mame/src/emu/input.cpp
Vas Crabb aec01e7407 Replace strformat, strprintf and strcatprintf with type-safe steam_format and string_format
Update MAME to use new function
Instantiate ODR-used static constant members
Make some of the UI code more localisable
Remove use of retired functions in tools
2016-02-28 13:36:19 +11:00

2371 lines
71 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
input.c
Handle input from the user.
****************************************************************************
To do:
* auto-selecting joystick configs
* per-joystick configs?
* test half-axis selections
* add input test menu
* get rid of osd_customize_inputport_list
***************************************************************************/
#include "emu.h"
#include "emuopts.h"
//**************************************************************************
// CONSTANTS
//**************************************************************************
// invalid memory value for axis polling
const INT32 INVALID_AXIS_VALUE = 0x7fffffff;
// additional expanded input codes for sequences
const input_code input_seq::end_code(DEVICE_CLASS_INTERNAL, 0, ITEM_CLASS_INVALID, ITEM_MODIFIER_NONE, ITEM_ID_SEQ_END);
const input_code input_seq::default_code(DEVICE_CLASS_INTERNAL, 0, ITEM_CLASS_INVALID, ITEM_MODIFIER_NONE, ITEM_ID_SEQ_DEFAULT);
const input_code input_seq::not_code(DEVICE_CLASS_INTERNAL, 0, ITEM_CLASS_INVALID, ITEM_MODIFIER_NONE, ITEM_ID_SEQ_NOT);
const input_code input_seq::or_code(DEVICE_CLASS_INTERNAL, 0, ITEM_CLASS_INVALID, ITEM_MODIFIER_NONE, ITEM_ID_SEQ_OR);
// constant sequences
const input_seq input_seq::empty_seq;
//**************************************************************************
// TYPE DEFINITIONS
//**************************************************************************
// ======================> input_device_switch_item
// derived input item representing a switch input
class input_device_switch_item : public input_device_item
{
public:
// construction/destruction
input_device_switch_item(input_device &device, const char *name, void *internal, input_item_id itemid, item_get_state_func getstate);
// readers
virtual INT32 read_as_switch(input_item_modifier modifier) override;
virtual INT32 read_as_relative(input_item_modifier modifier) override;
virtual INT32 read_as_absolute(input_item_modifier modifier) override;
// steadykey helper
bool steadykey_changed();
void steadykey_update_to_current() { m_steadykey = m_current; }
private:
// internal state
INT32 m_steadykey; // the live steadykey state
INT32 m_oldkey; // old live state
};
// ======================> input_device_switch_item
// derived input item representing a relative axis input
class input_device_relative_item : public input_device_item
{
public:
// construction/destruction
input_device_relative_item(input_device &device, const char *name, void *internal, input_item_id itemid, item_get_state_func getstate);
// readers
virtual INT32 read_as_switch(input_item_modifier modifier) override;
virtual INT32 read_as_relative(input_item_modifier modifier) override;
virtual INT32 read_as_absolute(input_item_modifier modifier) override;
};
// ======================> input_device_switch_item
// derived input item representing an absolute axis input
class input_device_absolute_item : public input_device_item
{
public:
// construction/destruction
input_device_absolute_item(input_device &device, const char *name, void *internal, input_item_id itemid, item_get_state_func getstate);
// readers
virtual INT32 read_as_switch(input_item_modifier modifier) override;
virtual INT32 read_as_relative(input_item_modifier modifier) override;
virtual INT32 read_as_absolute(input_item_modifier modifier) override;
};
// ======================> code_string_table
// simple class to match codes to strings
struct code_string_table
{
UINT32 operator[](const char *string) const
{
for (const code_string_table *current = this; current->m_code != ~0; current++)
if (strcmp(current->m_string, string) == 0)
return current->m_code;
return ~0;
}
const char *operator[](UINT32 code) const
{
for (const code_string_table *current = this; current->m_code != ~0; current++)
if (current->m_code == code)
return current->m_string;
return nullptr;
}
UINT32 m_code;
const char * m_string;
};
//**************************************************************************
// TOKEN/STRING TABLES
//**************************************************************************
// token strings for device classes
static const code_string_table devclass_token_table[] =
{
{ DEVICE_CLASS_KEYBOARD, "KEYCODE" },
{ DEVICE_CLASS_MOUSE, "MOUSECODE" },
{ DEVICE_CLASS_LIGHTGUN, "GUNCODE" },
{ DEVICE_CLASS_JOYSTICK, "JOYCODE" },
{ ~0U, "UNKCODE" }
};
// friendly strings for device classes
static const code_string_table devclass_string_table[] =
{
{ DEVICE_CLASS_KEYBOARD, "Kbd" },
