// timing
static clock_t lastprogress = 0;
// default compressors
static const chd_codec_type s_default_raw_compression[4] = { CHD_CODEC_LZMA, CHD_CODEC_ZLIB, CHD_CODEC_HUFFMAN, CHD_CODEC_FLAC };
static const chd_codec_type s_default_hd_compression[4] = { CHD_CODEC_LZMA, CHD_CODEC_ZLIB, CHD_CODEC_HUFFMAN, CHD_CODEC_FLAC };
static const chd_codec_type s_default_cd_compression[4] = { CHD_CODEC_CD_LZMA, CHD_CODEC_CD_ZLIB, CHD_CODEC_CD_FLAC };
static const chd_codec_type s_default_ld_compression[4] = { CHD_CODEC_AVHUFF };
// descriptions for each option
static const option_description s_options[] =
{
{ OPTION_INPUT, "i", true, " <filename>: input file name" },
{ OPTION_INPUT_PARENT, "ip", true, " <filename>: parent file name for input CHD" },
{ OPTION_OUTPUT, "o", true, " <filename>: output file name" },
{ OPTION_OUTPUT_BIN, "ob", true, " <filename>: output file name for binary data" },
{ OPTION_OUTPUT_FORCE, "f", false, ": force overwriting an existing file" },
{ OPTION_OUTPUT_PARENT, "op", true, " <filename>: parent file name for output CHD" },
{ OPTION_INPUT_START_BYTE, "isb", true, " <offset>: starting byte offset within the input" },
{ OPTION_INPUT_START_HUNK, "ish", true, " <offset>: starting hunk offset within the input" },
{ OPTION_INPUT_START_FRAME, "isf", true, " <offset>: starting frame within the input" },
{ OPTION_INPUT_LENGTH_BYTES, "ib", true, " <length>: effective length of input in bytes" },
{ OPTION_INPUT_LENGTH_HUNKS, "ih", true, " <length>: effective length of input in hunks" },
{ OPTION_INPUT_LENGTH_FRAMES, "if", true, " <length>: effective length of input in frames" },
{ OPTION_HUNK_SIZE, "hs", true, " <bytes>: size of each hunk, in bytes" },
{ OPTION_UNIT_SIZE, "us", true, " <bytes>: size of each unit, in bytes" },
{ OPTION_COMPRESSION, "c", true, " <none|type1[,type2[,...]]>: which compression codecs to use (up to 4)" },
{ OPTION_IDENT, "id", true, " <filename>: name of ident file to provide CHS information" },
{ OPTION_CHS, "chs", true, " <cylinders,heads,sectors>: specifies CHS values directly" },
{ OPTION_SECTOR_SIZE, "ss", true, " <bytes>: size of each hard disk sector" },
{ OPTION_TAG, "t", true, " <tag>: 4-character tag for metadata" },
{ OPTION_INDEX, "ix", true, " <index>: indexed instance of this metadata tag" },
{ OPTION_VALUE_TEXT, "vt", true, " <text>: text for the metadata" },
{ OPTION_VALUE_FILE, "vf", true, " <file>: file containing data to add" },
{ OPTION_NUMPROCESSORS, "np", true, " <processors>: limit the number of processors to use during compression" },
{ OPTION_NO_CHECKSUM, "nocs", false, ": do not include this metadata information in the overall SHA-1" },
{ OPTION_FIX, "f", false, ": fix the SHA-1 if it is incorrect" },
{ OPTION_VERBOSE, "v", false, ": output additional information" },
{ OPTION_SIZE, "s", true, ": <bytes>: size of the output file" },
{ OPTION_TEMPLATE, "tp", true, ": <id>: use hard disk template (see listtemplates)" },
};
// descriptions for each command
static const command_description s_commands[] =
{
{ COMMAND_INFO, do_info, ": displays information about a CHD",
{
REQUIRED OPTION_INPUT,
OPTION_VERBOSE
}
},
{ COMMAND_VERIFY, do_verify, ": verifies a CHD's integrity",
{
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT
}
},
{ COMMAND_CREATE_RAW, do_create_raw, ": create a raw CHD from the input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS,
REQUIRED OPTION_HUNK_SIZE,
REQUIRED OPTION_UNIT_SIZE,
OPTION_COMPRESSION,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_CREATE_HD, do_create_hd, ": create a hard disk CHD from the input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
OPTION_INPUT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS,
OPTION_HUNK_SIZE,
OPTION_COMPRESSION,
OPTION_TEMPLATE,
OPTION_IDENT,
OPTION_CHS,
OPTION_SIZE,
OPTION_SECTOR_SIZE,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_CREATE_CD, do_create_cd, ": create a CD CHD from the input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_HUNK_SIZE,
OPTION_COMPRESSION,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_CREATE_LD, do_create_ld, ": create a laserdisc CHD from the input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_START_FRAME,
OPTION_INPUT_LENGTH_FRAMES,
OPTION_HUNK_SIZE,
OPTION_COMPRESSION,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_EXTRACT_RAW, do_extract_raw, ": extract raw file from a CHD input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS
}
},
{ COMMAND_EXTRACT_HD, do_extract_raw, ": extract raw hard disk file from a CHD input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS
}
},
{ COMMAND_EXTRACT_CD, do_extract_cd, ": extract CD file from a CHD input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_BIN,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
}
},
{ COMMAND_EXTRACT_LD, do_extract_ld, ": extract laserdisc AVI from a CHD input file",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
OPTION_INPUT_START_FRAME,
OPTION_INPUT_LENGTH_FRAMES
}
},
{ COMMAND_COPY, do_copy, ": copy data from one CHD to another of the same type",
{
REQUIRED OPTION_OUTPUT,
OPTION_OUTPUT_PARENT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_INPUT,
OPTION_INPUT_PARENT,
OPTION_INPUT_START_BYTE,
OPTION_INPUT_START_HUNK,
OPTION_INPUT_LENGTH_BYTES,
OPTION_INPUT_LENGTH_HUNKS,
OPTION_HUNK_SIZE,
OPTION_COMPRESSION,
OPTION_NUMPROCESSORS
}
},
{ COMMAND_ADD_METADATA, do_add_metadata, ": add metadata to the CHD",
{
REQUIRED OPTION_INPUT,
REQUIRED OPTION_TAG,
OPTION_INDEX,
OPTION_VALUE_TEXT,
OPTION_VALUE_FILE,
OPTION_NO_CHECKSUM
}
},
{ COMMAND_DEL_METADATA, do_del_metadata, ": remove metadata from the CHD",
{
REQUIRED OPTION_INPUT,
REQUIRED OPTION_TAG,
OPTION_INDEX
}
},
{ COMMAND_DUMP_METADATA, do_dump_metadata, ": dump metadata from the CHD to stdout or to a file",
{
REQUIRED OPTION_INPUT,
OPTION_OUTPUT,
OPTION_OUTPUT_FORCE,
REQUIRED OPTION_TAG,
OPTION_INDEX
}
},
{ COMMAND_LIST_TEMPLATES, do_list_templates, ": list hard disk templates",
{
}
},
};
// hard disk templates
static const hd_template s_hd_templates[] =
{
{ "Conner", "CFA170A", 332, 16, 63, 512 }, // 163 MB
{ "Rodime", "R0201", 321, 2, 16, 512 }, // 5 MB
{ "Rodime", "R0202", 321, 4, 16, 512 }, // 10 MB
{ "Rodime", "R0203", 321, 6, 16, 512 }, // 15 MB
{ "Rodime", "R0204", 321, 8, 16, 512 }, // 20 MB
};
//**************************************************************************
// IMPLEMENTATION
//**************************************************************************
//-------------------------------------------------
// report_error - report an error
//-------------------------------------------------
template <typename Format, typename... Params> static void report_error(int error, Format &&fmt, Params &&...args)
{
// output to stderr
util::stream_format(std::cerr, std::forward<Format>(fmt), std::forward<Params>(args)...);
std::cerr << std::endl;
// reset time for progress and return the error
lastprogress = 0;
throw fatal_error(error);
}
//-------------------------------------------------
// progress - generic progress callback
//-------------------------------------------------
template <typename Format, typename... Params> static void progress(bool forceit, Format &&fmt, Params &&...args)
{
// skip if it hasn't been long enough
clock_t curtime = clock();
if (!forceit && lastprogress != 0 && curtime - lastprogress < CLOCKS_PER_SEC / 2)
return;
lastprogress = curtime;
// standard vfprintf stuff here
util::stream_format(std::cerr, std::forward<Format>(fmt), std::forward<Params>(args)...);
std::cerr << std::flush;
}
//-------------------------------------------------
// print_help - print help for all the commands
//-------------------------------------------------
static int print_help(const std::string &argv0, const char *error = nullptr)
{
// print the error message first
if (error != nullptr)
fprintf(stderr, "Error: %s\n\n", error);
// print a summary of each command
printf("Usage:\n");
for (auto & desc : s_commands)
{
printf(" %s %s%s\n", argv0.c_str(), desc.name, desc.description);
}
printf("\nFor help with any command, run:\n");
printf(" %s %s <command>\n", argv0.c_str(), COMMAND_HELP);
return 1;
}
//-------------------------------------------------
// print_help - print help for all a specific
// command
//-------------------------------------------------
static int print_help(const std::string &argv0, const command_description &desc, const char *error = nullptr)
{
// print the error message first
if (error != nullptr)
fprintf(stderr, "Error: %s\n\n", error);
// print usage for this command
printf("Usage:\n");
printf(" %s %s [options], where valid options are:\n", argv0.c_str(), desc.name);
for (int valid = 0; valid < ARRAY_LENGTH(desc.valid_options); valid++)
{
// determine whether we are required
const char *option = desc.valid_options[valid];
if (option == nullptr)
break;
bool required = (option[0] == REQUIRED[0]);
if (required)
option++;
// find the option
for (auto & s_option : s_options)
if (strcmp(option, s_option.name) == 0)
{
const option_description &odesc = s_option;
printf(" --%s", odesc.name);
if (odesc.shortname != nullptr)
printf(", -%s", odesc.shortname);
printf("%s%s\n", odesc.description, required ? " (required)" : "");
}
}
return 1;
}
//-------------------------------------------------
// big_int_string - create a 64-bit string
//-------------------------------------------------
std::string big_int_string(uint64_t intvalue)
{
// 0 is a special case
if (intvalue == 0)
return "0";
// loop until all chunks are done
std::string str;
bool first = true;
while (intvalue != 0)
{
int chunk = intvalue % 1000;
intvalue /= 1000;
std::string insert = string_format((intvalue != 0) ? "%03d" : "%d", chunk);
if (!first)
str.insert(0, ",");
first = false;
str.insert(0, insert);
}
return str;
}
//-------------------------------------------------
// msf_string_from_frames - output the given
// number of frames in M:S:F format
//-------------------------------------------------
std::string msf_string_from_frames(uint32_t frames)
{
return string_format("%02d:%02d:%02d", frames / (75 * 60), (frames / 75) % 60, frames % 75);
}
//-------------------------------------------------
// parse_number - parse a number string with an
// optional k/m/g suffix
