mame/3rdparty/lzma/CPP/7zip/Compress/LzmaEncoder.cpp
2023-12-06 07:58:49 +11:00

357 lines
8.2 KiB
C++

// LzmaEncoder.cpp
#include "StdAfx.h"
#include "../../../C/Alloc.h"
#include "../Common/CWrappers.h"
#include "../Common/StreamUtils.h"
#include "LzmaEncoder.h"
// #define LOG_LZMA_THREADS
#ifdef LOG_LZMA_THREADS
#include <stdio.h>
#include "../../Common/IntToString.h"
#include "../../Windows/TimeUtils.h"
EXTERN_C_BEGIN
void LzmaEnc_GetLzThreads(CLzmaEncHandle pp, HANDLE lz_threads[2]);
EXTERN_C_END
#endif
namespace NCompress {
namespace NLzma {
CEncoder::CEncoder()
{
_encoder = NULL;
_encoder = LzmaEnc_Create(&g_AlignedAlloc);
if (!_encoder)
throw 1;
}
CEncoder::~CEncoder()
{
if (_encoder)
LzmaEnc_Destroy(_encoder, &g_AlignedAlloc, &g_BigAlloc);
}
static inline wchar_t GetLowCharFast(wchar_t c)
{
return c |= 0x20;
}
static int ParseMatchFinder(const wchar_t *s, int *btMode, int *numHashBytes)
{
const wchar_t c = GetLowCharFast(*s++);
if (c == 'h')
{
if (GetLowCharFast(*s++) != 'c')
return 0;
const int num = (int)(*s++ - L'0');
if (num < 4 || num > 5)
return 0;
if (*s != 0)
return 0;
*btMode = 0;
*numHashBytes = num;
return 1;
}
if (c != 'b')
return 0;
{
if (GetLowCharFast(*s++) != 't')
return 0;
const int num = (int)(*s++ - L'0');
if (num < 2 || num > 5)
return 0;
if (*s != 0)
return 0;
*btMode = 1;
*numHashBytes = num;
return 1;
}
}
#define SET_PROP_32(_id_, _dest_) case NCoderPropID::_id_: ep._dest_ = (int)v; break;
#define SET_PROP_32U(_id_, _dest_) case NCoderPropID::_id_: ep._dest_ = v; break;
HRESULT SetLzmaProp(PROPID propID, const PROPVARIANT &prop, CLzmaEncProps &ep);
HRESULT SetLzmaProp(PROPID propID, const PROPVARIANT &prop, CLzmaEncProps &ep)
{
if (propID == NCoderPropID::kMatchFinder)
{
if (prop.vt != VT_BSTR)
return E_INVALIDARG;
return ParseMatchFinder(prop.bstrVal, &ep.btMode, &ep.numHashBytes) ? S_OK : E_INVALIDARG;
}
if (propID == NCoderPropID::kAffinity)
{
if (prop.vt == VT_UI8)
ep.affinity = prop.uhVal.QuadPart;
else
return E_INVALIDARG;
return S_OK;
}
if (propID == NCoderPropID::kHashBits)
{
if (prop.vt == VT_UI4)
ep.numHashOutBits = prop.ulVal;
else
return E_INVALIDARG;
return S_OK;
}
if (propID > NCoderPropID::kReduceSize)
return S_OK;
if (propID == NCoderPropID::kReduceSize)
{
if (prop.vt == VT_UI8)
ep.reduceSize = prop.uhVal.QuadPart;
else
return E_INVALIDARG;
return S_OK;
}
if (propID == NCoderPropID::kDictionarySize)
{
if (prop.vt == VT_UI8)
{
// 21.03 : we support 64-bit VT_UI8 for dictionary and (dict == 4 GiB)
const UInt64 v = prop.uhVal.QuadPart;
if (v > ((UInt64)1 << 32))
return E_INVALIDARG;
UInt32 dict;
if (v == ((UInt64)1 << 32))
dict = (UInt32)(Int32)-1;
else
dict = (UInt32)v;
ep.dictSize = dict;
return S_OK;
}
}
if (prop.vt != VT_UI4)
return E_INVALIDARG;
const UInt32 v = prop.ulVal;
switch (propID)
{
case NCoderPropID::kDefaultProp:
if (v > 32)
return E_INVALIDARG;
ep.dictSize = (v == 32) ? (UInt32)(Int32)-1 : (UInt32)1 << (unsigned)v;
break;
SET_PROP_32(kLevel, level)
SET_PROP_32(kNumFastBytes, fb)
SET_PROP_32U(kMatchFinderCycles, mc)
SET_PROP_32(kAlgorithm, algo)
SET_PROP_32U(kDictionarySize, dictSize)
SET_PROP_32(kPosStateBits, pb)
SET_PROP_32(kLitPosBits, lp)
SET_PROP_32(kLitContextBits, lc)
SET_PROP_32(kNumThreads, numThreads)
default: return E_INVALIDARG;
}
return S_OK;
}
Z7_COM7F_IMF(CEncoder::SetCoderProperties(const PROPID *propIDs,
const PROPVARIANT *coderProps, UInt32 numProps))
{
CLzmaEncProps props;
LzmaEncProps_Init(&props);
for (UInt32 i = 0; i < numProps; i++)
{
const PROPVARIANT &prop = coderProps[i];
const PROPID propID = propIDs[i];
switch (propID)
{
case NCoderPropID::kEndMarker:
if (prop.vt != VT_BOOL)
return E_INVALIDARG;
props.writeEndMark = (prop.boolVal != VARIANT_FALSE);
break;
default:
RINOK(SetLzmaProp(propID, prop, props))
}
}
return SResToHRESULT(LzmaEnc_SetProps(_encoder, &props));