{ DEVICE_CLASS_MOUSE, "Mouse" },
{ DEVICE_CLASS_LIGHTGUN, "Gun" },
{ DEVICE_CLASS_JOYSTICK, "Joy" },
{ ~0U, "Unk" }
};
// token strings for item modifiers
static const code_string_table modifier_token_table[] =
{
{ ITEM_MODIFIER_POS, "POS" },
{ ITEM_MODIFIER_NEG, "NEG" },
{ ITEM_MODIFIER_LEFT, "LEFT" },
{ ITEM_MODIFIER_RIGHT, "RIGHT" },
{ ITEM_MODIFIER_UP, "UP" },
{ ITEM_MODIFIER_DOWN, "DOWN" },
{ ~0U, "" }
};
// friendly strings for item modifiers
static const code_string_table modifier_string_table[] =
{
{ ITEM_MODIFIER_POS, "+" },
{ ITEM_MODIFIER_NEG, "-" },
{ ITEM_MODIFIER_LEFT, "Left" },
{ ITEM_MODIFIER_RIGHT, "Right" },
{ ITEM_MODIFIER_UP, "Up" },
{ ITEM_MODIFIER_DOWN, "Down" },
{ ~0U, "" }
};
// token strings for item classes
static const code_string_table itemclass_token_table[] =
{
{ ITEM_CLASS_SWITCH, "SWITCH" },
{ ITEM_CLASS_ABSOLUTE, "ABSOLUTE" },
{ ITEM_CLASS_RELATIVE, "RELATIVE" },
{ ~0U, "" }
};
// token strings for standard item ids
static const code_string_table itemid_token_table[] =
{
// standard keyboard codes
{ ITEM_ID_A, "A" },
{ ITEM_ID_B, "B" },
{ ITEM_ID_C, "C" },
{ ITEM_ID_D, "D" },
{ ITEM_ID_E, "E" },
{ ITEM_ID_F, "F" },
{ ITEM_ID_G, "G" },
{ ITEM_ID_H, "H" },
{ ITEM_ID_I, "I" },
{ ITEM_ID_J, "J" },
{ ITEM_ID_K, "K" },
{ ITEM_ID_L, "L" },
{ ITEM_ID_M, "M" },
{ ITEM_ID_N, "N" },
{ ITEM_ID_O, "O" },
{ ITEM_ID_P, "P" },
{ ITEM_ID_Q, "Q" },
{ ITEM_ID_R, "R" },
{ ITEM_ID_S, "S" },
{ ITEM_ID_T, "T" },
{ ITEM_ID_U, "U" },
{ ITEM_ID_V, "V" },
{ ITEM_ID_W, "W" },
{ ITEM_ID_X, "X" },
{ ITEM_ID_Y, "Y" },
{ ITEM_ID_Z, "Z" },
{ ITEM_ID_0, "0" },
{ ITEM_ID_1, "1" },
{ ITEM_ID_2, "2" },
{ ITEM_ID_3, "3" },
{ ITEM_ID_4, "4" },
{ ITEM_ID_5, "5" },
{ ITEM_ID_6, "6" },
{ ITEM_ID_7, "7" },
{ ITEM_ID_8, "8" },
{ ITEM_ID_9, "9" },
{ ITEM_ID_F1, "F1" },
{ ITEM_ID_F2, "F2" },
{ ITEM_ID_F3, "F3" },
{ ITEM_ID_F4, "F4" },
{ ITEM_ID_F5, "F5" },
{ ITEM_ID_F6, "F6" },
{ ITEM_ID_F7, "F7" },
{ ITEM_ID_F8, "F8" },
{ ITEM_ID_F9, "F9" },
{ ITEM_ID_F10, "F10" },
{ ITEM_ID_F11, "F11" },
{ ITEM_ID_F12, "F12" },
{ ITEM_ID_F13, "F13" },
{ ITEM_ID_F14, "F14" },
{ ITEM_ID_F15, "F15" },
{ ITEM_ID_ESC, "ESC" },
{ ITEM_ID_TILDE, "TILDE" },
{ ITEM_ID_MINUS, "MINUS" },
{ ITEM_ID_EQUALS, "EQUALS" },
{ ITEM_ID_BACKSPACE, "BACKSPACE" },
{ ITEM_ID_TAB, "TAB" },
{ ITEM_ID_OPENBRACE, "OPENBRACE" },
{ ITEM_ID_CLOSEBRACE, "CLOSEBRACE" },
{ ITEM_ID_ENTER, "ENTER" },
{ ITEM_ID_COLON, "COLON" },
{ ITEM_ID_QUOTE, "QUOTE" },
{ ITEM_ID_BACKSLASH, "BACKSLASH" },
{ ITEM_ID_BACKSLASH2, "BACKSLASH2" },
{ ITEM_ID_COMMA, "COMMA" },
{ ITEM_ID_STOP, "STOP" },
{ ITEM_ID_SLASH, "SLASH" },
{ ITEM_ID_SPACE, "SPACE" },
{ ITEM_ID_INSERT, "INSERT" },
{ ITEM_ID_DEL, "DEL" },
{ ITEM_ID_HOME, "HOME" },
{ ITEM_ID_END, "END" },
{ ITEM_ID_PGUP, "PGUP" },
{ ITEM_ID_PGDN, "PGDN" },
{ ITEM_ID_LEFT, "LEFT" },
{ ITEM_ID_RIGHT, "RIGHT" },
{ ITEM_ID_UP, "UP" },
{ ITEM_ID_DOWN, "DOWN" },
{ ITEM_ID_0_PAD, "0PAD" },
{ ITEM_ID_1_PAD, "1PAD" },
{ ITEM_ID_2_PAD, "2PAD" },
{ ITEM_ID_3_PAD, "3PAD" },
{ ITEM_ID_4_PAD, "4PAD" },
{ ITEM_ID_5_PAD, "5PAD" },
{ ITEM_ID_6_PAD, "6PAD" },
{ ITEM_ID_7_PAD, "7PAD" },
{ ITEM_ID_8_PAD, "8PAD" },
{ ITEM_ID_9_PAD, "9PAD" },
{ ITEM_ID_SLASH_PAD, "SLASHPAD" },
{ ITEM_ID_ASTERISK, "ASTERISK" },
{ ITEM_ID_MINUS_PAD, "MINUSPAD" },
{ ITEM_ID_PLUS_PAD, "PLUSPAD" },
{ ITEM_ID_DEL_PAD, "DELPAD" },
{ ITEM_ID_ENTER_PAD, "ENTERPAD" },
{ ITEM_ID_PRTSCR, "PRTSCR" },
{ ITEM_ID_PAUSE, "PAUSE" },
{ ITEM_ID_LSHIFT, "LSHIFT" },
{ ITEM_ID_RSHIFT, "RSHIFT" },
{ ITEM_ID_LCONTROL, "LCONTROL" },
{ ITEM_ID_RCONTROL, "RCONTROL" },
{ ITEM_ID_LALT, "LALT" },
{ ITEM_ID_RALT, "RALT" },
{ ITEM_ID_SCRLOCK, "SCRLOCK" },
{ ITEM_ID_NUMLOCK, "NUMLOCK" },
{ ITEM_ID_CAPSLOCK, "CAPSLOCK" },
{ ITEM_ID_LWIN, "LWIN" },
{ ITEM_ID_RWIN, "RWIN" },
{ ITEM_ID_MENU, "MENU" },
{ ITEM_ID_CANCEL, "CANCEL" },
// standard mouse/joystick/gun codes
{ ITEM_ID_XAXIS, "XAXIS" },
{ ITEM_ID_YAXIS, "YAXIS" },
{ ITEM_ID_ZAXIS, "ZAXIS" },
{ ITEM_ID_RXAXIS, "RXAXIS" },
{ ITEM_ID_RYAXIS, "RYAXIS" },
{ ITEM_ID_RZAXIS, "RZAXIS" },
{ ITEM_ID_SLIDER1, "SLIDER1" },
{ ITEM_ID_SLIDER2, "SLIDER2" },
{ ITEM_ID_BUTTON1, "BUTTON1" },
{ ITEM_ID_BUTTON2, "BUTTON2" },
{ ITEM_ID_BUTTON3, "BUTTON3" },
{ ITEM_ID_BUTTON4, "BUTTON4" },
{ ITEM_ID_BUTTON5, "BUTTON5" },
{ ITEM_ID_BUTTON6, "BUTTON6" },
{ ITEM_ID_BUTTON7, "BUTTON7" },
{ ITEM_ID_BUTTON8, "BUTTON8" },
{ ITEM_ID_BUTTON9, "BUTTON9" },
{ ITEM_ID_BUTTON10, "BUTTON10" },
{ ITEM_ID_BUTTON11, "BUTTON11" },
{ ITEM_ID_BUTTON12, "BUTTON12" },
{ ITEM_ID_BUTTON13, "BUTTON13" },
{ ITEM_ID_BUTTON14, "BUTTON14" },
{ ITEM_ID_BUTTON15, "BUTTON15" },
{ ITEM_ID_BUTTON16, "BUTTON16" },
{ ITEM_ID_BUTTON17, "BUTTON17" },
{ ITEM_ID_BUTTON18, "BUTTON18" },
{ ITEM_ID_BUTTON19, "BUTTON19" },
{ ITEM_ID_BUTTON20, "BUTTON20" },
{ ITEM_ID_BUTTON21, "BUTTON21" },
{ ITEM_ID_BUTTON22, "BUTTON22" },
{ ITEM_ID_BUTTON23, "BUTTON23" },