//-------------------------------------------------
uint64_t parse_number(const char *string)
{
// 0-length string is 0
int length = strlen(string);
if (length == 0)
return 0;
// scan forward over digits
uint64_t result = 0;
while (isdigit(*string))
{
result = (result * 10) + (*string - '0');
string++;
}
// handle multipliers
if (*string == 'k' || *string == 'K')
result *= 1024;
if (*string == 'm' || *string == 'M')
result *= 1024 * 1024;
if (*string == 'g' || *string == 'G')
result *= 1024 * 1024 * 1024;
return result;
}
//-------------------------------------------------
// guess_chs - given a file and an offset,
// compute a best guess CHS value set
//-------------------------------------------------
static void guess_chs(std::string *filename, uint64_t filesize, int sectorsize, uint32_t &cylinders, uint32_t &heads, uint32_t &sectors, uint32_t &bps)
{
// if this is a direct physical drive read, handle it specially
if (filename != nullptr && osd_get_physical_drive_geometry(filename->c_str(), &cylinders, &heads, &sectors, &bps))
return;
// if we have no length to work with, we can't guess
if (filesize == 0)
report_error(1, "Can't guess CHS values because there is no input file");
// now find a valid value
for (uint32_t totalsectors = filesize / sectorsize; ; totalsectors++)
for (uint32_t cursectors = 63; cursectors > 1; cursectors--)
if (totalsectors % cursectors == 0)
{
uint32_t totalheads = totalsectors / cursectors;
for (uint32_t curheads = 16; curheads > 1; curheads--)
if (totalheads % curheads == 0)
{
cylinders = totalheads / curheads;
heads = curheads;
sectors = cursectors;
return;
}
}
}
//-------------------------------------------------
// parse_input_chd_parameters - parse the
// standard set of input CHD parameters
//-------------------------------------------------
static void parse_input_chd_parameters(const parameters_map &params, chd_file &input_chd, chd_file &input_parent_chd, bool writeable = false)
{
// process input parent file
auto input_chd_parent_str = params.find(OPTION_INPUT_PARENT);
if (input_chd_parent_str != params.end())
{
chd_error err = input_parent_chd.open(input_chd_parent_str->second->c_str());
if (err != CHDERR_NONE)
report_error(1, "Error opening parent CHD file (%s): %s", input_chd_parent_str->second->c_str(), chd_file::error_string(err));
}
// process input file
auto input_chd_str = params.find(OPTION_INPUT);
if (input_chd_str != params.end())
{
chd_error err = input_chd.open(input_chd_str->second->c_str(), writeable, input_parent_chd.opened() ? &input_parent_chd : nullptr);
if (err != CHDERR_NONE)
report_error(1, "Error opening CHD file (%s): %s", input_chd_str->second->c_str(), chd_file::error_string(err));
}
}
//-------------------------------------------------
// parse_input_start_end - parse input start/end
// parameters in a standard way
//-------------------------------------------------
static void parse_input_start_end(const parameters_map &params, uint64_t logical_size, uint32_t hunkbytes, uint32_t framebytes, uint64_t &input_start, uint64_t &input_end)
{
// process start/end if we were provided an input CHD
input_start = 0;
input_end = logical_size;
// process input start
auto input_start_byte_str = params.find(OPTION_INPUT_START_BYTE);
auto input_start_hunk_str = params.find(OPTION_INPUT_START_HUNK);
auto input_start_frame_str = params.find(OPTION_INPUT_START_FRAME);
if (input_start_byte_str != params.end())
input_start = parse_number(input_start_byte_str->second->c_str());
if (input_start_hunk_str != params.end())
input_start = parse_number(input_start_hunk_str->second->c_str()) * hunkbytes;
if (input_start_frame_str != params.end())
input_start = parse_number(input_start_frame_str->second->c_str()) * framebytes;
if (input_start >= input_end)
report_error(1, "Input start offset greater than input file size");
// process input length
auto input_length_bytes_str = params.find(OPTION_INPUT_LENGTH_BYTES);
auto input_length_hunks_str = params.find(OPTION_INPUT_LENGTH_HUNKS);
auto input_length_frames_str = params.find(OPTION_INPUT_LENGTH_FRAMES);
uint64_t input_length = input_end;
if (input_length_bytes_str != params.end())
input_length = parse_number(input_length_bytes_str->second->c_str());
if (input_length_hunks_str != params.end())
input_length = parse_number(input_length_hunks_str->second->c_str()) * hunkbytes;
if (input_length_frames_str != params.end())
input_length = parse_number(input_length_frames_str->second->c_str()) * framebytes;
if (input_start + input_length < input_end)
input_end = input_start + input_length;
}
//-------------------------------------------------
// check_existing_output_file - see if an output
// file already exists, and error if it does,
// unless --force is specified
//-------------------------------------------------
static void check_existing_output_file(const parameters_map &params, const char *filename)
{
if (params.find(OPTION_OUTPUT_FORCE) == params.end())
{
util::core_file::ptr file;
osd_file::error filerr = util::core_file::open(filename, OPEN_FLAG_READ, file);
if (filerr == osd_file::error::NONE)
{
file.reset();
report_error(1, "Error: file already exists (%s)\nUse --force (or -f) to force overwriting", filename);
}
}
}
//-------------------------------------------------
// parse_output_chd_parameters - parse the
// standard set of output CHD parameters
//-------------------------------------------------
static std::string *parse_output_chd_parameters(const parameters_map &params, chd_file &output_parent_chd)
{
// process output parent file
auto output_chd_parent_str = params.find(OPTION_OUTPUT_PARENT);
if (output_chd_parent_str != params.end())
{
chd_error err = output_parent_chd.open(output_chd_parent_str->second->c_str());
if (err != CHDERR_NONE)
report_error(1, "Error opening parent CHD file (%s): %s", output_chd_parent_str->second->c_str(), chd_file::error_string(err));
}
// process output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
check_existing_output_file(params, output_chd_str->second->c_str());
return (output_chd_str != params.end()) ? output_chd_str->second : nullptr;
}
//-------------------------------------------------
// parse_hunk_size - parse the hunk_size
// parameter in a standard way
//-------------------------------------------------
static void parse_hunk_size(const parameters_map &params, uint32_t required_granularity, uint32_t &hunk_size)
{
auto hunk_size_str = params.find(OPTION_HUNK_SIZE);
if (hunk_size_str != params.end())
{
hunk_size = parse_number(hunk_size_str->second->c_str());
if (hunk_size < 16 || hunk_size > 1024 * 1024)
report_error(1, "Invalid hunk size");
if (hunk_size % required_granularity != 0)
report_error(1, "Hunk size is not an even multiple of %d", required_granularity);
}
}
//-------------------------------------------------
// parse_compression - parse a standard
// compression parameter string
//-------------------------------------------------
static void parse_compression(const parameters_map &params, chd_codec_type compression[4])
{
// see if anything was specified
auto compression_str = params.find(OPTION_COMPRESSION);
if (compression_str == params.end())
return;
// special case: 'none'
if (compression_str->second->compare("none")==0)
{
compression[0] = compression[1] = compression[2] = compression[3] = CHD_CODEC_NONE;
return;
}
// iterate through compressors
int index = 0;
for (int start = 0, end = compression_str->second->find_first_of(','); index < 4; start = end + 1, end = compression_str->second->find_first_of(',', end + 1))
{
std::string name(*compression_str->second, start, (end == -1) ? -1 : end - start);
if (name.length() != 4)
report_error(1, "Invalid compressor '%s' specified", name.c_str());
chd_codec_type type = CHD_MAKE_TAG(name[0], name[1], name[2], name[3]);
if (!chd_codec_list::codec_exists(type))
report_error(1, "Invalid compressor '%s' specified", name.c_str());
compression[index++] = type;
if (end == -1)
break;
}
for(;index < 4; ++index)
{
compression[index] = CHD_CODEC_NONE;
}
}
//-------------------------------------------------
// parse_numprocessors - handle the numprocessors
// command
//-------------------------------------------------
static void parse_numprocessors(const parameters_map &params)
{
auto numprocessors_str = params.find(OPTION_NUMPROCESSORS);
if (numprocessors_str == params.end())
return;
int count = atoi(numprocessors_str->second->c_str());
if (count > 0)
{
extern int osd_num_processors;
osd_num_processors = count;
}
}
//-------------------------------------------------
// compression_string - create a friendly string
// describing a set of compressors
//-------------------------------------------------
static std::string compression_string(chd_codec_type compression[4])
{
// output compression types
if (compression[0] == CHD_CODEC_NONE)
return "none";
// iterate over types
std::string str;
for (int index = 0; index < 4; index++)
{
chd_codec_type type = compression[index];
if (type == CHD_CODEC_NONE)
break;
if (index != 0)
str.append(", ");
str.push_back((type >> 24) & 0xff);
str.push_back((type >> 16) & 0xff);
str.push_back((type >> 8) & 0xff);
str.push_back(type & 0xff);
str.append(" (").append(chd_codec_list::codec_name(type)).append(")");
}
return str;
}
//-------------------------------------------------
// compress_common - standard compression loop
//-------------------------------------------------
static void compress_common(chd_file_compressor &chd)
{
// begin compressing
chd.compress_begin();
// loop until done
double complete, ratio;
chd_error err;
while ((err = chd.compress_continue(complete, ratio)) == CHDERR_WALKING_PARENT || err == CHDERR_COMPRESSING)
if (err == CHDERR_WALKING_PARENT)
progress(false, "Examining parent, %.1f%% complete... \r", 100.0 * complete);
else
progress(false, "Compressing, %.1f%% complete... (ratio=%.1f%%) \r", 100.0 * complete, 100.0 * ratio);
// handle errors
if (err != CHDERR_NONE)
report_error(1, "Error during compression: %-40s", chd_file::error_string(err));
// final progress update
progress(true, "Compression complete ... final ratio = %.1f%% \n", 100.0 * ratio);
}
//-------------------------------------------------
// output_track_metadata - output track metadata
// to a CUE file
