mame/src/emu/cpu/tms7000/tms7000.c
Aaron Giles a38c67f27b Get rid of state_save_register_device_* macros in favor of direct
calls on the device object.

Regex used:

state_save_register_device_item( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)

state_save_register_device_item_array( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)

state_save_register_device_item_2d_array( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)

state_save_register_device_item_bitmap( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\*\6\),\5\4\7\)

state_save_register_device_item_pointer( *)\(( *)([^,]+), *([^,]+),( *)([^,]+), *([^ )]+)( *)\)
\3->save_pointer\1\(\2NAME\(\6\),\5\7,\5\4\8\)

this->save_
save_

(save_item[^;]+), *0( *)\);
\1\2\);

(save_pointer[^;]+), *0( *)\);
\1\2\);
2011-02-09 05:51:04 +00:00

733 lines
25 KiB
C

/*****************************************************************************
*
* tms7000.c
* Portable TMS7000 emulator (Texas Instruments 7000)
*
* Copyright tim lindner, all rights reserved.
*
* - This source code is released as freeware for non-commercial purposes.
* - You are free to use and redistribute this code in modified or
* unmodified form, provided you list me in the credits.
* - If you modify this source code, you must add a notice to each modified
* source file that it has been changed. If you're a nice person, you
* will clearly mark each change too. :)
* - If you wish to use this for commercial purposes, please contact me at
* tlindner@macmess.org
* - This entire notice must remain in the source code.
*
*****************************************************************************
* Currently this source emulates a TMS70x0, not any of the other variants
* Unimplemented is the MC pin which (in conjunection with IOCNT0 bits 7 and 6
* control the memory mapping.
*
* This source implements the MC pin at Vss and mode bits in single chip mode.
*****************************************************************************/
// SJE: Changed all references to ICount to icount (to match MAME requirements)
// SJE: Changed RM/WM macros to reference newly created tms7000 read/write handlers & removed unused SRM(cpustate) macro
// SJE: Fixed a mistake in tms70x0_pf_w where the wrong register was referenced
// SJE: Implemented internal register file
#include "emu.h"
#include "debugger.h"
#include "tms7000.h"
#define VERBOSE 0
#define LOG(x) do { if (VERBOSE) logerror x; } while (0)
typedef struct _tms7000_state tms7000_state;
/* Private prototypes */
static void tms7000_set_irq_line(tms7000_state *cpustate, int irqline, int state);
static void tms7000_check_IRQ_lines(tms7000_state *cpustate);
static void tms7000_do_interrupt( tms7000_state *cpustate, UINT16 address, UINT8 line );
static CPU_EXECUTE( tms7000 );
static CPU_EXECUTE( tms7000_exl );
static void tms7000_service_timer1( device_t *device );
static UINT16 bcd_add( UINT16 a, UINT16 b );
static UINT16 bcd_tencomp( UINT16 a );
static UINT16 bcd_sub( UINT16 a, UINT16 b);
/* Static variables */
#define RM(Addr) ((unsigned)cpustate->program->read_byte(Addr))