{ ITEM_ID_BUTTON24, "BUTTON24" },
{ ITEM_ID_BUTTON25, "BUTTON25" },
{ ITEM_ID_BUTTON26, "BUTTON26" },
{ ITEM_ID_BUTTON27, "BUTTON27" },
{ ITEM_ID_BUTTON28, "BUTTON28" },
{ ITEM_ID_BUTTON29, "BUTTON29" },
{ ITEM_ID_BUTTON30, "BUTTON30" },
{ ITEM_ID_BUTTON31, "BUTTON31" },
{ ITEM_ID_BUTTON32, "BUTTON32" },
{ ITEM_ID_START, "START" },
{ ITEM_ID_SELECT, "SELECT" },
// Hats
{ ITEM_ID_HAT1UP, "HAT1UP" },
{ ITEM_ID_HAT1DOWN, "HAT1DOWN" },
{ ITEM_ID_HAT1LEFT, "HAT1LEFT" },
{ ITEM_ID_HAT1RIGHT, "HAT1RIGHT" },
{ ITEM_ID_HAT2UP, "HAT2UP" },
{ ITEM_ID_HAT2DOWN, "HAT2DOWN" },
{ ITEM_ID_HAT2LEFT, "HAT2LEFT" },
{ ITEM_ID_HAT2RIGHT, "HAT2RIGHT" },
{ ITEM_ID_HAT3UP, "HAT3UP" },
{ ITEM_ID_HAT3DOWN, "HAT3DOWN" },
{ ITEM_ID_HAT3LEFT, "HAT3LEFT" },
{ ITEM_ID_HAT3RIGHT, "HAT3RIGHT" },
{ ITEM_ID_HAT4UP, "HAT4UP" },
{ ITEM_ID_HAT4DOWN, "HAT4DOWN" },
{ ITEM_ID_HAT4LEFT, "HAT4LEFT" },
{ ITEM_ID_HAT4RIGHT, "HAT4RIGHT" },
// Additional IDs
{ ITEM_ID_ADD_SWITCH1, "ADDSW1" },
{ ITEM_ID_ADD_SWITCH2, "ADDSW2" },
{ ITEM_ID_ADD_SWITCH3, "ADDSW3" },
{ ITEM_ID_ADD_SWITCH4, "ADDSW4" },
{ ITEM_ID_ADD_SWITCH5, "ADDSW5" },
{ ITEM_ID_ADD_SWITCH6, "ADDSW6" },
{ ITEM_ID_ADD_SWITCH7, "ADDSW7" },
{ ITEM_ID_ADD_SWITCH8, "ADDSW8" },
{ ITEM_ID_ADD_SWITCH9, "ADDSW9" },
{ ITEM_ID_ADD_SWITCH10, "ADDSW10" },
{ ITEM_ID_ADD_SWITCH11, "ADDSW11" },
{ ITEM_ID_ADD_SWITCH12, "ADDSW12" },
{ ITEM_ID_ADD_SWITCH13, "ADDSW13" },
{ ITEM_ID_ADD_SWITCH14, "ADDSW14" },
{ ITEM_ID_ADD_SWITCH15, "ADDSW15" },
{ ITEM_ID_ADD_SWITCH16, "ADDSW16" },
{ ITEM_ID_ADD_ABSOLUTE1, "ADDAXIS1" },
{ ITEM_ID_ADD_ABSOLUTE2, "ADDAXIS2" },
{ ITEM_ID_ADD_ABSOLUTE3, "ADDAXIS3" },
{ ITEM_ID_ADD_ABSOLUTE4, "ADDAXIS4" },
{ ITEM_ID_ADD_ABSOLUTE5, "ADDAXIS5" },
{ ITEM_ID_ADD_ABSOLUTE6, "ADDAXIS6" },
{ ITEM_ID_ADD_ABSOLUTE7, "ADDAXIS7" },
{ ITEM_ID_ADD_ABSOLUTE8, "ADDAXIS8" },
{ ITEM_ID_ADD_ABSOLUTE9, "ADDAXIS9" },
{ ITEM_ID_ADD_ABSOLUTE10,"ADDAXIS10" },
{ ITEM_ID_ADD_ABSOLUTE11,"ADDAXIS11" },
{ ITEM_ID_ADD_ABSOLUTE12,"ADDAXIS12" },
{ ITEM_ID_ADD_ABSOLUTE13,"ADDAXIS13" },
{ ITEM_ID_ADD_ABSOLUTE14,"ADDAXIS14" },
{ ITEM_ID_ADD_ABSOLUTE15,"ADDAXIS15" },
{ ITEM_ID_ADD_ABSOLUTE16,"ADDAXIS16" },
{ ITEM_ID_ADD_RELATIVE1, "ADDREL1" },
{ ITEM_ID_ADD_RELATIVE2, "ADDREL2" },
{ ITEM_ID_ADD_RELATIVE3, "ADDREL3" },
{ ITEM_ID_ADD_RELATIVE4, "ADDREL4" },
{ ITEM_ID_ADD_RELATIVE5, "ADDREL5" },
{ ITEM_ID_ADD_RELATIVE6, "ADDREL6" },
{ ITEM_ID_ADD_RELATIVE7, "ADDREL7" },
{ ITEM_ID_ADD_RELATIVE8, "ADDREL8" },
{ ITEM_ID_ADD_RELATIVE9, "ADDREL9" },
{ ITEM_ID_ADD_RELATIVE10,"ADDREL10" },
{ ITEM_ID_ADD_RELATIVE11,"ADDREL11" },
{ ITEM_ID_ADD_RELATIVE12,"ADDREL12" },
{ ITEM_ID_ADD_RELATIVE13,"ADDREL13" },
{ ITEM_ID_ADD_RELATIVE14,"ADDREL14" },
{ ITEM_ID_ADD_RELATIVE15,"ADDREL15" },
{ ITEM_ID_ADD_RELATIVE16,"ADDREL16" },
{ ~0U, nullptr }
};
//**************************************************************************
// GLOBAL VARIABLES
//**************************************************************************
// standard joystick mappings
const char joystick_map_8way[] = "7778...4445";
const char joystick_map_4way_diagonal[] = "4444s8888..444458888.444555888.ss5.222555666.222256666.2222s6666.2222s6666";
// const char joystick_map_4way_sticky[] = "s8.4s8.44s8.4445";
//**************************************************************************
// JOYSTICK MAP
//**************************************************************************
//-------------------------------------------------
// joystick_map - constructor
//-------------------------------------------------
joystick_map::joystick_map()
: m_lastmap(JOYSTICK_MAP_NEUTRAL)
{
// parse the standard 8-way map as default
parse(joystick_map_8way);
}
//-------------------------------------------------
// parse - parse a string into a joystick map
//-------------------------------------------------
bool joystick_map::parse(const char *mapstring)
{
// save a copy of the original string
m_origstring = mapstring;
// iterate over rows
for (int rownum = 0; rownum < 9; rownum++)
{
// if we're done, copy from another row
if (*mapstring == 0 || *mapstring == '.')
{
bool symmetric = (rownum >= 5 && *mapstring == 0);
const UINT8 *srcrow = &m_map[symmetric ? (8 - rownum) : (rownum - 1)][0];
// if this is row 0, we don't have a source row -- invalid
if (rownum == 0)
return false;
// copy from the srcrow, applying up/down symmetry if in the bottom half
for (int colnum = 0; colnum < 9; colnum++)
{
UINT8 val = srcrow[colnum];
if (symmetric)
val = (val & (JOYSTICK_MAP_LEFT | JOYSTICK_MAP_RIGHT)) | ((val & JOYSTICK_MAP_UP) << 1) | ((val & JOYSTICK_MAP_DOWN) >> 1);
m_map[rownum][colnum] = val;
}
}
// otherwise, parse this column
else
{
for (int colnum = 0; colnum < 9; colnum++)
{
// if we're at the end of row, copy previous to the middle, then apply left/right symmetry
if (colnum > 0 && (*mapstring == 0 || *mapstring == '.'))