}
Z7_COM7F_IMF(CEncoder::SetCoderPropertiesOpt(const PROPID *propIDs,
const PROPVARIANT *coderProps, UInt32 numProps))
{
for (UInt32 i = 0; i < numProps; i++)
{
const PROPVARIANT &prop = coderProps[i];
const PROPID propID = propIDs[i];
if (propID == NCoderPropID::kExpectedDataSize)
if (prop.vt == VT_UI8)
LzmaEnc_SetDataSize(_encoder, prop.uhVal.QuadPart);
}
return S_OK;
}
Z7_COM7F_IMF(CEncoder::WriteCoderProperties(ISequentialOutStream *outStream))
{
Byte props[LZMA_PROPS_SIZE];
SizeT size = LZMA_PROPS_SIZE;
RINOK(LzmaEnc_WriteProperties(_encoder, props, &size))
return WriteStream(outStream, props, size);
}
#define RET_IF_WRAP_ERROR(wrapRes, sRes, sResErrorCode) \
if (wrapRes != S_OK /* && (sRes == SZ_OK || sRes == sResErrorCode) */) return wrapRes;
#ifdef LOG_LZMA_THREADS
static inline UInt64 GetTime64(const FILETIME &t) { return ((UInt64)t.dwHighDateTime << 32) | t.dwLowDateTime; }
static void PrintNum(UInt64 val, unsigned numDigits, char c = ' ')
{
char temp[64];
char *p = temp + 32;
ConvertUInt64ToString(val, p);
unsigned len = (unsigned)strlen(p);
for (; len < numDigits; len++)
*--p = c;
printf("%s", p);
}
static void PrintTime(const char *s, UInt64 val, UInt64 total)
{
printf(" %s :", s);
const UInt32 kFreq = 10000000;
UInt64 sec = val / kFreq;
PrintNum(sec, 6);
printf(" .");
UInt32 ms = (UInt32)(val - (sec * kFreq)) / (kFreq / 1000);
PrintNum(ms, 3, '0');
while (val > ((UInt64)1 << 56))
{
val >>= 1;
total >>= 1;
}
UInt64 percent = 0;
if (total != 0)
percent = val * 100 / total;
printf(" =");
PrintNum(percent, 4);
printf("%%");
}
struct CBaseStat
{
UInt64 kernelTime, userTime;
BOOL Get(HANDLE thread, const CBaseStat *prevStat)
{
FILETIME creationTimeFT, exitTimeFT, kernelTimeFT, userTimeFT;
BOOL res = GetThreadTimes(thread
, &creationTimeFT, &exitTimeFT, &kernelTimeFT, &userTimeFT);
if (res)
{
kernelTime = GetTime64(kernelTimeFT);
userTime = GetTime64(userTimeFT);
if (prevStat)
{
kernelTime -= prevStat->kernelTime;
userTime -= prevStat->userTime;
}
}
return res;
}
};
static void PrintStat(HANDLE thread, UInt64 totalTime, const CBaseStat *prevStat)
{
CBaseStat newStat;
if (!newStat.Get(thread, prevStat))
return;
PrintTime("K", newStat.kernelTime, totalTime);
const UInt64 processTime = newStat.kernelTime + newStat.userTime;
PrintTime("U", newStat.userTime, totalTime);
PrintTime("S", processTime, totalTime);
printf("\n");
// PrintTime("G ", totalTime, totalTime);
}
#endif
Z7_COM7F_IMF(CEncoder::Code(ISequentialInStream *inStream, ISequentialOutStream *outStream,
const UInt64 * /* inSize */, const UInt64 * /* outSize */, ICompressProgressInfo *progress))
{
CSeqInStreamWrap inWrap;
CSeqOutStreamWrap outWrap;
CCompressProgressWrap progressWrap;
inWrap.Init(inStream);
outWrap.Init(outStream);
progressWrap.Init(progress);
#ifdef LOG_LZMA_THREADS
FILETIME startTimeFT;
NWindows::NTime::GetCurUtcFileTime(startTimeFT);
UInt64 totalTime = GetTime64(startTimeFT);
CBaseStat oldStat;
if (!oldStat.Get(GetCurrentThread(), NULL))
return E_FAIL;
#endif
SRes res = LzmaEnc_Encode(_encoder, &outWrap.vt, &inWrap.vt,
progress ? &progressWrap.vt : NULL, &g_AlignedAlloc, &g_BigAlloc);
_inputProcessed = inWrap.Processed;
RET_IF_WRAP_ERROR(inWrap.Res, res, SZ_ERROR_READ)
RET_IF_WRAP_ERROR(outWrap.Res, res, SZ_ERROR_WRITE)
RET_IF_WRAP_ERROR(progressWrap.Res, res, SZ_ERROR_PROGRESS)
#ifdef LOG_LZMA_THREADS
NWindows::NTime::GetCurUtcFileTime(startTimeFT);
totalTime = GetTime64(startTimeFT) - totalTime;
HANDLE lz_threads[2];
LzmaEnc_GetLzThreads(_encoder, lz_threads);
printf("\n");
printf("Main: "); PrintStat(GetCurrentThread(), totalTime, &oldStat);
printf("Hash: "); PrintStat(lz_threads[0], totalTime, NULL);
printf("BinT: "); PrintStat(lz_threads[1], totalTime, NULL);
// PrintTime("Total: ", totalTime, totalTime);
printf("\n");
#endif
return SResToHRESULT(res);
}
}}