#define WM(Addr,Value) (cpustate->program->write_byte(Addr, Value))
#define IMMBYTE(b) b = ((unsigned)cpustate->direct->read_raw_byte(pPC)); pPC++
#define SIMMBYTE(b) b = ((signed)cpustate->direct->read_raw_byte(pPC)); pPC++
#define IMMWORD(w) w.b.h = (unsigned)cpustate->direct->read_raw_byte(pPC++); w.b.l = (unsigned)cpustate->direct->read_raw_byte(pPC++)
#define PUSHBYTE(b) pSP++; WM(pSP,b)
#define PUSHWORD(w) pSP++; WM(pSP,w.b.h); pSP++; WM(pSP,w.b.l)
#define PULLBYTE(b) b = RM(pSP); pSP--
#define PULLWORD(w) w.b.l = RM(pSP); pSP--; w.b.h = RM(pSP); pSP--
struct _tms7000_state
{
PAIR pc; /* Program counter */
UINT8 sp; /* Stack Pointer */
UINT8 sr; /* Status Register */
UINT8 irq_state[3]; /* State of the three IRQs */
UINT8 rf[0x80]; /* Register file (SJE) */
UINT8 pf[0x100]; /* Perpherial file */
device_irq_callback irq_callback;
legacy_cpu_device *device;
address_space *program;
direct_read_data *direct;
address_space *io;
int icount;
int div_by_16_trigger;
int cycles_per_INT2;
UINT8 t1_capture_latch; /* Timer 1 capture latch */
INT8 t1_prescaler; /* Timer 1 prescaler (5 bits) */
INT16 t1_decrementer; /* Timer 1 decrementer (8 bits) */
UINT8 idle_state; /* Set after the execution of an idle instruction */
};
INLINE tms7000_state *get_safe_token(device_t *device)
{
assert(device != NULL);
assert(device->type() == TMS7000 ||
device->type() == TMS7000_EXL);
return (tms7000_state *)downcast<legacy_cpu_device *>(device)->token();
}
#define pPC cpustate->pc.w.l
#define PC cpustate->pc
#define pSP cpustate->sp
#define pSR cpustate->sr
#define RDA RM(0x0000)
#define RDB RM(0x0001)
#define WRA(Value) (WM(0x0000,Value))
#define WRB(Value) (WM(0x0001,Value))
#define SR_C 0x80 /* Carry */
#define SR_N 0x40 /* Negative */
#define SR_Z 0x20 /* Zero */
#define SR_I 0x10 /* Interrupt */
#define CLR_NZC pSR&=~(SR_N|SR_Z|SR_C)
#define CLR_NZCI pSR&=~(SR_N|SR_Z|SR_C|SR_I)
#define SET_C8(a) pSR|=((a&0x0100)>>1)
#define SET_N8(a) pSR|=((a&0x0080)>>1)
#define SET_Z(a) if(!a)pSR|=SR_Z
#define SET_Z8(a) SET_Z((UINT8)a)
#define SET_Z16(a) SET_Z((UINT8)a>>8)
#define GET_C (pSR >> 7)
/* Not working */
#define SET_C16(a) pSR|=((a&0x010000)>>9)
#define SETC pSR |= SR_C
#define SETZ pSR |= SR_Z
#define SETN pSR |= SR_N
static READ8_HANDLER( tms7000_internal_r );
static WRITE8_HANDLER( tms7000_internal_w );
static READ8_HANDLER( tms70x0_pf_r );
static WRITE8_HANDLER( tms70x0_pf_w );
static ADDRESS_MAP_START(tms7000_mem, ADDRESS_SPACE_PROGRAM, 8)
AM_RANGE(0x0000, 0x007f) AM_READWRITE(tms7000_internal_r, tms7000_internal_w) /* tms7000 internal RAM */
AM_RANGE(0x0080, 0x00ff) AM_NOP /* reserved */
AM_RANGE(0x0100, 0x01ff) AM_READWRITE(tms70x0_pf_r, tms70x0_pf_w) /* tms7000 internal I/O ports */
ADDRESS_MAP_END
INLINE UINT16 RM16( tms7000_state *cpustate, UINT32 mAddr ) /* Read memory (16-bit) */
{
UINT32 result = RM(mAddr) << 8;
return result | RM((mAddr+1)&0xffff);
}
INLINE UINT16 RRF16( tms7000_state *cpustate, UINT32 mAddr ) /*Read register file (16 bit) */
{
PAIR result;
result.b.h = RM((mAddr-1)&0xffff);
result.b.l = RM(mAddr);
return result.w.l;
}
INLINE void WRF16( tms7000_state *cpustate, UINT32 mAddr, PAIR p ) /*Write register file (16 bit) */