{
bool symmetric = (colnum >= 5);
UINT8 val = m_map[rownum][symmetric ? (8 - colnum) : (colnum - 1)];
if (symmetric)
val = (val & (JOYSTICK_MAP_UP | JOYSTICK_MAP_DOWN)) | ((val & JOYSTICK_MAP_LEFT) << 1) | ((val & JOYSTICK_MAP_RIGHT) >> 1);
m_map[rownum][colnum] = val;
}
// otherwise, convert the character to its value
else
{
static const UINT8 charmap[] =
{
JOYSTICK_MAP_UP | JOYSTICK_MAP_LEFT,
JOYSTICK_MAP_UP,
JOYSTICK_MAP_UP | JOYSTICK_MAP_RIGHT,
JOYSTICK_MAP_LEFT,
JOYSTICK_MAP_NEUTRAL,
JOYSTICK_MAP_RIGHT,
JOYSTICK_MAP_DOWN | JOYSTICK_MAP_LEFT,
JOYSTICK_MAP_DOWN,
JOYSTICK_MAP_DOWN | JOYSTICK_MAP_RIGHT,
JOYSTICK_MAP_STICKY
};
static const char validchars[] = "789456123s";
const char *ptr = strchr(validchars, *mapstring++);
// invalid characters exit immediately
if (ptr == nullptr)
return false;
m_map[rownum][colnum] = charmap[ptr - validchars];
}
}
}
// if we ended with a period, advance to the next row
if (*mapstring == '.')
mapstring++;
}
return true;
}
//-------------------------------------------------
// to_string - output the map as a string for
// friendly display
//-------------------------------------------------
std::string joystick_map::to_string() const
{
std::string str(m_origstring);
str.append("\n");
for (auto & elem : m_map)
{
str.append(" ");
for (auto & elem_colnum : elem)
switch (elem_colnum)
{
case JOYSTICK_MAP_UP | JOYSTICK_MAP_LEFT: str.append("7"); break;
case JOYSTICK_MAP_UP: str.append("8"); break;
case JOYSTICK_MAP_UP | JOYSTICK_MAP_RIGHT: str.append("9"); break;
case JOYSTICK_MAP_LEFT: str.append("4"); break;
case JOYSTICK_MAP_NEUTRAL: str.append("5"); break;
case JOYSTICK_MAP_RIGHT: str.append("6"); break;
case JOYSTICK_MAP_DOWN | JOYSTICK_MAP_LEFT: str.append("1"); break;
case JOYSTICK_MAP_DOWN: str.append("2"); break;
case JOYSTICK_MAP_DOWN | JOYSTICK_MAP_RIGHT:str.append("3"); break;
case JOYSTICK_MAP_STICKY: str.append("s"); break;
default: str.append("?"); break;
}
str.append("\n");
}
return str;
}
//-------------------------------------------------
// update - update the state of the joystick
// map based on the given X/Y axis values
//-------------------------------------------------
UINT8 joystick_map::update(INT32 xaxisval, INT32 yaxisval)
{
// now map the X and Y axes to a 9x9 grid using the raw values
xaxisval = ((xaxisval - INPUT_ABSOLUTE_MIN) * 9) / (INPUT_ABSOLUTE_MAX - INPUT_ABSOLUTE_MIN + 1);
yaxisval = ((yaxisval - INPUT_ABSOLUTE_MIN) * 9) / (INPUT_ABSOLUTE_MAX - INPUT_ABSOLUTE_MIN + 1);
UINT8 mapval = m_map[yaxisval][xaxisval];
// handle stickiness
if (mapval == JOYSTICK_MAP_STICKY)
mapval = m_lastmap;
else
m_lastmap = mapval;
// return based on whether the appropriate bit is set
return mapval;
}
//**************************************************************************
// INPUT CODE
//**************************************************************************
//-------------------------------------------------
// input_code - construct an input code from a
// device/item pair
//-------------------------------------------------
input_code::input_code(input_device &device, input_item_id itemid)
{
assert(itemid < ITEM_ID_ABSOLUTE_MAXIMUM);
input_device_item *item = device.item(itemid);
assert(item != nullptr);
m_internal = ((device.devclass() & 0xf) << 28) | ((device.devindex() & 0xff) << 20) | ((item->itemclass() & 0xf) << 16) | (ITEM_MODIFIER_NONE << 12) | (item->itemid() & 0xfff);
}
//**************************************************************************
// INPUT SEQ
//**************************************************************************
//-------------------------------------------------
// operator+= - append a code to the end of an
// input sequence
//-------------------------------------------------
input_seq &input_seq::operator+=(input_code code)
{
// if not enough room, return FALSE
int curlength = length();
if (curlength < ARRAY_LENGTH(m_code) - 1)
{
m_code[curlength++] = code;
m_code[curlength] = end_code;
}
return *this;
}
//-------------------------------------------------
// operator|= - append a code to a sequence; if
// the sequence is non-empty, insert an OR
// before the new code
//-------------------------------------------------
input_seq &input_seq::operator|=(input_code code)
{
// overwrite end/default with the new code
if (m_code[0] == end_code || m_code[0] == default_code)
m_code[0] = code;
// otherwise, append an OR token and then the new code
else
{
*this += or_code;
*this += code;
}
return *this;
}
//-------------------------------------------------
// length - return the length of the sequence
//-------------------------------------------------
int input_seq::length() const
{
// find the end token; error if none found
for (int seqnum = 0; seqnum < ARRAY_LENGTH(m_code); seqnum++)
if (m_code[seqnum] == end_code)
return seqnum;
return ARRAY_LENGTH(m_code);
}
//-------------------------------------------------
// is_valid - return true if a given sequence is
// valid
//-------------------------------------------------
bool input_seq::is_valid() const
{
// "default" can only be of length 1
if (m_code[0] == default_code)
return (length() == 1);
// scan the sequence for valid codes
input_item_class lastclass = ITEM_CLASS_INVALID;
input_code lastcode = INPUT_CODE_INVALID;
int positive_code_count = 0;
for (auto code : m_code)
{
// invalid codes are never permitted
if (code == INPUT_CODE_INVALID)
return false;
// if we hit an OR or the end, validate the previous chunk
if (code == or_code || code == end_code)
{
// must be at least one positive code
if (positive_code_count == 0)
return false;
// last code must not have been an internal code
if (lastcode.internal())
return false;
// if this is the end, we're ok
if (code == end_code)
return true;
// reset the state for the next chunk
positive_code_count = 0;
lastclass = ITEM_CLASS_INVALID;
}
// if we hit a NOT, make sure we don't have a double
else if (code == not_code)
{
if (lastcode == not_code)
return false;
}
// anything else
else
{
// count positive codes
if (lastcode != not_code)
positive_code_count++;
// non-switch items can't have a NOT
input_item_class itemclass = code.item_class();
if (itemclass != ITEM_CLASS_SWITCH && lastcode == not_code)
return FALSE;
// absolute/relative items must all be the same class
if ((lastclass == ITEM_CLASS_ABSOLUTE && itemclass != ITEM_CLASS_ABSOLUTE) ||
(lastclass == ITEM_CLASS_RELATIVE && itemclass != ITEM_CLASS_RELATIVE))
return false;
}
// remember the last code
lastcode = code;
}
// if we got here, we were missing an END token; fail
return false;
}
//-------------------------------------------------
// set - directly set up to the first 7 codes
//-------------------------------------------------
void input_seq::set(input_code code0, input_code code1, input_code code2, input_code code3, input_code code4, input_code code5, input_code code6)
{
m_code[0] = code0;
m_code[1] = code1;
m_code[2] = code2;
m_code[3] = code3;
m_code[4] = code4;
m_code[5] = code5;
m_code[6] = code6;
for (int codenum = 7; codenum < ARRAY_LENGTH(m_code); codenum++)
m_code[codenum] = end_code;
}
//-------------------------------------------------
// backspace - "backspace" over the last entry in
// a sequence
//-------------------------------------------------
void input_seq::backspace()
{
// if we have at least one entry, remove it
int curlength = length();
if (curlength > 0)
m_code[curlength - 1] = end_code;