//-------------------------------------------------
void output_track_metadata(int mode, util::core_file &file, int tracknum, const cdrom_track_info &info, const char *filename, uint32_t frameoffs, uint64_t discoffs)
{
if (mode == MODE_GDI)
{
int mode = 0, size = 2048;
switch (info.trktype)
{
case CD_TRACK_MODE1:
mode = 4;
size = 2048;
break;
case CD_TRACK_MODE1_RAW:
mode = 4;
size = 2352;
break;
case CD_TRACK_MODE2:
mode = 4;
size = 2336;
break;
case CD_TRACK_MODE2_FORM1:
mode = 4;
size = 2048;
break;
case CD_TRACK_MODE2_FORM2:
mode = 4;
size = 2324;
break;
case CD_TRACK_MODE2_FORM_MIX:
mode = 4;
size = 2336;
break;
case CD_TRACK_MODE2_RAW:
mode = 4;
size = 2352;
break;
case CD_TRACK_AUDIO:
mode = 0;
size = 2352;
break;
}
bool needquote = strchr(filename, ' ') != nullptr;
file.printf("%d %d %d %d %s%s%s %d\n", tracknum+1, frameoffs, mode, size, needquote?"\"":"", filename, needquote?"\"":"", discoffs);
}
else if (mode == MODE_CUEBIN)
{
// first track specifies the file
if (tracknum == 0)
file.printf("FILE \"%s\" BINARY\n", filename);
// determine submode
std::string tempstr;
switch (info.trktype)
{
case CD_TRACK_MODE1:
case CD_TRACK_MODE1_RAW:
tempstr = string_format("MODE1/%04d", info.datasize);
break;
case CD_TRACK_MODE2:
case CD_TRACK_MODE2_FORM1:
case CD_TRACK_MODE2_FORM2:
case CD_TRACK_MODE2_FORM_MIX:
case CD_TRACK_MODE2_RAW:
tempstr = string_format("MODE2/%04d", info.datasize);
break;
case CD_TRACK_AUDIO:
tempstr.assign("AUDIO");
break;
}
// output TRACK entry
file.printf(" TRACK %02d %s\n", tracknum + 1, tempstr);
// output PREGAP tag if pregap sectors are not in the file
if ((info.pregap > 0) && (info.pgdatasize == 0))
{
file.printf(" PREGAP %s\n", msf_string_from_frames(info.pregap));
file.printf(" INDEX 01 %s\n", msf_string_from_frames(frameoffs));
}
else if ((info.pregap > 0) && (info.pgdatasize > 0))
{
file.printf(" INDEX 00 %s\n", msf_string_from_frames(frameoffs));
file.printf(" INDEX 01 %s\n", msf_string_from_frames(frameoffs+info.pregap));
}
// if no pregap at all, output index 01 only
if (info.pregap == 0)
{
file.printf(" INDEX 01 %s\n", msf_string_from_frames(frameoffs));
}
// output POSTGAP
if (info.postgap > 0)
file.printf(" POSTGAP %s\n", msf_string_from_frames(info.postgap));
}
// non-CUE mode
else if (mode == MODE_NORMAL)
{
// header on the first track
if (tracknum == 0)
file.printf("CD_ROM\n\n\n");
file.printf("// Track %d\n", tracknum + 1);
// write out the track type
std::string modesubmode;
if (info.subtype != CD_SUB_NONE)
modesubmode = string_format("%s %s", cdrom_get_type_string(info.trktype), cdrom_get_subtype_string(info.subtype));
else
modesubmode = string_format("%s", cdrom_get_type_string(info.trktype));
file.printf("TRACK %s\n", modesubmode);
// write out the attributes
file.printf("NO COPY\n");
if (info.trktype == CD_TRACK_AUDIO)
{
file.printf("NO PRE_EMPHASIS\n");
file.printf("TWO_CHANNEL_AUDIO\n");
}
// output pregap
if (info.pregap > 0)
file.printf("ZERO %s %s\n", modesubmode, msf_string_from_frames(info.pregap));
// all tracks but the first one have a file offset
if (tracknum > 0)
file.printf("DATAFILE \"%s\" #%d %s // length in bytes: %d\n", filename, uint32_t(discoffs), msf_string_from_frames(info.frames), info.frames * (info.datasize + info.subsize));
else
file.printf("DATAFILE \"%s\" %s // length in bytes: %d\n", filename, msf_string_from_frames(info.frames), info.frames * (info.datasize + info.subsize));
// tracks with pregaps get a START marker too
if (info.pregap > 0)
file.printf("START %s\n", msf_string_from_frames(info.pregap));
file.printf("\n\n");
}
}
//-------------------------------------------------
// do_info - dump the header information from
// a drive image
//-------------------------------------------------
static void do_info(parameters_map &params)
{
bool verbose = params.find(OPTION_VERBOSE) != params.end();
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// print filename and version
printf("Input file: %s\n", params.find(OPTION_INPUT)->second->c_str());
printf("File Version: %d\n", input_chd.version());
if (input_chd.version() < 3)
report_error(1, "Unsupported version (%d); use an older chdman to upgrade to version 3 or later", input_chd.version());
// output cmpression and size information
chd_codec_type compression[4] = { input_chd.compression(0), input_chd.compression(1), input_chd.compression(2), input_chd.compression(3) };
printf("Logical size: %s bytes\n", big_int_string(input_chd.logical_bytes()).c_str());
printf("Hunk Size: %s bytes\n", big_int_string(input_chd.hunk_bytes()).c_str());
printf("Total Hunks: %s\n", big_int_string(input_chd.hunk_count()).c_str());
printf("Unit Size: %s bytes\n", big_int_string(input_chd.unit_bytes()).c_str());
printf("Total Units: %s\n", big_int_string(input_chd.unit_count()).c_str());
printf("Compression: %s\n", compression_string(compression).c_str());
printf("CHD size: %s bytes\n", big_int_string(static_cast<util::core_file &>(input_chd).size()).c_str());
if (compression[0] != CHD_CODEC_NONE)
printf("Ratio: %.1f%%\n", 100.0 * double(static_cast<util::core_file &>(input_chd).size()) / double(input_chd.logical_bytes()));
// add SHA1 output
util::sha1_t overall = input_chd.sha1();
if (overall != util::sha1_t::null)
{
printf("SHA1: %s\n", overall.as_string().c_str());
if (input_chd.version() >= 4)
printf("Data SHA1: %s\n", input_chd.raw_sha1().as_string().c_str());
}
util::sha1_t parent = input_chd.parent_sha1();
if (parent != util::sha1_t::null)
printf("Parent SHA1: %s\n", parent.as_string().c_str());
// print out metadata
std::vector<uint8_t> buffer;
std::vector<metadata_index_info> info;
for (int index = 0; ; index++)
{
// get the indexed metadata item; stop when we hit an error
chd_metadata_tag metatag;
uint8_t metaflags;
chd_error err = input_chd.read_metadata(CHDMETATAG_WILDCARD, index, buffer, metatag, metaflags);
if (err != CHDERR_NONE)
break;
// determine our index
uint32_t metaindex = ~0;
for (auto & elem : info)
if (elem.tag == metatag)
{
metaindex = ++elem.index;
break;
}
// if not found, add to our tracking
if (metaindex == ~0)
{
metadata_index_info curinfo = { metatag, 0 };
info.push_back(curinfo);
metaindex = 0;
}
// print either a string representation or a hex representation of the tag
if (isprint((metatag >> 24) & 0xff) && isprint((metatag >> 16) & 0xff) && isprint((metatag >> 8) & 0xff) && isprint(metatag & 0xff))
printf("Metadata: Tag='%c%c%c%c' Index=%d Length=%d bytes\n", (metatag >> 24) & 0xff, (metatag >> 16) & 0xff, (metatag >> 8) & 0xff, metatag & 0xff, metaindex, int(buffer.size()));
else
printf("Metadata: Tag=%08x Index=%d Length=%d bytes\n", metatag, metaindex, int(buffer.size()));
printf(" ");
uint32_t count = buffer.size();
// limit output to 60 characters of metadata if not verbose
if (!verbose)
count = std::min(60U, count);
for (int chnum = 0; chnum < count; chnum++)
printf("%c", isprint(uint8_t(buffer[chnum])) ? buffer[chnum] : '.');
printf("\n");
}
// print compression stats if verbose
if (verbose)
{
uint32_t compression_types[10] = { 0 };
for (uint32_t hunknum = 0; hunknum < input_chd.hunk_count(); hunknum++)
{
// get info on this hunk
chd_codec_type codec;
uint32_t compbytes;
chd_error err = input_chd.hunk_info(hunknum, codec, compbytes);
if (err != CHDERR_NONE)
report_error(1, "Error getting info on hunk %d: %s", hunknum, chd_file::error_string(err));
// decode into our data
if (codec > CHD_CODEC_MINI)
for (int comptype = 0; comptype < 4; comptype++)
if (codec == input_chd.compression(comptype))
{
codec = CHD_CODEC_MINI + 1 + comptype;
break;
}
if (codec > ARRAY_LENGTH(compression_types))
codec = ARRAY_LENGTH(compression_types) - 1;
// count stats
compression_types[codec]++;
}
// output the stats
printf("\n");
printf(" Hunks Percent Name\n");
printf("---------- ------- ------------------------------------\n");
for (int comptype = 0; comptype < ARRAY_LENGTH(compression_types); comptype++)
if (compression_types[comptype] != 0)
{
// determine the name
const char *name = "Unknown";
switch (comptype)
{
case CHD_CODEC_NONE: name = "Uncompressed"; break;
case CHD_CODEC_SELF: name = "Copy from self"; break;
case CHD_CODEC_PARENT: name = "Copy from parent"; break;
case CHD_CODEC_MINI: name = "Legacy 8-byte mini"; break;
default:
int index = comptype - 1 - CHD_CODEC_MINI;
if (index < 4)
name = chd_codec_list::codec_name(input_chd.compression(index));
break;
}
// output the stats
printf("%10s %5.1f%% %-40s\n",
big_int_string(compression_types[comptype]).c_str(),
100.0 * double(compression_types[comptype]) / double(input_chd.hunk_count()),
name);
}
}
}
//-------------------------------------------------
// do_verify - validate the SHA1 on a CHD
//-------------------------------------------------
static void do_verify(parameters_map &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// only makes sense for compressed CHDs with valid SHA1's
if (!input_chd.compressed())
report_error(0, "No verification to be done; CHD is uncompressed");
util::sha1_t raw_sha1 = (input_chd.version() <= 3) ? input_chd.sha1() : input_chd.raw_sha1();
if (raw_sha1 == util::sha1_t::null)
report_error(0, "No verification to be done; CHD has no checksum");
// create an array to read into
std::vector<uint8_t> buffer((TEMP_BUFFER_SIZE / input_chd.hunk_bytes()) * input_chd.hunk_bytes());
// read all the data and build up an SHA-1
util::sha1_creator rawsha1;
for (uint64_t offset = 0; offset < input_chd.logical_bytes(); )
{
progress(false, "Verifying, %.1f%% complete... \r", 100.0 * double(offset) / double(input_chd.logical_bytes()));
// determine how much to read
uint32_t bytes_to_read = (std::min<uint64_t>)(buffer.size(), input_chd.logical_bytes() - offset);
chd_error err = input_chd.read_bytes(offset, &buffer[0], bytes_to_read);
if (err != CHDERR_NONE)
report_error(1, "Error reading CHD file (%s): %s", params.find(OPTION_INPUT)->second->c_str(), chd_file::error_string(err));
// add to the checksum
rawsha1.append(&buffer[0], bytes_to_read);
offset += bytes_to_read;
}
util::sha1_t computed_sha1 = rawsha1.finish();
// finish up
if (raw_sha1 != computed_sha1)
{
fprintf(stderr, "Error: Raw SHA1 in header = %s\n", raw_sha1.as_string().c_str());
fprintf(stderr, " actual SHA1 = %s\n", computed_sha1.as_string().c_str());