{
WM( (mAddr-1)&0xffff, p.b.h );
WM( mAddr, p.b.l );
}
static CPU_INIT( tms7000 )
{
tms7000_state *cpustate = get_safe_token(device);
cpustate->irq_callback = irqcallback;
cpustate->device = device;
cpustate->program = device->space(AS_PROGRAM);
cpustate->direct = &cpustate->program->direct();
cpustate->io = device->space(AS_IO);
memset(cpustate->pf, 0, 0x100);
memset(cpustate->rf, 0, 0x80);
/* Save register state */
device->save_item(NAME(pPC));
device->save_item(NAME(pSP));
device->save_item(NAME(pSR));
/* Save Interrupt state */
device->save_item(NAME(cpustate->irq_state));
/* Save register and perpherial file state */
device->save_item(NAME(cpustate->rf));
device->save_item(NAME(cpustate->pf));
/* Save timer state */
device->save_item(NAME(cpustate->t1_prescaler));
device->save_item(NAME(cpustate->t1_capture_latch));
device->save_item(NAME(cpustate->t1_decrementer));
device->save_item(NAME(cpustate->idle_state));
}
static CPU_RESET( tms7000 )
{
tms7000_state *cpustate = get_safe_token(device);
// cpustate->architecture = (int)param;
cpustate->idle_state = 0;
cpustate->irq_state[ TMS7000_IRQ1_LINE ] = CLEAR_LINE;
cpustate->irq_state[ TMS7000_IRQ2_LINE ] = CLEAR_LINE;
cpustate->irq_state[ TMS7000_IRQ3_LINE ] = CLEAR_LINE;
WM( 0x100 + 9, 0 ); /* Data direction regs are cleared */
WM( 0x100 + 11, 0 );
// if( cpustate->architecture == TMS7000_NMOS )
// {
WM( 0x100 + 4, 0xff ); /* Output 0xff on port A */
WM( 0x100 + 8, 0xff ); /* Output 0xff on port C */
WM( 0x100 + 10, 0xff ); /* Output 0xff on port D */
// }
// else
// {
// WM( 0x100 + 4, 0xff ); /* Output 0xff on port A */
// }
pSP = 0x01; /* Set stack pointer to r1 */
pSR = 0x00; /* Clear status register (disabling interrupts */
WM( 0x100 + 0, 0 ); /* Write a zero to IOCNT0 */
/* On TMS70x2 and TMS70Cx2 IOCNT1 is zero */
WRA( cpustate->pc.b.h ); /* Write previous PC to A:B */
WRB( cpustate->pc.b.l );
pPC = RM16(cpustate, 0xfffe); /* Load reset vector */
cpustate->div_by_16_trigger = -16;
}
/**************************************************************************
* Generic set_info
**************************************************************************/
static CPU_SET_INFO( tms7000 )
{
tms7000_state *cpustate = get_safe_token(device);
switch (state)
{
/* --- the following bits of info are set as 64-bit signed integers --- */
case CPUINFO_INT_INPUT_STATE + TMS7000_IRQ1_LINE: tms7000_set_irq_line(cpustate, TMS7000_IRQ1_LINE, info->i); break;
case CPUINFO_INT_INPUT_STATE + TMS7000_IRQ2_LINE: tms7000_set_irq_line(cpustate, TMS7000_IRQ2_LINE, info->i); break;
case CPUINFO_INT_INPUT_STATE + TMS7000_IRQ3_LINE: tms7000_set_irq_line(cpustate, TMS7000_IRQ3_LINE, info->i); break;
case CPUINFO_INT_PC:
case CPUINFO_INT_REGISTER + TMS7000_PC: pPC = info->i; break;
case CPUINFO_INT_SP:
case CPUINFO_INT_REGISTER + TMS7000_SP: pSP = info->i; break;
case CPUINFO_INT_REGISTER + TMS7000_ST: pSR = info->i; tms7000_check_IRQ_lines(cpustate); break;
case CPUINFO_INT_REGISTER + TMS7000_IDLE: cpustate->idle_state = info->i; break;
case CPUINFO_INT_REGISTER + TMS7000_T1_CL: cpustate->t1_capture_latch = info->i; break;