}
//-------------------------------------------------
// replace - replace all instances of oldcode
// with newcode in a sequence
//-------------------------------------------------
void input_seq::replace(input_code oldcode, input_code newcode)
{
for (auto & elem : m_code)
if (elem == oldcode)
elem = newcode;
}
//**************************************************************************
// INPUT DEVICE
//**************************************************************************
//-------------------------------------------------
// input_device - constructor
//-------------------------------------------------
input_device::input_device(input_class &_class, int devindex, const char *name, void *internal)
: m_class(_class),
m_name(name),
m_devindex(devindex),
m_maxitem(input_item_id(0)),
m_internal(internal),
m_joystick_deadzone((INT32)(_class.manager().machine().options().joystick_deadzone() * INPUT_ABSOLUTE_MAX)),
m_joystick_saturation((INT32)(_class.manager().machine().options().joystick_saturation() * INPUT_ABSOLUTE_MAX)),
m_steadykey_enabled(_class.manager().machine().options().steadykey()),
m_lightgun_reload_button(_class.manager().machine().options().offscreen_reload())
{
// additional work for joysticks
if (devclass() == DEVICE_CLASS_JOYSTICK)
{
// get the default joystick map
const char *mapstring = machine().options().joystick_map();
if (mapstring[0] == 0 || strcmp(mapstring, "auto") == 0)
mapstring = joystick_map_8way;
// parse it
if (!m_joymap.parse(mapstring))
{
osd_printf_error("Invalid joystick map: %s\n", mapstring);
m_joymap.parse(joystick_map_8way);
}
else if (mapstring != joystick_map_8way)
osd_printf_verbose("Input: Default joystick map = %s\n", m_joymap.to_string().c_str());
}
}
//-------------------------------------------------
// add_item - add a new item to an input device
//-------------------------------------------------
input_item_id input_device::add_item(const char *name, input_item_id itemid, item_get_state_func getstate, void *internal)
{
assert_always(machine().phase() == MACHINE_PHASE_INIT, "Can only call input_device::add_item at init time!");
assert(name != nullptr);
assert(itemid > ITEM_ID_INVALID && itemid < ITEM_ID_MAXIMUM);
assert(getstate != nullptr);
// if we have a generic ID, pick a new internal one
input_item_id originalid = itemid;
if (itemid >= ITEM_ID_OTHER_SWITCH && itemid <= ITEM_ID_OTHER_AXIS_RELATIVE)
for (itemid = (input_item_id)(ITEM_ID_MAXIMUM + 1); itemid <= ITEM_ID_ABSOLUTE_MAXIMUM; ++itemid)
if (m_item[itemid] == nullptr)
break;
assert(itemid <= ITEM_ID_ABSOLUTE_MAXIMUM);
// make sure we don't have any overlap
assert(m_item[itemid] == nullptr);
// determine the class and create the appropriate item class
switch (m_class.standard_item_class(originalid))
{
case ITEM_CLASS_SWITCH:
m_item[itemid] = std::make_unique<input_device_switch_item>(*this, name, internal, itemid, getstate);
break;
case ITEM_CLASS_RELATIVE:
m_item[itemid] = std::make_unique<input_device_relative_item>(*this, name, internal, itemid, getstate);
break;
case ITEM_CLASS_ABSOLUTE:
m_item[itemid] = std::make_unique<input_device_absolute_item>(*this, name, internal, itemid, getstate);
break;
default:
m_item[itemid] = nullptr;
assert(false);
}
// assign the new slot and update the maximum
m_maxitem = MAX(m_maxitem, itemid);
return itemid;
}
//-------------------------------------------------
// apply_deadzone_and_saturation - apply global
// deadzone and saturation parameters to an
// absolute value
//-------------------------------------------------
INT32 input_device::apply_deadzone_and_saturation(INT32 result) const
{
// ignore for non-joysticks
if (devclass() != DEVICE_CLASS_JOYSTICK)
return result;
// properties are symmetric
bool negative = false;
if (result < 0)
{
negative = true;
result = -result;
}
// if in the deadzone, return 0
if (result < m_joystick_deadzone)
result = 0;
// if saturated, return the max
else if (result > m_joystick_saturation)
result = INPUT_ABSOLUTE_MAX;
// otherwise, scale
else
result = (INT64)(result - m_joystick_deadzone) * (INT64)INPUT_ABSOLUTE_MAX / (INT64)(m_joystick_saturation - m_joystick_deadzone);
// re-apply sign and return
return negative ? -result : result;
}
//-------------------------------------------------
// apply_steadykey - apply steadykey option if
// enabled
//-------------------------------------------------
void input_device::apply_steadykey() const
{
// ignore if not enabled
if (!m_steadykey_enabled)
return;
// update the state of all the keys and see if any changed state
bool anything_changed = false;
for (input_item_id itemid = ITEM_ID_FIRST_VALID; itemid <= m_maxitem; ++itemid)
{
input_device_item *item = m_item[itemid].get();
if (item != nullptr && item->itemclass() == ITEM_CLASS_SWITCH)
if (downcast<input_device_switch_item *>(item)->steadykey_changed())
anything_changed = true;
}
// if the keyboard state is stable, flush the current state
if (!anything_changed)
for (input_item_id itemid = ITEM_ID_FIRST_VALID; itemid <= m_maxitem; ++itemid)
{
input_device_item *item = m_item[itemid].get();
if (item != nullptr && item->itemclass() == ITEM_CLASS_SWITCH)
downcast<input_device_switch_item *>(item)->steadykey_update_to_current();
}
}
//**************************************************************************
// INPUT CLASS
//**************************************************************************
//-------------------------------------------------
// input_class - constructor
//-------------------------------------------------
input_class::input_class(input_manager &manager, input_device_class devclass, bool enabled, bool multi)
: m_manager(manager),
m_devclass(devclass),
m_maxindex(0),
m_enabled(enabled),
m_multi(multi)
{
// request a per-frame callback for the keyboard class
if (devclass == DEVICE_CLASS_KEYBOARD)
machine().add_notifier(MACHINE_NOTIFY_FRAME, machine_notify_delegate(FUNC(input_class::frame_callback), this));
}
//-------------------------------------------------
// add_device - add a new input device
//-------------------------------------------------
input_device *input_class::add_device(const char *name, void *internal)
{
// find the next empty index
int devindex;
for (devindex = 0; devindex < DEVICE_INDEX_MAXIMUM; devindex++)
if (m_device[devindex] == nullptr)
break;
// call through
return add_device(devindex, name, internal);
}
input_device *input_class::add_device(int devindex, const char *name, void *internal)
{
assert_always(machine().phase() == MACHINE_PHASE_INIT, "Can only call input_class::add_device at init time!");
assert(name != nullptr);
assert(devindex >= 0 && devindex < DEVICE_INDEX_MAXIMUM);
assert(m_device[devindex] == nullptr);
// allocate a new device
m_device[devindex] = std::make_unique<input_device>(*this, devindex, name, internal);
// update the maximum index found
m_maxindex = MAX(m_maxindex, devindex);
osd_printf_verbose("Input: Adding %s #%d: %s\n", (*devclass_string_table)[m_devclass], devindex, name);
return m_device[devindex].get();
}
//-------------------------------------------------
// standard_item_class - return the class of a
// standard item
//-------------------------------------------------
input_item_class input_class::standard_item_class(input_item_id itemid)
{
// most everything standard is a switch, apart from the axes
if (itemid == ITEM_ID_OTHER_SWITCH || itemid < ITEM_ID_XAXIS || (itemid > ITEM_ID_SLIDER2 && itemid < ITEM_ID_ADD_ABSOLUTE1))