// fix it if requested; this also fixes the overall one so we don't need to do any more
if (params.find(OPTION_FIX) != params.end())
{
input_chd.set_raw_sha1(computed_sha1);
printf("SHA-1 updated to correct value in input CHD\n");
}
}
else
{
printf("Raw SHA1 verification successful!\n");
// now include the metadata for >= v4
if (input_chd.version() >= 4)
{
util::sha1_t computed_overall_sha1 = input_chd.compute_overall_sha1(computed_sha1);
if (input_chd.sha1() == computed_overall_sha1)
printf("Overall SHA1 verification successful!\n");
else
{
fprintf(stderr, "Error: Overall SHA1 in header = %s\n", input_chd.sha1().as_string().c_str());
fprintf(stderr, " actual SHA1 = %s\n", computed_overall_sha1.as_string().c_str());
// fix it if requested
if (params.find(OPTION_FIX) != params.end())
{
input_chd.set_raw_sha1(computed_sha1);
printf("SHA-1 updated to correct value in input CHD\n");
}
}
}
}
}
//-------------------------------------------------
// do_create_raw - create a new compressed raw
// image from a raw file
//-------------------------------------------------
static void do_create_raw(parameters_map &params)
{
// process input file
util::core_file::ptr input_file;
auto input_file_str = params.find(OPTION_INPUT);
if (input_file_str != params.end())
{
osd_file::error filerr = util::core_file::open(*input_file_str->second, OPEN_FLAG_READ, input_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", input_file_str->second->c_str());
}
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process hunk size
uint32_t hunk_size = output_parent.opened() ? output_parent.hunk_bytes() : 0;
parse_hunk_size(params, 1, hunk_size);
// process unit size
uint32_t unit_size = output_parent.opened() ? output_parent.unit_bytes() : 0;
auto unit_size_str = params.find(OPTION_UNIT_SIZE);
if (unit_size_str != params.end())
{
unit_size = parse_number(unit_size_str->second->c_str());
if (hunk_size % unit_size != 0)
report_error(1, "Unit size is not an even divisor of the hunk size");
}
// process input start/end (needs to know hunk_size)
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, input_file->size(), hunk_size, hunk_size, input_start, input_end);
// process compression
chd_codec_type compression[4];
memcpy(compression, s_default_raw_compression, sizeof(compression));
parse_compression(params, compression);
// process numprocessors
parse_numprocessors(params);
// print some info
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
printf("Input file: %s\n", input_file_str->second->c_str());
if (input_start != 0 || input_end != input_file->size())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(input_end - input_start).c_str());
}
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Hunk size: %s\n", big_int_string(hunk_size).c_str());
printf("Logical size: %s\n", big_int_string(input_end - input_start).c_str());
// catch errors so we can close & delete the output file
try
{
// create the new CHD
std::unique_ptr<chd_file_compressor> chd(new chd_rawfile_compressor(*input_file, input_start, input_end));
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), input_end - input_start, hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), input_end - input_start, hunk_size, unit_size, compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// if we have a parent, copy forward all the metadata
if (output_parent.opened())
chd->clone_all_metadata(output_parent);
// compress it generically
compress_common(*chd);
}
catch (...)
{
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_create_hd - create a new compressed hard
// disk image from a raw file
//-------------------------------------------------
static void do_create_hd(parameters_map &params)
{
// process input file
util::core_file::ptr input_file;
auto input_file_str = params.find(OPTION_INPUT);
if (input_file_str != params.end())
{
osd_file::error filerr = util::core_file::open(*input_file_str->second, OPEN_FLAG_READ, input_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", input_file_str->second->c_str());
}
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process sectorsize
uint32_t sector_size = output_parent.opened() ? output_parent.unit_bytes() : IDE_SECTOR_SIZE;
auto sectorsize_str = params.find(OPTION_SECTOR_SIZE);
if (sectorsize_str != params.end())
{
if (output_parent.opened())
report_error(1, "Sector size does not apply when creating a diff from the parent");
sector_size = parse_number(sectorsize_str->second->c_str());
}
// process hunk size (needs to know sector_size)
uint32_t hunk_size = output_parent.opened() ? output_parent.hunk_bytes() : std::max((4096 / sector_size) * sector_size, sector_size);
parse_hunk_size(params, sector_size, hunk_size);
// process input start/end (needs to know hunk_size)
uint64_t filesize = 0;
uint64_t input_start = 0;
uint64_t input_end = 0;
if (input_file)
{
parse_input_start_end(params, input_file->size(), hunk_size, hunk_size, input_start, input_end);
filesize = input_end - input_start;
}
else
{
auto size_str = params.find(OPTION_SIZE);
if (size_str != params.end())
{
if (sscanf(size_str->second->c_str(), "%" I64FMT"d", &filesize) != 1)
report_error(1, "Invalid size string");
}
}
// process compression
chd_codec_type compression[4];
memcpy(compression, s_default_hd_compression, sizeof(compression));
if (!input_file)
compression[0] = compression[1] = compression[2] = compression[3] = CHD_CODEC_NONE;
parse_compression(params, compression);
if (!input_file && compression[0] != CHD_CODEC_NONE)
report_error(1, "Blank hard disks must be uncompressed");
// process numprocessors
parse_numprocessors(params);
// process chs
uint32_t cylinders = 0;
uint32_t heads = 0;
uint32_t sectors = 0;
auto chs_str = params.find(OPTION_CHS);
if (chs_str != params.end())
{
if (output_parent.opened())
report_error(1, "CHS does not apply when creating a diff from the parent");
if (sscanf(chs_str->second->c_str(), "%d,%d,%d", &cylinders, &heads, &sectors) != 3)
report_error(1, "Invalid CHS string; must be of the form <cylinders>,<heads>,<sectors>");
}
// process ident
std::vector<uint8_t> identdata;
if (output_parent.opened())
output_parent.read_metadata(HARD_DISK_IDENT_METADATA_TAG, 0, identdata);
auto ident_str = params.find(OPTION_IDENT);
if (ident_str != params.end())
{
// load the file
osd_file::error filerr = util::core_file::load(ident_str->second->c_str(), identdata);
if (filerr != osd_file::error::NONE)
report_error(1, "Error reading ident file (%s)", ident_str->second->c_str());
// must be at least 14 bytes; extract CHS data from there
if (identdata.size() < 14)
report_error(1, "Ident file '%s' is invalid (too short)", ident_str->second->c_str());
cylinders = (identdata[3] << 8) | identdata[2];
heads = (identdata[7] << 8) | identdata[6];
sectors = (identdata[13] << 8) | identdata[12];
// ignore CHS for > 8GB drives
if (cylinders * heads * sectors >= 16514064)
cylinders = 0;
}
// process template
auto template_str = params.find(OPTION_TEMPLATE);
if (template_str != params.end())
{
uint32_t id = parse_number(template_str->second->c_str());
if (id >= ARRAY_LENGTH(s_hd_templates))
report_error(1, "Template '%d' is invalid\n", id);
cylinders = s_hd_templates[id].cylinders;
heads = s_hd_templates[id].heads;
sectors = s_hd_templates[id].sectors;
sector_size = s_hd_templates[id].sector_size;
printf("Template: %s %s\n", s_hd_templates[id].manufacturer, s_hd_templates[id].model);
}
// extract geometry from the parent if we have one
if (output_parent.opened() && cylinders == 0)
{
std::string metadata;
if (output_parent.read_metadata(HARD_DISK_METADATA_TAG, 0, metadata) != CHDERR_NONE)
report_error(1, "Unable to find hard disk metadata in parent CHD");
if (sscanf(metadata.c_str(), HARD_DISK_METADATA_FORMAT, &cylinders, &heads, &sectors, &sector_size) != 4)
report_error(1, "Error parsing hard disk metadata in parent CHD");
}
// validate the size
if (filesize % sector_size != 0)
report_error(1, "Data size is not divisible by sector size %d", sector_size);
// if no CHS values, try to guess them
if (cylinders == 0)
{
if (!input_file && filesize == 0)
report_error(1, "Blank hard drives must specify either a length or a set of CHS values");
guess_chs((input_file_str != params.end()) ? input_file_str->second : nullptr, filesize, sector_size, cylinders, heads, sectors, sector_size);
}
uint32_t totalsectors = cylinders * heads * sectors;
// print some info
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
if (input_file)
{
printf("Input file: %s\n", input_file_str->second->c_str());
if (input_start != 0 || input_end != input_file->size())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(filesize).c_str());
}
}
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Cylinders: %d\n", cylinders);
printf("Heads: %d\n", heads);
printf("Sectors: %d\n", sectors);
printf("Bytes/sector: %d\n", sector_size);
printf("Sectors/hunk: %d\n", hunk_size / sector_size);
printf("Logical size: %s\n", big_int_string(uint64_t(totalsectors) * uint64_t(sector_size)).c_str());
// catch errors so we can close & delete the output file
try
{
// create the new hard drive
std::unique_ptr<chd_file_compressor> chd;
if (input_file) chd.reset(new chd_rawfile_compressor(*input_file, input_start, input_end));
else chd.reset(new chd_zero_compressor(input_start, input_end));
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), uint64_t(totalsectors) * uint64_t(sector_size), hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), uint64_t(totalsectors) * uint64_t(sector_size), hunk_size, sector_size, compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// add the standard hard disk metadata
std::string metadata = string_format(HARD_DISK_METADATA_FORMAT, cylinders, heads, sectors, sector_size);
err = chd->write_metadata(HARD_DISK_METADATA_TAG, 0, metadata);
if (err != CHDERR_NONE)
report_error(1, "Error adding hard disk metadata: %s", chd_file::error_string(err));
// write the ident if present
if (!identdata.empty())
{
err = chd->write_metadata(HARD_DISK_IDENT_METADATA_TAG, 0, identdata);
if (err != CHDERR_NONE)
report_error(1, "Error adding hard disk metadata: %s", chd_file::error_string(err));
}
// compress it generically
if (input_file)
compress_common(*chd);
}
catch (...)