case CPUINFO_INT_REGISTER + TMS7000_T1_PS: cpustate->t1_prescaler = info->i; break;
case CPUINFO_INT_REGISTER + TMS7000_T1_DEC: cpustate->t1_decrementer = info->i; break;
}
}
/**************************************************************************
* Generic get_info
**************************************************************************/
CPU_GET_INFO( tms7000 )
{
tms7000_state *cpustate = (device != NULL && device->token() != NULL) ? get_safe_token(device) : NULL;
switch( state )
{
/* --- the following bits of info are returned as 64-bit signed integers --- */
case CPUINFO_INT_CONTEXT_SIZE: info->i = sizeof(tms7000_state); break;
case CPUINFO_INT_INPUT_LINES: info->i = 3; break;
case CPUINFO_INT_DEFAULT_IRQ_VECTOR: info->i = 0; break;
case DEVINFO_INT_ENDIANNESS: info->i = ENDIANNESS_BIG; break;
case CPUINFO_INT_CLOCK_MULTIPLIER: info->i = 1; break;
case CPUINFO_INT_CLOCK_DIVIDER: info->i = 1; break;
case CPUINFO_INT_MIN_INSTRUCTION_BYTES: info->i = 1; break;
case CPUINFO_INT_MAX_INSTRUCTION_BYTES: info->i = 4; break;
case CPUINFO_INT_MIN_CYCLES: info->i = 1; break;
case CPUINFO_INT_MAX_CYCLES: info->i = 48; break; /* 48 represents the multiply instruction, the next highest is 17 */
case DEVINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_PROGRAM: info->i = 8; break;
case DEVINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_PROGRAM: info->i = 16; break;
case DEVINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_PROGRAM: info->i = 0; break;
case DEVINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_DATA: info->i = 0; break;
case DEVINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_DATA: info->i = 0; break;
case DEVINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_DATA: info->i = 0; break;
case DEVINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_IO: info->i = 8; break;
case DEVINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_IO: info->i = 8; break;
case DEVINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_IO: info->i = 0; break;
case CPUINFO_INT_INPUT_STATE + TMS7000_IRQ1_LINE: info->i = cpustate->irq_state[TMS7000_IRQ1_LINE]; break;
case CPUINFO_INT_INPUT_STATE + TMS7000_IRQ2_LINE: info->i = cpustate->irq_state[TMS7000_IRQ2_LINE]; break;
case CPUINFO_INT_INPUT_STATE + TMS7000_IRQ3_LINE: info->i = cpustate->irq_state[TMS7000_IRQ3_LINE]; break;
case CPUINFO_INT_PREVIOUSPC: info->i = 0; /* Not supported */ break;
case CPUINFO_INT_PC:
case CPUINFO_INT_REGISTER + TMS7000_PC: info->i = pPC; break;
case CPUINFO_INT_SP:
case CPUINFO_INT_REGISTER + TMS7000_SP: info->i = pSP; break;
case CPUINFO_INT_REGISTER + TMS7000_ST: info->i = pSR; break;
case CPUINFO_INT_REGISTER + TMS7000_IDLE: info->i = cpustate->idle_state; break;
case CPUINFO_INT_REGISTER + TMS7000_T1_CL: info->i = cpustate->t1_capture_latch; break;
case CPUINFO_INT_REGISTER + TMS7000_T1_PS: info->i = cpustate->t1_prescaler; break;
case CPUINFO_INT_REGISTER + TMS7000_T1_DEC: info->i = cpustate->t1_decrementer; break;
/* --- the following bits of info are returned as pointers to data or functions --- */