return ITEM_CLASS_SWITCH;
// standard mouse axes are relative
else if (m_devclass == DEVICE_CLASS_MOUSE || itemid == ITEM_ID_OTHER_AXIS_RELATIVE || (itemid >= ITEM_ID_ADD_RELATIVE1 && itemid <= ITEM_ID_ADD_RELATIVE16))
return ITEM_CLASS_RELATIVE;
// all other standard axes are absolute
else
return ITEM_CLASS_ABSOLUTE;
}
//-------------------------------------------------
// frame_callback - per-frame callback for various
// bookkeeping
//-------------------------------------------------
void input_class::frame_callback()
{
// iterate over all devices in our class
for (int devnum = 0; devnum <= m_maxindex; devnum++)
if (m_device[devnum] != nullptr)
m_device[devnum]->apply_steadykey();
}
//**************************************************************************
// INPUT MANAGER
//**************************************************************************
//-------------------------------------------------
// input_manager - constructor
//-------------------------------------------------
input_manager::input_manager(running_machine &machine)
: m_machine(machine),
m_keyboard_class(*this, DEVICE_CLASS_KEYBOARD, true, machine.options().multi_keyboard()),
m_mouse_class(*this, DEVICE_CLASS_MOUSE, machine.options().mouse(), machine.options().multi_mouse()),
m_joystick_class(*this, DEVICE_CLASS_JOYSTICK, machine.options().joystick(), true),
m_lightgun_class(*this, DEVICE_CLASS_LIGHTGUN, machine.options().lightgun(), true),
m_poll_seq_last_ticks(0),
m_poll_seq_class(ITEM_CLASS_SWITCH)
{
// reset code memory
reset_memory();
// create pointers for the classes
memset(m_class, 0, sizeof(m_class));
m_class[DEVICE_CLASS_KEYBOARD] = &m_keyboard_class;
m_class[DEVICE_CLASS_MOUSE] = &m_mouse_class;
m_class[DEVICE_CLASS_JOYSTICK] = &m_joystick_class;
m_class[DEVICE_CLASS_LIGHTGUN] = &m_lightgun_class;
}
//-------------------------------------------------
// code_value - return the value of a given
// input code
//-------------------------------------------------
INT32 input_manager::code_value(input_code code)
{
g_profiler.start(PROFILER_INPUT);
INT32 result = 0;
// dummy loop to allow clean early exits
do
{
// return 0 for any invalid devices
input_device *device = device_from_code(code);
if (device == nullptr)
break;
// also return 0 if the device class is disabled
input_class &devclass = *m_class[code.device_class()];
if (!devclass.enabled())
break;
// if this is not a multi device, only return data for item 0 and iterate over all
int startindex = code.device_index();
int stopindex = startindex;
if (!devclass.multi())
{
if (startindex != 0)
break;
stopindex = devclass.maxindex();
}
// iterate over all device indices
input_item_class targetclass = code.item_class();
for (int curindex = startindex; curindex <= stopindex; curindex++)
{
// lookup the item for the appropriate index
code.set_device_index(curindex);
input_device_item *item = item_from_code(code);
if (item == nullptr)
continue;
// process items according to their native type
switch (targetclass)
{
case ITEM_CLASS_ABSOLUTE:
if (result == 0)
result = item->read_as_absolute(code.item_modifier());
break;
case ITEM_CLASS_RELATIVE:
result += item->read_as_relative(code.item_modifier());
break;
case ITEM_CLASS_SWITCH:
result |= item->read_as_switch(code.item_modifier());
break;
default:
break;
}
}
} while (0);
// stop the profiler before exiting
g_profiler.stop();
return result;
}
//-------------------------------------------------
// code_pressed_once - return non-zero if a given
// input code has transitioned from off to on
// since the last call
//-------------------------------------------------
bool input_manager::code_pressed_once(input_code code)
{
// look for the code in the memory
bool curvalue = code_pressed(code);
int empty = -1;
for (int memnum = 0; memnum < ARRAY_LENGTH(m_switch_memory); memnum++)
{
// were we previous pressed on the last time through here?
if (m_switch_memory[memnum] == code)
{
// if no longer pressed, clear entry
if (curvalue == false)
m_switch_memory[memnum] = INPUT_CODE_INVALID;
// always return false
return false;
}
// remember the first empty entry
if (empty == -1 && m_switch_memory[memnum] == INPUT_CODE_INVALID)
empty = memnum;
}
// if we get here, we were not previously pressed; if still not pressed, return 0
if (curvalue == false)
return false;
// otherwise, add ourself to the memory and return 1
assert(empty != -1);
if (empty != -1)
m_switch_memory[empty] = code;
return true;
}
//-------------------------------------------------
// reset_polling - reset memories in preparation
// for polling
//-------------------------------------------------
void input_manager::reset_polling()
{
// reset switch memory
reset_memory();
// iterate over device classes and devices
for (input_device_class devclass = DEVICE_CLASS_FIRST_VALID; devclass <= DEVICE_CLASS_LAST_VALID; ++devclass)
for (int devnum = 0; devnum <= m_class[devclass]->maxindex(); devnum++)
{
// fetch the device; ignore if NULL
input_device *device = m_class[devclass]->device(devnum);
if (device == nullptr)
continue;
// iterate over items within each device
for (input_item_id itemid = ITEM_ID_FIRST_VALID; itemid <= device->maxitem(); ++itemid)
{
// for any non-switch items, set memory equal to the current value
input_device_item *item = device->item(itemid);
if (item != nullptr && item->itemclass() != ITEM_CLASS_SWITCH)
item->set_memory(code_value(input_code(*device, itemid)));
}
}
}
//-------------------------------------------------
// poll_switches - poll for any input
//-------------------------------------------------
input_code input_manager::poll_switches()
{
// iterate over device classes and devices
for (input_device_class devclass = DEVICE_CLASS_FIRST_VALID; devclass <= DEVICE_CLASS_LAST_VALID; ++devclass)
for (int devnum = 0; devnum <= m_class[devclass]->maxindex(); devnum++)
{
// fetch the device; ignore if NULL
input_device *device = m_class[devclass]->device(devnum);
if (device == nullptr)
continue;
// iterate over items within each device
for (input_item_id itemid = ITEM_ID_FIRST_VALID; itemid <= device->maxitem(); ++itemid)
{
input_device_item *item = device->item(itemid);
if (item != nullptr)
{
input_code code(*device, itemid);
// if the item is natively a switch, poll it
if (item->itemclass() == ITEM_CLASS_SWITCH)
{
if (code_pressed_once(code))
return code;
else
continue;
}
// skip if there is not enough axis movement
if (!code_check_axis(*item, code))
continue;
// otherwise, poll axes digitally
code.set_item_class(ITEM_CLASS_SWITCH);
// if this is a joystick X axis, check with left/right modifiers
if (devclass == DEVICE_CLASS_JOYSTICK && code.item_id() == ITEM_ID_XAXIS)
{
code.set_item_modifier(ITEM_MODIFIER_LEFT);
if (code_pressed_once(code))
return code;
code.set_item_modifier(ITEM_MODIFIER_RIGHT);
if (code_pressed_once(code))
return code;
}
// if this is a joystick Y axis, check with up/down modifiers
else if (devclass == DEVICE_CLASS_JOYSTICK && code.item_id() == ITEM_ID_YAXIS)
{
code.set_item_modifier(ITEM_MODIFIER_UP);
if (code_pressed_once(code))
return code;
code.set_item_modifier(ITEM_MODIFIER_DOWN);
if (code_pressed_once(code))
return code;
}
// any other axis, check with pos/neg modifiers
else
{
code.set_item_modifier(ITEM_MODIFIER_POS);
if (code_pressed_once(code))
return code;
code.set_item_modifier(ITEM_MODIFIER_NEG);