{
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_create_cd - create a new compressed CD
// image from a raw file
//-------------------------------------------------
static void do_create_cd(parameters_map &params)
{
// process input file
chdcd_track_input_info track_info;
cdrom_toc toc = { 0 };
auto input_file_str = params.find(OPTION_INPUT);
if (input_file_str != params.end())
{
chd_error err = chdcd_parse_toc(input_file_str->second->c_str(), toc, track_info);
if (err != CHDERR_NONE)
report_error(1, "Error parsing input file (%s: %s)\n", input_file_str->second->c_str(), chd_file::error_string(err));
}
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process hunk size
uint32_t hunk_size = output_parent.opened() ? output_parent.hunk_bytes() : CD_FRAMES_PER_HUNK * CD_FRAME_SIZE;
parse_hunk_size(params, CD_FRAME_SIZE, hunk_size);
// process compression
chd_codec_type compression[4];
memcpy(compression, s_default_cd_compression, sizeof(compression));
parse_compression(params, compression);
// process numprocessors
parse_numprocessors(params);
// pad each track to a 4-frame boundary. cdrom.c will deal with this on the read side
uint32_t origtotalsectors = 0;
uint32_t totalsectors = 0;
for (int tracknum = 0; tracknum < toc.numtrks; tracknum++)
{
cdrom_track_info &trackinfo = toc.tracks[tracknum];
int padded = (trackinfo.frames + CD_TRACK_PADDING - 1) / CD_TRACK_PADDING;
trackinfo.extraframes = padded * CD_TRACK_PADDING - trackinfo.frames;
origtotalsectors += trackinfo.frames;
totalsectors += trackinfo.frames + trackinfo.extraframes;
}
// print some info
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
printf("Input file: %s\n", input_file_str->second->c_str());
printf("Input tracks: %d\n", toc.numtrks);
printf("Input length: %s\n", msf_string_from_frames(origtotalsectors).c_str());
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Logical size: %s\n", big_int_string(uint64_t(totalsectors) * CD_FRAME_SIZE).c_str());
// catch errors so we can close & delete the output file
chd_cd_compressor *chd = nullptr;
try
{
// create the new CD
chd = new chd_cd_compressor(toc, track_info);
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), uint64_t(totalsectors) * uint64_t(CD_FRAME_SIZE), hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), uint64_t(totalsectors) * uint64_t(CD_FRAME_SIZE), hunk_size, CD_FRAME_SIZE, compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// add the standard CD metadata; we do this even if we have a parent because it might be different
err = cdrom_write_metadata(chd, &toc);
if (err != CHDERR_NONE)
report_error(1, "Error adding CD metadata: %s", chd_file::error_string(err));
// compress it generically
compress_common(*chd);
delete chd;
}
catch (...)
{
delete chd;
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_create_ld - create a new A/V file from an
// input AVI file and metadata
//-------------------------------------------------
static void do_create_ld(parameters_map &params)
{
// process input file
avi_file::ptr input_file;
auto input_file_str = params.find(OPTION_INPUT);
if (input_file_str != params.end())
{
avi_file::error avierr = avi_file::open(*input_file_str->second, input_file);
if (avierr != avi_file::error::NONE)
report_error(1, "Error opening AVI file (%s): %s\n", input_file_str->second->c_str(), avi_file::error_string(avierr));
}
const avi_file::movie_info &aviinfo = input_file->get_movie_info();
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process input start/end
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, aviinfo.video_numsamples, 0, 1, input_start, input_end);
// determine parameters of the incoming video stream
avi_info info;
info.fps_times_1million = uint64_t(aviinfo.video_timescale) * 1000000 / aviinfo.video_sampletime;
info.width = aviinfo.video_width;
info.height = aviinfo.video_height;
info.interlaced = ((info.fps_times_1million / 1000000) <= 30) && (info.height % 2 == 0) && (info.height > 288);
info.channels = aviinfo.audio_channels;
info.rate = aviinfo.audio_samplerate;
// adjust for interlacing
if (info.interlaced)
{
info.fps_times_1million *= 2;
info.height /= 2;
input_start *= 2;
input_end *= 2;
}
// determine the number of bytes per frame
info.max_samples_per_frame = (uint64_t(info.rate) * 1000000 + info.fps_times_1million - 1) / info.fps_times_1million;
info.bytes_per_frame = avhuff_encoder::raw_data_size(info.width, info.height, info.channels, info.max_samples_per_frame);
// process hunk size
uint32_t hunk_size = output_parent.opened() ? output_parent.hunk_bytes() : info.bytes_per_frame;
parse_hunk_size(params, info.bytes_per_frame, hunk_size);
// process compression
chd_codec_type compression[4];
memcpy(compression, s_default_ld_compression, sizeof(compression));
parse_compression(params, compression);
// disable support for uncompressed ones until the extraction code can handle it
if (compression[0] == CHD_CODEC_NONE)
report_error(1, "Uncompressed is not supported");
// process numprocessors
parse_numprocessors(params);
// print some info
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
printf("Input file: %s\n", input_file_str->second->c_str());
if (input_start != 0 && input_end != aviinfo.video_numsamples)
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s (%02d:%02d:%02d)\n", big_int_string(input_end - input_start).c_str(),
uint32_t((uint64_t(input_end - input_start) * 1000000 / info.fps_times_1million / 60 / 60)),
uint32_t(((uint64_t(input_end - input_start) * 1000000 / info.fps_times_1million / 60) % 60)),
uint32_t(((uint64_t(input_end - input_start) * 1000000 / info.fps_times_1million) % 60)));
printf("Frame rate: %d.%06d\n", info.fps_times_1million / 1000000, info.fps_times_1million % 1000000);
printf("Frame size: %d x %d %s\n", info.width, info.height * (info.interlaced ? 2 : 1), info.interlaced ? "interlaced" : "non-interlaced");
printf("Audio: %d channels at %d Hz\n", info.channels, info.rate);
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Hunk size: %s\n", big_int_string(hunk_size).c_str());
printf("Logical size: %s\n", big_int_string(uint64_t(input_end - input_start) * hunk_size).c_str());
// catch errors so we can close & delete the output file
chd_avi_compressor *chd = nullptr;
try
{
// create the new CHD
chd = new chd_avi_compressor(*input_file, info, input_start, input_end);
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), uint64_t(input_end - input_start) * hunk_size, hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), uint64_t(input_end - input_start) * hunk_size, hunk_size, info.bytes_per_frame, compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// write the core A/V metadata
std::string metadata = string_format(AV_METADATA_FORMAT, info.fps_times_1million / 1000000, info.fps_times_1million % 1000000, info.width, info.height, info.interlaced, info.channels, info.rate);
err = chd->write_metadata(AV_METADATA_TAG, 0, metadata);
if (err != CHDERR_NONE)
report_error(1, "Error adding AV metadata: %s\n", chd_file::error_string(err));
// create the compressor and then run it generically
compress_common(*chd);
// write the final LD metadata
if (info.height == 524/2 || info.height == 624/2)
{
err = chd->write_metadata(AV_LD_METADATA_TAG, 0, chd->ldframedata(), 0);
if (err != CHDERR_NONE)
report_error(1, "Error adding AVLD metadata: %s\n", chd_file::error_string(err));
}
delete chd;
}
catch (...)