case CPUINFO_FCT_SET_INFO: info->setinfo = CPU_SET_INFO_NAME(tms7000); break;
case CPUINFO_FCT_INIT: info->init = CPU_INIT_NAME(tms7000); break;
case CPUINFO_FCT_RESET: info->reset = CPU_RESET_NAME(tms7000); break;
case CPUINFO_FCT_EXECUTE: info->execute = CPU_EXECUTE_NAME(tms7000); break;
case CPUINFO_FCT_BURN: info->burn = NULL; /* Not supported */break;
case CPUINFO_FCT_DISASSEMBLE: info->disassemble = CPU_DISASSEMBLE_NAME(tms7000); break;
case CPUINFO_PTR_INSTRUCTION_COUNTER: info->icount = &cpustate->icount; break;
case DEVINFO_PTR_INTERNAL_MEMORY_MAP + ADDRESS_SPACE_PROGRAM: info->internal_map8 = ADDRESS_MAP_NAME(tms7000_mem); break;
/* --- the following bits of info are returned as NULL-terminated strings --- */
case DEVINFO_STR_NAME: strcpy(info->s, "TMS7000"); break;
case DEVINFO_STR_FAMILY: strcpy(info->s, "Texas Instriuments TMS7000"); break;
case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break;
case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break;
case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright tim lindner"); break;
case CPUINFO_STR_FLAGS:
sprintf(info->s, "%c%c%c%c%c%c%c%c",
cpustate->sr & 0x80 ? 'C':'c',
cpustate->sr & 0x40 ? 'N':'n',
cpustate->sr & 0x20 ? 'Z':'z',
cpustate->sr & 0x10 ? 'I':'i',
cpustate->sr & 0x08 ? '?':'.',
cpustate->sr & 0x04 ? '?':'.',
cpustate->sr & 0x02 ? '?':'.',
cpustate->sr & 0x01 ? '?':'.' );
break;
case CPUINFO_STR_REGISTER + TMS7000_PC: sprintf(info->s, "PC:%04X", cpustate->pc.w.l); break;
case CPUINFO_STR_REGISTER + TMS7000_SP: sprintf(info->s, "S:%02X", cpustate->sp); break;
case CPUINFO_STR_REGISTER + TMS7000_ST: sprintf(info->s, "ST:%02X", cpustate->sr); break;
case CPUINFO_STR_REGISTER + TMS7000_IDLE: sprintf(info->s, "Idle:%02X", cpustate->idle_state); break;
case CPUINFO_STR_REGISTER + TMS7000_T1_CL: sprintf(info->s, "T1CL:%02X", cpustate->t1_capture_latch); break;
case CPUINFO_STR_REGISTER + TMS7000_T1_PS: sprintf(info->s, "T1PS:%02X", cpustate->t1_prescaler & 0x1f); break;
case CPUINFO_STR_REGISTER + TMS7000_T1_DEC: sprintf(info->s, "T1DEC:%02X", cpustate->t1_decrementer & 0xff); break;
}
}
CPU_GET_INFO( tms7000_exl )
{
switch( state )
{
case CPUINFO_FCT_EXECUTE:
info->execute = CPU_EXECUTE_NAME(tms7000_exl);
break;
default:
CPU_GET_INFO_CALL(tms7000);
break;
}
}
void tms7000_set_irq_line(tms7000_state *cpustate, int irqline, int state)
{
if (cpustate->irq_state[irqline] != state)
{ /* check for transition */
cpustate->irq_state[irqline] = state;
LOG(("tms7000: (cpu '%s') set_irq_line (INT%d, state %d)\n", cpustate->device->tag(), irqline+1, state));
if (state == CLEAR_LINE)
{
return;
}
cpustate->pf[0] |= (0x02 << (irqline * 2)); /* Set INTx iocntl0 flag */
if( irqline == TMS7000_IRQ3_LINE )
{
/* Latch the value in perpherial file register 3 */
cpustate->t1_capture_latch = cpustate->t1_decrementer & 0x00ff;
}
tms7000_check_IRQ_lines(cpustate);
}
}
static void tms7000_check_IRQ_lines(tms7000_state *cpustate)
{
if( pSR & SR_I ) /* Check Global Interrupt bit: Status register, bit 4 */
{
if ((cpustate->irq_state[TMS7000_IRQ1_LINE] == ASSERT_LINE) || (cpustate->pf[0] & 0x02))
{
if( cpustate->pf[0] & 0x01 ) /* INT1 Enable bit */