if (code_pressed_once(code))
return code;
}
}
}
}
// if nothing, return an invalid code
return INPUT_CODE_INVALID;
}
//-------------------------------------------------
// poll_keyboard_switches - poll for any
// keyboard-specific input
//-------------------------------------------------
input_code input_manager::poll_keyboard_switches()
{
// iterate over devices within each class
for (int devnum = 0; devnum < m_keyboard_class.maxindex(); devnum++)
{
// fetch the device; ignore if NULL
input_device *device = m_keyboard_class.device(devnum);
if (device == nullptr)
continue;
// iterate over items within each device
for (input_item_id itemid = ITEM_ID_FIRST_VALID; itemid <= device->maxitem(); ++itemid)
{
input_device_item *item = device->item(itemid);
if (item != nullptr && item->itemclass() == ITEM_CLASS_SWITCH)
{
input_code code(*device, itemid);
if (code_pressed_once(code))
return code;
}
}
}
// if nothing, return an invalid code
return INPUT_CODE_INVALID;
}
//-------------------------------------------------
// code_check_axis - see if axis has moved far
// enough to trigger a read when polling
//-------------------------------------------------
bool input_manager::code_check_axis(input_device_item &item, input_code code)
{
// if we've already reported this one, don't bother
if (item.memory() == INVALID_AXIS_VALUE)
return false;
// ignore min/max for lightguns
// so the selection will not be affected by a gun going out of range
INT32 curval = code_value(code);
if (code.device_class() == DEVICE_CLASS_LIGHTGUN &&
(code.item_id() == ITEM_ID_XAXIS || code.item_id() == ITEM_ID_YAXIS) &&
(curval == INPUT_ABSOLUTE_MAX || curval == INPUT_ABSOLUTE_MIN))
return false;
// compute the diff against memory
INT32 diff = curval - item.memory();
if (diff < 0)
diff = -diff;
// for absolute axes, look for 25% of maximum
if (item.itemclass() == ITEM_CLASS_ABSOLUTE && diff > (INPUT_ABSOLUTE_MAX - INPUT_ABSOLUTE_MIN) / 4)
{
item.set_memory(INVALID_AXIS_VALUE);
return true;
}
// for relative axes, look for ~20 pixels movement
if (item.itemclass() == ITEM_CLASS_RELATIVE && diff > 20 * INPUT_RELATIVE_PER_PIXEL)
{
item.set_memory(INVALID_AXIS_VALUE);
return true;
}
return false;
}
//-------------------------------------------------
// poll_axes - poll for any input
//-------------------------------------------------
input_code input_manager::poll_axes()
{
// iterate over device classes and devices
for (input_device_class devclass = DEVICE_CLASS_FIRST_VALID; devclass <= DEVICE_CLASS_LAST_VALID; ++devclass)
for (int devnum = 0; devnum <= m_class[devclass]->maxindex(); devnum++)
{
// fetch the device; ignore if NULL
input_device *device = m_class[devclass]->device(devnum);
if (device == nullptr)
continue;
// iterate over items within each device
for (input_item_id itemid = ITEM_ID_FIRST_VALID; itemid <= device->maxitem(); ++itemid)
{
input_device_item *item = device->item(itemid);
if (item != nullptr && item->itemclass() != ITEM_CLASS_SWITCH)
{
input_code code(*device, itemid);
if (code_check_axis(*item, code))
return code;
}
}
}
// if nothing, return an invalid code
return INPUT_CODE_INVALID;
}
//-------------------------------------------------
// device_from_code - given an input_code return
// a pointer to the associated device
//-------------------------------------------------
input_device *input_manager::device_from_code(input_code code) const
{
// if the class is valid, return the appropriate device pointer
input_device_class devclass = code.device_class();
if (devclass >= DEVICE_CLASS_FIRST_VALID && devclass <= DEVICE_CLASS_LAST_VALID)
return m_class[devclass]->device(code.device_index());
// otherwise, return NULL
return nullptr;
}
//-------------------------------------------------
// item_from_code - given an input_code return
// a pointer to the appropriate input_device_item
//-------------------------------------------------
input_device_item *input_manager::item_from_code(input_code code) const
{
// first get the device; if none, then we don't have an item
input_device *device = device_from_code(code);
if (device == nullptr)
return nullptr;
// then return the device's item
return device->item(code.item_id());
}
//-------------------------------------------------
// reset_memory - reset the array of memory for
// pressed switches
//-------------------------------------------------
void input_manager::reset_memory()
{
// reset all entries in switch memory to invalid
for (auto & elem : m_switch_memory)
elem = INPUT_CODE_INVALID;
}
//-------------------------------------------------
// code_from_itemid - translates an input_item_id
// to an input_code
//-------------------------------------------------
input_code input_manager::code_from_itemid(input_item_id itemid) const
{
// iterate over device classes and devices
for (input_device_class devclass = DEVICE_CLASS_FIRST_VALID; devclass <= DEVICE_CLASS_LAST_VALID; ++devclass)
for (int devnum = 0; devnum <= m_class[devclass]->maxindex(); devnum++)
{
input_device *device = m_class[devclass]->device(devnum);
if (device != nullptr && device->item(itemid) != nullptr)
return input_code(*device, itemid);
}
return INPUT_CODE_INVALID;
}
//-------------------------------------------------
// code_name - convert an input code into a
// friendly name
//-------------------------------------------------
std::string input_manager::code_name(input_code code) const
{
// if nothing there, return an empty string
input_device_item *item = item_from_code(code);
if (item == nullptr)
return std::string();
// determine the devclass part
const char *devclass = (*devclass_string_table)[code.device_class()];
// determine the devindex part
std::string devindex = string_format("%d", code.device_index() + 1);
// if we're unifying all devices, don't display a number
if (!m_class[code.device_class()]->multi())
devindex.clear();
// keyboard 0 doesn't show a class or index if it is the only one
input_device_class device_class = item->device().devclass();
if (device_class == DEVICE_CLASS_KEYBOARD && m_keyboard_class.maxindex() == 0)
{
devclass = "";
devindex.clear();
}
// devcode part comes from the item name
const char *devcode = item->name();
// determine the modifier part
const char *modifier = (*modifier_string_table)[code.item_modifier()];
// devcode is redundant with joystick switch left/right/up/down
if (device_class == DEVICE_CLASS_JOYSTICK && code.item_class() == ITEM_CLASS_SWITCH)
if (code.item_modifier() >= ITEM_MODIFIER_LEFT && code.item_modifier() <= ITEM_MODIFIER_DOWN)
devcode = "";
// concatenate the strings
std::string str(devclass);
if (!devindex.empty())
str.append(" ").append(devindex);
if (devcode[0] != 0)
str.append(" ").append(devcode);
if (modifier != nullptr)
str.append(" ").append(modifier);
// delete any leading spaces
strtrimspace(str);
return str;
}
//-------------------------------------------------
// code_to_token - create a token for a given code
//-------------------------------------------------
std::string input_manager::code_to_token(input_code code) const
{
// determine the devclass part
const char *devclass = (*devclass_token_table)[code.device_class()];
// determine the devindex part; keyboard 0 doesn't show an index
std::string devindex = string_format("%d", code.device_index() + 1);
if (code.device_class() == DEVICE_CLASS_KEYBOARD && code.device_index() == 0)
devindex.clear();