{
delete chd;
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_copy - create a new CHD with data from
// another CHD
//-------------------------------------------------
static void do_copy(parameters_map &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// parse out input start/end
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, input_chd.logical_bytes(), input_chd.hunk_bytes(), input_chd.hunk_bytes(), input_start, input_end);
// process output CHD
chd_file output_parent;
std::string *output_chd_str = parse_output_chd_parameters(params, output_parent);
// process hunk size
uint32_t hunk_size = input_chd.hunk_bytes();
parse_hunk_size(params, 1, hunk_size);
if (hunk_size % input_chd.hunk_bytes() != 0 && input_chd.hunk_bytes() % hunk_size != 0)
report_error(1, "Hunk size is not an even multiple or divisor of input hunk size");
// process compression; we default to our current preferences using metadata to pick the type
chd_codec_type compression[4];
{
std::vector<uint8_t> metadata;
if (input_chd.read_metadata(HARD_DISK_METADATA_TAG, 0, metadata) == CHDERR_NONE)
memcpy(compression, s_default_hd_compression, sizeof(compression));
else if (input_chd.read_metadata(AV_METADATA_TAG, 0, metadata) == CHDERR_NONE)
memcpy(compression, s_default_ld_compression, sizeof(compression));
else if (input_chd.read_metadata(CDROM_OLD_METADATA_TAG, 0, metadata) == CHDERR_NONE ||
input_chd.read_metadata(CDROM_TRACK_METADATA_TAG, 0, metadata) == CHDERR_NONE ||
input_chd.read_metadata(CDROM_TRACK_METADATA2_TAG, 0, metadata) == CHDERR_NONE ||
input_chd.read_metadata(GDROM_OLD_METADATA_TAG, 0, metadata) == CHDERR_NONE ||
input_chd.read_metadata(GDROM_TRACK_METADATA_TAG, 0, metadata) == CHDERR_NONE)
memcpy(compression, s_default_cd_compression, sizeof(compression));
else
memcpy(compression, s_default_raw_compression, sizeof(compression));
}
parse_compression(params, compression);
// process numprocessors
parse_numprocessors(params);
// print some info
printf("Output CHD: %s\n", output_chd_str->c_str());
if (output_parent.opened())
printf("Parent CHD: %s\n", params.find(OPTION_OUTPUT_PARENT)->second->c_str());
printf("Input CHD: %s\n", params.find(OPTION_INPUT)->second->c_str());
if (input_start != 0 || input_end != input_chd.logical_bytes())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(input_end - input_start).c_str());
}
printf("Compression: %s\n", compression_string(compression).c_str());
printf("Hunk size: %s\n", big_int_string(hunk_size).c_str());
printf("Logical size: %s\n", big_int_string(input_end - input_start).c_str());
// catch errors so we can close & delete the output file
chd_chdfile_compressor *chd = nullptr;
try
{
// create the new CHD
chd = new chd_chdfile_compressor(input_chd, input_start, input_end);
chd_error err;
if (output_parent.opened())
err = chd->create(output_chd_str->c_str(), input_end - input_start, hunk_size, compression, output_parent);
else
err = chd->create(output_chd_str->c_str(), input_end - input_start, hunk_size, input_chd.unit_bytes(), compression);
if (err != CHDERR_NONE)
report_error(1, "Error creating CHD file (%s): %s", output_chd_str->c_str(), chd_file::error_string(err));
// clone all the metadata, upgrading where appropriate
std::vector<uint8_t> metadata;
chd_metadata_tag metatag;
uint8_t metaflags;
uint32_t index = 0;
bool redo_cd = false;
bool cdda_swap = false;
for (err = input_chd.read_metadata(CHDMETATAG_WILDCARD, index++, metadata, metatag, metaflags); err == CHDERR_NONE; err = input_chd.read_metadata(CHDMETATAG_WILDCARD, index++, metadata, metatag, metaflags))
{
// if this is an old CD-CHD tag, note that we want to re-do it
if (metatag == CDROM_OLD_METADATA_TAG || metatag == CDROM_TRACK_METADATA_TAG)
{
redo_cd = true;
continue;
}
// if this is old GD tag we want re-do it and swap CDDA
if (metatag == GDROM_OLD_METADATA_TAG)
{
cdda_swap = redo_cd = true;
continue;
}
// otherwise, clone it
err = chd->write_metadata(metatag, CHDMETAINDEX_APPEND, metadata, metaflags);
if (err != CHDERR_NONE)
report_error(1, "Error writing cloned metadata: %s", chd_file::error_string(err));
}
// if we need to re-do the CD metadata, do it now
if (redo_cd)
{
cdrom_file *cdrom = cdrom_open(&input_chd);
if (cdrom == nullptr)
report_error(1, "Error upgrading CD metadata");
const cdrom_toc *toc = cdrom_get_toc(cdrom);
err = cdrom_write_metadata(chd, toc);
if (err != CHDERR_NONE)
report_error(1, "Error writing upgraded CD metadata: %s", chd_file::error_string(err));
if (cdda_swap)
chd->m_toc = toc;
}
// compress it generically
compress_common(*chd);
delete chd;
}
catch (...)
{
delete chd;
// delete the output file
auto output_chd_str = params.find(OPTION_OUTPUT);
if (output_chd_str != params.end())
osd_file::remove(*output_chd_str->second);
throw;
}
}
//-------------------------------------------------
// do_extract_raw - extract a raw file from a
// CHD image
//-------------------------------------------------
static void do_extract_raw(parameters_map &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// parse out input start/end
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, input_chd.logical_bytes(), input_chd.hunk_bytes(), input_chd.hunk_bytes(), input_start, input_end);
// verify output file doesn't exist
auto output_file_str = params.find(OPTION_OUTPUT);
if (output_file_str != params.end())
check_existing_output_file(params, output_file_str->second->c_str());
// print some info
printf("Output File: %s\n", output_file_str->second->c_str());
printf("Input CHD: %s\n", params.find(OPTION_INPUT)->second->c_str());
if (input_start != 0 || input_end != input_chd.logical_bytes())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(input_end - input_start).c_str());
}
// catch errors so we can close & delete the output file
util::core_file::ptr output_file;
try
{
// process output file
osd_file::error filerr = util::core_file::open(*output_file_str->second, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE, output_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_file_str->second->c_str());
// copy all data
std::vector<uint8_t> buffer((TEMP_BUFFER_SIZE / input_chd.hunk_bytes()) * input_chd.hunk_bytes());
for (uint64_t offset = input_start; offset < input_end; )
{
progress(false, "Extracting, %.1f%% complete... \r", 100.0 * double(offset - input_start) / double(input_end - input_start));
// determine how much to read
uint32_t bytes_to_read = (std::min<uint64_t>)(buffer.size(), input_end - offset);
chd_error err = input_chd.read_bytes(offset, &buffer[0], bytes_to_read);
if (err != CHDERR_NONE)
report_error(1, "Error reading CHD file (%s): %s", params.find(OPTION_INPUT)->second->c_str(), chd_file::error_string(err));
// write to the output
uint32_t count = output_file->write(&buffer[0], bytes_to_read);
if (count != bytes_to_read)
report_error(1, "Error writing to file; check disk space (%s)", output_file_str->second->c_str());
// advance
offset += bytes_to_read;
}
// finish up
output_file.reset();
printf("Extraction complete \n");
}
catch (...)
{
// delete the output file
if (output_file != nullptr)
{
output_file.reset();
osd_file::remove(*output_file_str->second);
}
throw;
}
}
//-------------------------------------------------
// do_extract_cd - extract a CD file from a
// CHD image
//-------------------------------------------------
static void do_extract_cd(parameters_map &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// further process input file
cdrom_file *cdrom = cdrom_open(&input_chd);
if (cdrom == nullptr)
report_error(1, "Unable to recognize CHD file as a CD");
const cdrom_toc *toc = cdrom_get_toc(cdrom);
// verify output file doesn't exist
auto output_file_str = params.find(OPTION_OUTPUT);
if (output_file_str != params.end())
check_existing_output_file(params, output_file_str->second->c_str());
// verify output BIN file doesn't exist
auto output_bin_file_fnd = params.find(OPTION_OUTPUT_BIN);
std::string default_name(*output_file_str->second);
int chop = default_name.find_last_of('.');
if (chop != -1)
default_name.erase(chop, default_name.size());
char basename[128];
strncpy(basename, default_name.c_str(), 127);
default_name.append(".bin");
std::string *output_bin_file_str;
if (output_bin_file_fnd == params.end())
output_bin_file_str = &default_name;
else
output_bin_file_str = output_bin_file_fnd->second;
check_existing_output_file(params, output_bin_file_str->c_str());
// print some info
printf("Output TOC: %s\n", output_file_str->second->c_str());
printf("Output Data: %s\n", output_bin_file_str->c_str());
printf("Input CHD: %s\n", params.find(OPTION_INPUT)->second->c_str());
// catch errors so we can close & delete the output file
util::core_file::ptr output_bin_file;
util::core_file::ptr output_toc_file;
try
{
int mode = MODE_NORMAL;
if (output_file_str->second->find(".cue") != -1)
{
mode = MODE_CUEBIN;
}
else if (output_file_str->second->find(".gdi") != -1)
{
mode = MODE_GDI;
}
// process output file
osd_file::error filerr = util::core_file::open(*output_file_str->second, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_NO_BOM, output_toc_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_file_str->second->c_str());
// process output BIN file
if (mode != MODE_GDI)
{
filerr = util::core_file::open(*output_bin_file_str, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE, output_bin_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_bin_file_str->c_str());
}
// determine total frames
uint64_t total_bytes = 0;
for (int tracknum = 0; tracknum < toc->numtrks; tracknum++)
total_bytes += toc->tracks[tracknum].frames * (toc->tracks[tracknum].datasize + toc->tracks[tracknum].subsize);
// GDI must start with the # of tracks
if (mode == MODE_GDI)
{
output_toc_file->printf("%d\n", toc->numtrks);
}
// iterate over tracks and copy all data
uint64_t outputoffs = 0;
uint32_t discoffs = 0;
std::vector<uint8_t> buffer;
for (int tracknum = 0; tracknum < toc->numtrks; tracknum++)
{
std::string trackbin_name(basename);
if (mode == MODE_GDI)
{
char temp[11];
sprintf(temp, "%02d", tracknum+1);
trackbin_name.append(temp);
if (toc->tracks[tracknum].trktype == CD_TRACK_AUDIO)
trackbin_name.append(".raw");
else
trackbin_name.append(".bin");
output_bin_file.reset();
filerr = util::core_file::open(trackbin_name, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE, output_bin_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", trackbin_name.c_str());
outputoffs = 0;
}
// output the metadata about the track to the TOC file
const cdrom_track_info &trackinfo = toc->tracks[tracknum];
if (mode == MODE_GDI)
{
output_track_metadata(mode, *output_toc_file, tracknum, trackinfo, core_filename_extract_base(trackbin_name).c_str(), discoffs, outputoffs);
}
else
{
output_track_metadata(mode, *output_toc_file, tracknum, trackinfo, core_filename_extract_base(*output_bin_file_str).c_str(), discoffs, outputoffs);
}
// If this is bin/cue output and the CHD contains subdata, warn the user and don't include
// the subdata size in the buffer calculation.