{
tms7000_do_interrupt( cpustate, 0xfffc, TMS7000_IRQ1_LINE );
cpustate->pf[0] &= ~0x02; /* Data Manual, page: 9-41 */
return;
}
}
if( cpustate->irq_state[ TMS7000_IRQ2_LINE ] == ASSERT_LINE )
{
if( cpustate->pf[0] & 0x04 ) /* INT2 Enable bit */
{
tms7000_do_interrupt( cpustate, 0xfffa, TMS7000_IRQ2_LINE );
return;
}
}
if ((cpustate->irq_state[TMS7000_IRQ3_LINE] == ASSERT_LINE) || (cpustate->pf[0] & 0x20))
{
if( cpustate->pf[0] & 0x10 ) /* INT3 Enable bit */
{
tms7000_do_interrupt( cpustate, 0xfff8, TMS7000_IRQ3_LINE );
cpustate->pf[0] &= ~0x20; /* Data Manual, page: 9-41 */
return;
}
}
}
}
static void tms7000_do_interrupt( tms7000_state *cpustate, UINT16 address, UINT8 line )
{
PUSHBYTE( pSR ); /* Push Status register */
PUSHWORD( PC ); /* Push Program Counter */
pSR = 0; /* Clear Status register */
pPC = RM16(cpustate, address); /* Load PC with interrupt vector */
if( cpustate->idle_state == 0 )
cpustate->icount -= 19; /* 19 cycles used */
else
{
cpustate->icount -= 17; /* 17 if idled */
cpustate->idle_state = 0;
}
(void)(*cpustate->irq_callback)(cpustate->device, line);
}
#include "tms70op.c"
#include "tms70tb.c"
static CPU_EXECUTE( tms7000 )
{
tms7000_state *cpustate = get_safe_token(device);
int op;
cpustate->div_by_16_trigger += cpustate->icount;
tms7000_check_IRQ_lines(cpustate);
do
{
debugger_instruction_hook(device, pPC);
if( cpustate->idle_state == 0 )
{
op = cpustate->direct->read_decrypted_byte(pPC++);
opfn[op](cpustate);
}
else
cpustate->icount -= 16;
/* Internal timer system */
while( cpustate->icount < cpustate->div_by_16_trigger )
{
cpustate->div_by_16_trigger -= 16;
if( (cpustate->pf[0x03] & 0x80) == 0x80 ) /* Is timer system active? */
{
if( (cpustate->pf[0x03] & 0x40) != 0x40) /* Is system clock (divided by 16) the timer source? */
tms7000_service_timer1(device);
}
}
} while( cpustate->icount > 0 );
cpustate->div_by_16_trigger -= cpustate->icount;
}
static CPU_EXECUTE( tms7000_exl )
{
tms7000_state *cpustate = get_safe_token(device);
int op;
cpustate->div_by_16_trigger += cpustate->icount;
tms7000_check_IRQ_lines(cpustate);
do
{
debugger_instruction_hook(device, pPC);
if( cpustate->idle_state == 0 )
{
op = cpustate->direct->read_decrypted_byte(pPC++);
opfn_exl[op](cpustate);
}
else
cpustate->icount -= 16;
/* Internal timer system */
while( cpustate->icount < cpustate->div_by_16_trigger )
{
cpustate->div_by_16_trigger -= 16;
if( (cpustate->pf[0x03] & 0x80) == 0x80 ) /* Is timer system active? */
{
if( (cpustate->pf[0x03] & 0x40) != 0x40) /* Is system clock (divided by 16) the timer source? */
tms7000_service_timer1(device);
}
}
} while( cpustate->icount > 0 );
cpustate->div_by_16_trigger -= cpustate->icount;
}
/****************************************************************************
* Trigger the event counter
****************************************************************************/
void tms7000_A6EC1( device_t *device )
{
tms7000_state *cpustate = get_safe_token(device);
if( (cpustate->pf[0x03] & 0x80) == 0x80 ) /* Is timer system active? */
{
if( (cpustate->pf[0x03] & 0x40) == 0x40) /* Is event counter the timer source? */
tms7000_service_timer1(device);
}
}
static void tms7000_service_timer1( device_t *device )
{
tms7000_state *cpustate = get_safe_token(device);
if( --cpustate->t1_prescaler < 0 ) /* Decrement prescaler and check for underflow */
{
cpustate->t1_prescaler = cpustate->pf[3] & 0x1f; /* Reload prescaler (5 bit) */
if( --cpustate->t1_decrementer < 0 ) /* Decrement timer1 register and check for underflow */
{
cpustate->t1_decrementer = cpustate->pf[2]; /* Reload decrementer (8 bit) */
cpu_set_input_line(device, TMS7000_IRQ2_LINE, HOLD_LINE);
//LOG( ("tms7000: trigger int2 (cycles: %d)\t%d\tdelta %d\n", cpustate->device->total_cycles(), cpustate->device->total_cycles() - tick, cpustate->cycles_per_INT2-(cpustate->device->total_cycles() - tick) );
//tick = cpustate->device->total_cycles() );
/* Also, cascade out to timer 2 - timer 2 unimplemented */
}
}
// LOG( ( "tms7000: service timer1. 0x%2.2x 0x%2.2x (cycles %d)\t%d\t\n", cpustate->t1_prescaler, cpustate->t1_decrementer, cpustate->device->total_cycles(), cpustate->device->total_cycles() - tick2 ) );
// tick2 = cpustate->device->total_cycles();
}
static WRITE8_HANDLER( tms70x0_pf_w ) /* Perpherial file write */
{
tms7000_state *cpustate = get_safe_token(space->cpu);
UINT8 temp1, temp2, temp3;
switch( offset )
{
case 0x00: /* IOCNT0, Input/Ouput control */
temp1 = data & 0x2a; /* Record which bits to clear */
temp2 = cpustate->pf[0x00] & 0x2a; /* Get copy of current bits */
temp3 = (~temp1) & temp2; /* Clear the requested bits */
cpustate->pf[0x00] = temp3 | (data & (~0x2a) ); /* OR in the remaining data */
break;
case 0x02:
cpustate->t1_decrementer = cpustate->pf[0x02] = data;
cpustate->cycles_per_INT2 = 0x10*((cpustate->pf[3] & 0x1f)+1)*(cpustate->pf[0x02]+1);
LOG( ( "tms7000: Timer adjusted. Decrementer: 0x%2.2x (Cycles per interrupt: %d)\n", cpustate->t1_decrementer, cpustate->cycles_per_INT2 ) );
break;
case 0x03: /* T1CTL, timer 1 control */
if( ((cpustate->pf[0x03] & 0x80) == 0) && ((data & 0x80) == 0x80 ) ) /* Start timer? */
{
cpustate->pf[0x03] = data;
cpustate->t1_prescaler = cpustate->pf[3] & 0x1f; /* Reload prescaler (5 bit) */
cpustate->cycles_per_INT2 = 0x10*((cpustate->pf[3] & 0x1f)+1)*(cpustate->pf[0x02]+1);
LOG( ( "tms7000: Timer started. Prescaler: 0x%2.2x (Cycles per interrupt: %d)\n", cpustate->pf[3] & 0x1f, cpustate->cycles_per_INT2 ) );
}
else if( ((data & 0x80) == 0x80 ) && ((cpustate->pf[0x03] & 0x80) == 0) ) /* Timer Stopped? */
{
cpustate->pf[0x03] = data;
cpustate->t1_prescaler = cpustate->pf[3] & 0x1f; /* Reload prescaler (5 bit) */
cpustate->cycles_per_INT2 = 0x10*((cpustate->pf[3] & 0x1f)+1)*(cpustate->pf[0x02]+1);
LOG( ( "tms7000: Timer stopped. Prescaler: 0x%2.2x (Cycles per interrupt: %d)\n", cpustate->pf[3] & 0x1f, cpustate->cycles_per_INT2 ) );
}
else /* Don't modify timer state, but still store data */
{
cpustate->pf[0x03] = data;
cpustate->cycles_per_INT2 = 0x10*((cpustate->pf[3] & 0x1f)+1)*(cpustate->pf[0x02]+1);
LOG( ( "tms7000: Timer adjusted. Prescaler: 0x%2.2x (Cycles per interrupt: %d)\n", cpustate->pf[3] & 0x1f, cpustate->cycles_per_INT2 ) );
}
break;
case 0x04: /* Port A write */