uint32_t output_frame_size = trackinfo.datasize + ((trackinfo.subtype != CD_SUB_NONE) ? trackinfo.subsize : 0);
if (trackinfo.subtype != CD_SUB_NONE && ((mode == MODE_CUEBIN) || (mode == MODE_GDI)))
{
printf("Warning: Track %d has subcode data. bin/cue and gdi formats cannot contain subcode data and it will be omitted.\n", tracknum+1);
printf(" : This may affect usage of the output image. Use bin/toc output to keep all data.\n");
output_frame_size = trackinfo.datasize;
}
// resize the buffer for the track
buffer.resize((TEMP_BUFFER_SIZE / output_frame_size) * output_frame_size);
// now read and output the actual data
uint32_t bufferoffs = 0;
uint32_t actualframes = trackinfo.frames - trackinfo.padframes;
for (uint32_t frame = 0; frame < actualframes; frame++)
{
progress(false, "Extracting, %.1f%% complete... \r", 100.0 * double(outputoffs) / double(total_bytes));
// read the data
cdrom_read_data(cdrom, cdrom_get_track_start_phys(cdrom, tracknum) + frame, &buffer[bufferoffs], trackinfo.trktype, true);
// for CDRWin and GDI audio tracks must be reversed
// in the case of GDI and CHD version < 5 we assuming source CHD image is GDROM so audio tracks is already reversed
if (((mode == MODE_GDI && input_chd.version() > 4) || (mode == MODE_CUEBIN)) && (trackinfo.trktype == CD_TRACK_AUDIO))
for (int swapindex = 0; swapindex < trackinfo.datasize; swapindex += 2)
{
uint8_t swaptemp = buffer[bufferoffs + swapindex];
buffer[bufferoffs + swapindex] = buffer[bufferoffs + swapindex + 1];
buffer[bufferoffs + swapindex + 1] = swaptemp;
}
bufferoffs += trackinfo.datasize;
discoffs++;
// read the subcode data
if (trackinfo.subtype != CD_SUB_NONE && (mode == MODE_NORMAL))
{
cdrom_read_subcode(cdrom, cdrom_get_track_start_phys(cdrom, tracknum) + frame, &buffer[bufferoffs], true);
bufferoffs += trackinfo.subsize;
}
// write it out if we need to
if (bufferoffs == buffer.size() || frame == actualframes - 1)
{
output_bin_file->seek(outputoffs, SEEK_SET);
uint32_t byteswritten = output_bin_file->write(&buffer[0], bufferoffs);
if (byteswritten != bufferoffs)
report_error(1, "Error writing frame %d to file (%s): %s\n", frame, output_file_str->second->c_str(), chd_file::error_string(CHDERR_WRITE_ERROR));
outputoffs += bufferoffs;
bufferoffs = 0;
}
}
discoffs += trackinfo.padframes;
}
// finish up
output_bin_file.reset();
output_toc_file.reset();
printf("Extraction complete \n");
}
catch (...)
{
// delete the output files
output_bin_file.reset();
output_toc_file.reset();
osd_file::remove(*output_bin_file_str);
osd_file::remove(*output_file_str->second);
throw;
}
}
//-------------------------------------------------
// do_extract_ld - extract an AVI file from a
// CHD image
//-------------------------------------------------
static void do_extract_ld(parameters_map &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// read core metadata
std::string metadata;
chd_error err = input_chd.read_metadata(AV_METADATA_TAG, 0, metadata);
if (err != CHDERR_NONE)
report_error(1, "Unable to find A/V metadata in the input CHD");
// parse the metadata
uint32_t fps_times_1million;
uint32_t max_samples_per_frame;
uint32_t frame_bytes;
int width;
int height;
int interlaced;
int channels;
int rate;
{
int fps;
int fpsfrac;
if (sscanf(metadata.c_str(), AV_METADATA_FORMAT, &fps, &fpsfrac, &width, &height, &interlaced, &channels, &rate) != 7)
report_error(1, "Improperly formatted A/V metadata found");
fps_times_1million = fps * 1000000 + fpsfrac;
}
uint8_t interlace_factor = interlaced ? 2 : 1;
// determine key parameters and validate
max_samples_per_frame = (uint64_t(rate) * 1000000 + fps_times_1million - 1) / fps_times_1million;
frame_bytes = avhuff_encoder::raw_data_size(width, height, channels, max_samples_per_frame);
if (frame_bytes != input_chd.hunk_bytes())
report_error(1, "Frame size does not match hunk size for this CHD");
// parse out input start/end
uint64_t input_start;
uint64_t input_end;
parse_input_start_end(params, input_chd.hunk_count() / interlace_factor, 0, 1, input_start, input_end);
input_start *= interlace_factor;
input_end *= interlace_factor;
// build up the movie info
avi_file::movie_info info;
info.video_format = FORMAT_YUY2;
info.video_timescale = fps_times_1million / interlace_factor;
info.video_sampletime = 1000000;
info.video_width = width;
info.video_height = height * interlace_factor;
info.video_depth = 16;
info.audio_format = 0;
info.audio_timescale = rate;
info.audio_sampletime = 1;
info.audio_channels = channels;
info.audio_samplebits = 16;
info.audio_samplerate = rate;
// verify output file doesn't exist
auto output_file_str = params.find(OPTION_OUTPUT);
if (output_file_str != params.end())
check_existing_output_file(params, output_file_str->second->c_str());
// print some info
printf("Output File: %s\n", output_file_str->second->c_str());
printf("Input CHD: %s\n", params.find(OPTION_INPUT)->second->c_str());
if (input_start != 0 || input_end != input_chd.hunk_count())
{
printf("Input start: %s\n", big_int_string(input_start).c_str());
printf("Input length: %s\n", big_int_string(input_end - input_start).c_str());
}
// catch errors so we can close & delete the output file
avi_file::ptr output_file;
try
{
// process output file
avi_file::error avierr = avi_file::create(*output_file_str->second, info, output_file);
if (avierr != avi_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_file_str->second->c_str());
// create the codec configuration
avhuff_decoder::config avconfig;
bitmap_yuy16 avvideo;
std::vector<int16_t> audio_data[16];
uint32_t actsamples;
avconfig.video = &avvideo;
avconfig.maxsamples = max_samples_per_frame;
avconfig.actsamples = &actsamples;
for (int chnum = 0; chnum < ARRAY_LENGTH(audio_data); chnum++)
{
audio_data[chnum].resize(std::max(1U,max_samples_per_frame));
avconfig.audio[chnum] = &audio_data[chnum][0];
}
// iterate over frames
bitmap_yuy16 fullbitmap(width, height * interlace_factor);
for (uint64_t framenum = input_start; framenum < input_end; framenum++)
{
progress(framenum == input_start, "Extracting, %.1f%% complete... \r", 100.0 * double(framenum - input_start) / double(input_end - input_start));
// set up the fake bitmap for this frame
avvideo.wrap(&fullbitmap.pix(framenum % interlace_factor), fullbitmap.width(), fullbitmap.height() / interlace_factor, fullbitmap.rowpixels() * interlace_factor);
input_chd.codec_configure(CHD_CODEC_AVHUFF, AVHUFF_CODEC_DECOMPRESS_CONFIG, &avconfig);
// read the hunk into the buffers
chd_error err = input_chd.read_hunk(framenum, nullptr);
if (err != CHDERR_NONE)
{
uint64_t filepos = static_cast<util::core_file &>(input_chd).tell();
report_error(1, "Error reading hunk %d at offset %d from CHD file (%s): %s\n", framenum, filepos, params.find(OPTION_INPUT)->second->c_str(), chd_file::error_string(err));
}
// write audio
for (int chnum = 0; chnum < channels; chnum++)
{
avi_file::error avierr = output_file->append_sound_samples(chnum, avconfig.audio[chnum], actsamples, 0);
if (avierr != avi_file::error::NONE)
report_error(1, "Error writing samples for hunk %d to file (%s): %s\n", framenum, output_file_str->second->c_str(), avi_file::error_string(avierr));
}
// write video
if ((framenum + 1) % interlace_factor == 0)
{
avi_file::error avierr = output_file->append_video_frame(fullbitmap);
if (avierr != avi_file::error::NONE)
report_error(1, "Error writing video for hunk %d to file (%s): %s\n", framenum, output_file_str->second->c_str(), avi_file::error_string(avierr));
}
}
// close and return
output_file.reset();
printf("Extraction complete \n");
}
catch (...)