/* Port A is read only so this is a NOP */
break;
case 0x06: /* Port B write */
cpustate->io->write_byte( TMS7000_PORTB, data );
cpustate->pf[ 0x06 ] = data;
break;
case 0x08: /* Port C write */
temp1 = data & cpustate->pf[ 0x09 ]; /* Mask off input bits */
cpustate->io->write_byte( TMS7000_PORTC, temp1 );
cpustate->pf[ 0x08 ] = temp1;
break;
case 0x0a: /* Port D write */
temp1 = data & cpustate->pf[ 0x0b ]; /* Mask off input bits */
cpustate->io->write_byte( TMS7000_PORTD, temp1 );
cpustate->pf[ 0x0a ] = temp1;
break;
default:
/* Just stuff the other registers */
cpustate->pf[ offset ] = data;
break;
}
}
static READ8_HANDLER( tms70x0_pf_r ) /* Perpherial file read */
{
tms7000_state *cpustate = get_safe_token(space->cpu);
UINT8 result;
UINT8 temp1, temp2, temp3;
switch( offset )
{
case 0x00: /* IOCNT0, Input/Ouput control */
result = cpustate->pf[0x00];
if (cpustate->irq_state[TMS7000_IRQ1_LINE] == ASSERT_LINE)
result |= 0x02;
if (cpustate->irq_state[TMS7000_IRQ3_LINE] == ASSERT_LINE)
result |= 0x20;
break;
case 0x02: /* T1DATA, timer 1 8-bit decrementer */
result = (cpustate->t1_decrementer & 0x00ff);
break;
case 0x03: /* T1CTL, timer 1 capture (latched by INT3) */
result = cpustate->t1_capture_latch;
break;
case 0x04: /* Port A read */
result = cpustate->io->read_byte( TMS7000_PORTA );
break;
case 0x06: /* Port B read */
/* Port B is write only, return a previous written value */
result = cpustate->pf[ 0x06 ];
break;
case 0x08: /* Port C read */
temp1 = cpustate->pf[ 0x08 ] & cpustate->pf[ 0x09 ]; /* Get previous output bits */
temp2 = cpustate->io->read_byte( TMS7000_PORTC ); /* Read port */
temp3 = temp2 & (~cpustate->pf[ 0x09 ]); /* Mask off output bits */
result = temp1 | temp3; /* OR together */
break;
case 0x0a: /* Port D read */
temp1 = cpustate->pf[ 0x0a ] & cpustate->pf[ 0x0b ]; /* Get previous output bits */
temp2 = cpustate->io->read_byte( TMS7000_PORTD ); /* Read port */
temp3 = temp2 & (~cpustate->pf[ 0x0b ]); /* Mask off output bits */
result = temp1 | temp3; /* OR together */
break;
default:
/* Just unstuff the other registers */
result = cpustate->pf[ offset ];
break;
}
return result;
}
// BCD arthrimetic handling
static UINT16 bcd_add( UINT16 a, UINT16 b )
{
UINT16 t1,t2,t3,t4,t5,t6;
/* Sure it is a lot of code, but it works! */
t1 = a + 0x0666;
t2 = t1 + b;
t3 = t1 ^ b;
t4 = t2 ^ t3;
t5 = ~t4 & 0x1110;
t6 = (t5 >> 2) | (t5 >> 3);
return t2-t6;
}
static UINT16 bcd_tencomp( UINT16 a )
{
UINT16 t1,t2,t3,t4,t5,t6;
t1 = 0xffff - a;
t2 = -a;
t3 = t1 ^ 0x0001;
t4 = t2 ^ t3;
t5 = ~t4 & 0x1110;
t6 = (t5 >> 2)|(t5>>3);
return t2-t6;
}
/*
Compute difference a-b???
*/
static UINT16 bcd_sub( UINT16 a, UINT16 b)
{
//return bcd_tencomp(b) - bcd_tencomp(a);
return bcd_add(a, bcd_tencomp(b) & 0xff);
}
static WRITE8_HANDLER( tms7000_internal_w ) {
tms7000_state *cpustate = get_safe_token(space->cpu);
cpustate->rf[ offset ] = data;
}
static READ8_HANDLER( tms7000_internal_r ) {
tms7000_state *cpustate = get_safe_token(space->cpu);
return cpustate->rf[ offset ];
}
DEFINE_LEGACY_CPU_DEVICE(TMS7000, tms7000);
DEFINE_LEGACY_CPU_DEVICE(TMS7000_EXL, tms7000_exl);