{
// delete the output file
output_file.reset();
osd_file::remove(*output_file_str->second);
throw;
}
}
//-------------------------------------------------
// do_add_metadata - add metadata to a CHD from a
// file
//-------------------------------------------------
static void do_add_metadata(parameters_map &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd, true);
// process tag
chd_metadata_tag tag = CHD_MAKE_TAG('?','?','?','?');
auto tag_str = params.find(OPTION_TAG);
if (tag_str != params.end())
{
tag_str->second->append(" ");
tag = CHD_MAKE_TAG((*tag_str->second)[0], (*tag_str->second)[1], (*tag_str->second)[2], (*tag_str->second)[3]);
}
// process index
uint32_t index = 0;
auto index_str = params.find(OPTION_INDEX);
if (index_str != params.end())
index = atoi(index_str->second->c_str());
// process text input
auto text_str = params.find(OPTION_VALUE_TEXT);
std::string text;
if (text_str != params.end())
{
text = *text_str->second;
if (text[0] == '"' && text[text.length() - 1] == '"')
*text_str->second = text.substr(1, text.length() - 2);
}
// process file input
auto file_str = params.find(OPTION_VALUE_FILE);
std::vector<uint8_t> file;
if (file_str != params.end())
{
osd_file::error filerr = util::core_file::load(file_str->second->c_str(), file);
if (filerr != osd_file::error::NONE)
report_error(1, "Error reading metadata file (%s)", file_str->second->c_str());
}
// make sure we have one or the other
if (text_str == params.end() && file_str == params.end())
report_error(1, "Error: missing either --valuetext/-vt or --valuefile/-vf parameters");
if (text_str != params.end() && file_str != params.end())
report_error(1, "Error: both --valuetext/-vt or --valuefile/-vf parameters specified; only one permitted");
// process no checksum
uint8_t flags = CHD_MDFLAGS_CHECKSUM;
if (params.find(OPTION_NO_CHECKSUM) != params.end())
flags &= ~CHD_MDFLAGS_CHECKSUM;
// print some info
printf("Input file: %s\n", params.find(OPTION_INPUT)->second->c_str());
printf("Tag: %c%c%c%c\n", (tag >> 24) & 0xff, (tag >> 16) & 0xff, (tag >> 8) & 0xff, tag & 0xff);
printf("Index: %d\n", index);
if (text_str != params.end())
printf("Text: %s\n", text.c_str());
else
printf("Data: %s (%d bytes)\n", file_str->second->c_str(), int(file.size()));
// write the metadata
chd_error err;
if (text_str != params.end())
err = input_chd.write_metadata(tag, index, text, flags);
else
err = input_chd.write_metadata(tag, index, file, flags);
if (err != CHDERR_NONE)
report_error(1, "Error adding metadata: %s", chd_file::error_string(err));
else
printf("Metadata added\n");
}
//-------------------------------------------------
// do_del_metadata - remove metadata from a CHD
//-------------------------------------------------
static void do_del_metadata(parameters_map &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd, true);
// process tag
chd_metadata_tag tag = CHD_MAKE_TAG('?','?','?','?');
auto tag_str = params.find(OPTION_TAG);
if (tag_str != params.end())
{
tag_str->second->append(" ");
tag = CHD_MAKE_TAG((*tag_str->second)[0], (*tag_str->second)[1], (*tag_str->second)[2], (*tag_str->second)[3]);
}
// process index
uint32_t index = 0;
auto index_str = params.find(OPTION_INDEX);
if (index_str != params.end())
index = atoi(index_str->second->c_str());
// print some info
printf("Input file: %s\n", params.find(OPTION_INPUT)->second->c_str());
printf("Tag: %c%c%c%c\n", (tag >> 24) & 0xff, (tag >> 16) & 0xff, (tag >> 8) & 0xff, tag & 0xff);
printf("Index: %d\n", index);
// write the metadata
chd_error err = input_chd.delete_metadata(tag, index);
if (err != CHDERR_NONE)
report_error(1, "Error removing metadata: %s", chd_file::error_string(err));
else
printf("Metadata removed\n");
}
//-------------------------------------------------
// do_dump_metadata - dump metadata from a CHD
//-------------------------------------------------
static void do_dump_metadata(parameters_map &params)
{
// parse out input files
chd_file input_parent_chd;
chd_file input_chd;
parse_input_chd_parameters(params, input_chd, input_parent_chd);
// verify output file doesn't exist
auto output_file_str = params.find(OPTION_OUTPUT);
if (output_file_str != params.end())
check_existing_output_file(params, output_file_str->second->c_str());
// process tag
chd_metadata_tag tag = CHD_MAKE_TAG('?','?','?','?');
auto tag_str = params.find(OPTION_TAG);
if (tag_str != params.end())
{
tag_str->second->append(" ");
tag = CHD_MAKE_TAG((*tag_str->second)[0], (*tag_str->second)[1], (*tag_str->second)[2], (*tag_str->second)[3]);
}
// process index
uint32_t index = 0;
auto index_str = params.find(OPTION_INDEX);
if (index_str != params.end())
index = atoi(index_str->second->c_str());
// write the metadata
std::vector<uint8_t> buffer;
chd_error err = input_chd.read_metadata(tag, index, buffer);
if (err != CHDERR_NONE)
report_error(1, "Error reading metadata: %s", chd_file::error_string(err));
// catch errors so we can close & delete the output file
util::core_file::ptr output_file;
try
{
// create the file
if (output_file_str != params.end())
{
osd_file::error filerr = util::core_file::open(*output_file_str->second, OPEN_FLAG_WRITE | OPEN_FLAG_CREATE, output_file);
if (filerr != osd_file::error::NONE)
report_error(1, "Unable to open file (%s)", output_file_str->second->c_str());
// output the metadata
uint32_t count = output_file->write(&buffer[0], buffer.size());
if (count != buffer.size())
report_error(1, "Error writing file (%s)", output_file_str->second->c_str());
output_file.reset();
// provide some feedback
printf("File (%s) written, %s bytes\n", output_file_str->second->c_str(), big_int_string(buffer.size()).c_str());
}
// flush to stdout
else
{
fwrite(&buffer[0], 1, buffer.size(), stdout);
fflush(stdout);
}
}
catch (...)
{
// delete the output file
output_file.reset();
osd_file::remove(*output_file_str->second);
throw;
}
}
//-------------------------------------------------
// do_dump_metadata - dump metadata from a CHD
//-------------------------------------------------
static void do_list_templates(parameters_map &params)
{
printf("\n");
printf("ID Manufacturer Model Cylinders Heads Sectors Sector Size Total Size\n");
printf("------------------------------------------------------------------------------------\n");
for (int id = 0; id < ARRAY_LENGTH(s_hd_templates); id++)
{
printf("%2d %-13s %-15s %9d %5d %7d %11d %7d MB\n",
id,
s_hd_templates[id].manufacturer,
s_hd_templates[id].model,
s_hd_templates[id].cylinders,
s_hd_templates[id].heads,
s_hd_templates[id].sectors,
s_hd_templates[id].sector_size,
(s_hd_templates[id].cylinders * s_hd_templates[id].heads * s_hd_templates[id].sectors * s_hd_templates[id].sector_size) / 1024 / 1024
);
}
}
//-------------------------------------------------
// main - entry point
//-------------------------------------------------
int CLIB_DECL main(int argc, char *argv[])
{
const std::vector<std::string> args = osd_get_command_line(argc, argv);
// print the header
extern const char build_version[];
printf("chdman - MAME Compressed Hunks of Data (CHD) manager %s\n", build_version);
// handle help specially
if (args.size() < 2)
return print_help(args[0]);
int argnum = 1;
std::string command = args[argnum++];
bool help(command == COMMAND_HELP);
if (help)
{
if (args.size() <= 2)
return print_help(args[0]);
command = args[argnum++];
}
// iterate over commands to find our match
for (auto & s_command : s_commands)
if (command == s_command.name)
{
const command_description &desc = s_command;
// print help if that was requested
if (help)
return print_help(args[0], desc);
// otherwise, verify the parameters
parameters_map parameters;
while (argnum < args.size())
{
// should be an option name
const std::string &arg = args[argnum++];
if (arg.empty() || (arg[0] != '-'))
return print_help(args[0], desc, "Expected option, not parameter");
// iterate over valid options
int valid;
for (valid = 0; valid < ARRAY_LENGTH(desc.valid_options); valid++)
{
// reduce to the option name
const char *validname = desc.valid_options[valid];
if (validname == nullptr)
break;
if (*validname == REQUIRED[0])
validname++;
// find the matching option description
int optnum;
for (optnum = 0; optnum < ARRAY_LENGTH(s_options); optnum++)
if (strcmp(s_options[optnum].name, validname) == 0)
break;
assert(optnum != ARRAY_LENGTH(s_options));
// do we match?
const option_description &odesc = s_options[optnum];
if ((arg[1] == '-' && strcmp(odesc.name, &arg[2]) == 0) ||
(arg[1] != '-' && odesc.shortname != nullptr && strcmp(odesc.shortname, &arg[1]) == 0))
{
// if we need a parameter, consume it
const char *param = "";
if (odesc.parameter)
{
if (argnum >= args.size() || (!args[argnum].empty() && args[argnum][0] == '-'))
return print_help(args[0], desc, "Option is missing parameter");
param = args[argnum++].c_str();
}
// add to the map
if (!parameters.insert(std::make_pair(odesc.name, new std::string(param))).second)
return print_help(args[0], desc, "Multiple parameters of the same type specified");
break;
}
}
// if not valid, error
if (valid == ARRAY_LENGTH(desc.valid_options))
return print_help(args[0], desc, "Option not valid for this command");
}
// make sure we got all our required parameters
for (int valid = 0; valid < ARRAY_LENGTH(desc.valid_options); valid++)
{
const char *validname = desc.valid_options[valid];
if (validname == nullptr)
break;
if (*validname == REQUIRED[0] && parameters.find(++validname) == parameters.end())
return print_help(args[0], desc, "Required parameters missing");
}
// all clear, run the command
try
{
(*s_command.handler)(parameters);
return 0;
}
catch (chd_error &err)
{
fprintf(stderr, "CHD error occurred (main): %s\n", chd_file::error_string(err));
return 1;
}
catch (fatal_error &err)
{
fprintf(stderr, "Fatal error occurred: %d\n", err.error());
return err.error();
}
catch (std::exception& ex)
{
fprintf(stderr, "Unhandled exception: %s\n", ex.what());
return 1;
}
}
// print generic help if nothing found
return print_help(args[0]);
}