// determine the itemid part; look up in the table if we don't have a token
input_device_item *item = item_from_code(code);
const char *devcode = (item != nullptr) ? item->token() : "UNKNOWN";
// determine the modifier part
const char *modifier = (*modifier_token_table)[code.item_modifier()];
// determine the itemclass part; if we match the native class, we don't include this
const char *itemclass = "";
if (item == nullptr || item->itemclass() != code.item_class())
itemclass = (*itemclass_token_table)[code.item_class()];
// concatenate the strings
std::string str(devclass);
if (!devindex.empty())
str.append("_").append(devindex);
if (devcode[0] != 0)
str.append("_").append(devcode);
if (modifier != nullptr)
str.append("_").append(modifier);
if (itemclass[0] != 0)
str.append("_").append(itemclass);
return str;
}
//-------------------------------------------------
// code_from_token - extract an input code from a
// token
//-------------------------------------------------
input_code input_manager::code_from_token(const char *_token)
{
// copy the token and break it into pieces
std::string token[6];
int numtokens;
for (numtokens = 0; numtokens < ARRAY_LENGTH(token); )
{
// make a token up to the next underscore
char *score = (char *)strchr(_token, '_');
token[numtokens++].assign(_token, (score == nullptr) ? strlen(_token) : (score - _token));
// if we hit the end, we're done, else advance our pointer
if (score == nullptr)
break;
_token = score + 1;
}
// first token should be the devclass
int curtok = 0;
input_device_class devclass = input_device_class((*devclass_token_table)[token[curtok++].c_str()]);
if (devclass == ~input_device_class(0))
return INPUT_CODE_INVALID;
// second token might be index; look for number
int devindex = 0;
if (numtokens > 2 && sscanf(token[curtok].c_str(), "%d", &devindex) == 1)
{
curtok++;
devindex--;
}
if (curtok >= numtokens)
return INPUT_CODE_INVALID;
// next token is the item ID
input_item_id itemid = input_item_id((*itemid_token_table)[token[curtok].c_str()]);
bool standard = (itemid != ~input_item_id(0));
// if we're a standard code, default the itemclass based on it
input_item_class itemclass = ITEM_CLASS_INVALID;
if (standard)
itemclass = m_class[devclass]->standard_item_class(itemid);
// otherwise, keep parsing
else
{
// if this is an invalid device, we have nothing to look up
input_device *device = m_class[devclass]->device(devindex);
if (device == nullptr)
return INPUT_CODE_INVALID;
// if not a standard code, look it up in the device specific codes
for (itemid = ITEM_ID_FIRST_VALID; itemid <= device->maxitem(); ++itemid)
{
input_device_item *item = device->item(itemid);
if (item != nullptr && token[curtok].compare(item->token()) == 0)
{
// take the itemclass from the item
itemclass = item->itemclass();
break;
}
}
// bail on fail
if (itemid > device->maxitem())
return INPUT_CODE_INVALID;
}
curtok++;
// if we have another token, it is probably a modifier
input_item_modifier modifier = ITEM_MODIFIER_NONE;
if (curtok < numtokens)
{
modifier = input_item_modifier((*modifier_token_table)[token[curtok].c_str()]);
if (modifier != ~input_item_modifier(0))
curtok++;
else
modifier = ITEM_MODIFIER_NONE;
}
// if we have another token, it is the item class
if (curtok < numtokens)
{
UINT32 temp = (*itemclass_token_table)[token[curtok].c_str()];
if (temp != ~0)
{
curtok++;
itemclass = input_item_class(temp);
}
}
// we should have consumed all tokens
if (curtok != numtokens)
return INPUT_CODE_INVALID;
// assemble the final code
return input_code(devclass, devindex, itemclass, modifier, itemid);
}
//-------------------------------------------------
// seq_pressed - return true if the given sequence
// of switch inputs is "pressed"
//-------------------------------------------------
bool input_manager::seq_pressed(const input_seq &seq)
{
// iterate over all of the codes
bool result = false;
bool invert = false;
bool first = true;
for (int codenum = 0; ; codenum++)
{
// handle NOT
input_code code = seq[codenum];
if (code == input_seq::not_code)
invert = true;
// handle OR and END
else if (code == input_seq::or_code || code == input_seq::end_code)
{
// if we have a positive result from the previous set, we're done
if (result || code == input_seq::end_code)
break;
// otherwise, reset our state
result = false;
invert = false;
first = true;
}
// handle everything else as a series of ANDs
else
{
// if this is the first in the sequence, result is set equal
if (first)
result = code_pressed(code) ^ invert;
// further values are ANDed
else if (result)
result &= code_pressed(code) ^ invert;
// no longer first, and clear the invert flag
first = invert = false;
}
}
// return the result if we queried at least one switch
return result;
}
//-------------------------------------------------
// seq_axis_value - return the value of an axis
// defined in an input sequence
//-------------------------------------------------
INT32 input_manager::seq_axis_value(const input_seq &seq, input_item_class &itemclass)
{
// start with no valid classes
input_item_class itemclasszero = ITEM_CLASS_INVALID;
itemclass = ITEM_CLASS_INVALID;
// iterate over all of the codes
INT32 result = 0;
bool invert = false;
bool enable = true;
for (int codenum = 0; ; codenum++)
{
// handle NOT
input_code code = seq[codenum];
if (code == input_seq::not_code)
invert = true;
// handle OR and END
else if (code == input_seq::or_code || code == input_seq::end_code)
{
// if we have a positive result from the previous set, we're done
if (itemclass != ITEM_CLASS_INVALID || code == input_seq::end_code)
break;
// otherwise, reset our state
result = 0;
invert = false;
enable = true;
}
// handle everything else only if we're still enabled
else if (enable)
{
// switch codes serve as enables
if (code.item_class() == ITEM_CLASS_SWITCH)
{
// AND against previous digital codes
if (enable)
enable &= code_pressed(code) ^ invert;
}
// non-switch codes are analog values
else
{
INT32 value = code_value(code);
// if we got a 0 value, don't do anything except remember the first type
if (value == 0)
{
if (itemclasszero == ITEM_CLASS_INVALID)
itemclasszero = code.item_class();
}
// non-zero absolute values stick
else if (code.item_class() == ITEM_CLASS_ABSOLUTE)
{
itemclass = ITEM_CLASS_ABSOLUTE;
result = value;
}
// non-zero relative values accumulate
else if (code.item_class() == ITEM_CLASS_RELATIVE)
{
itemclass = ITEM_CLASS_RELATIVE;
result += value;
}
}
// clear the invert flag
invert = false;
}
}
// if the caller wants to know the type, provide it
if (result == 0)
itemclass = itemclasszero;
return result;
}
//-------------------------------------------------
// seq_poll_start - begin polling for a new
// sequence of the given itemclass
//-------------------------------------------------
void input_manager::seq_poll_start(input_item_class itemclass, const input_seq *startseq)
{
assert(itemclass == ITEM_CLASS_SWITCH || itemclass == ITEM_CLASS_ABSOLUTE || itemclass == ITEM_CLASS_RELATIVE);
// reset the recording count and the clock
m_poll_seq_last_ticks = 0;
m_poll_seq_class = itemclass;
m_poll_seq.reset();
// grab the starting sequence to append to, and append an OR
if (startseq != nullptr)
{
m_poll_seq = *startseq;
if (m_poll_seq.length() > 0)
m_poll_seq += input_seq::or_code;
}
// flush out any goobers
reset_polling();
input_code dummycode = KEYCODE_ENTER;
while (dummycode != INPUT_CODE_INVALID)
dummycode = (m_poll_seq_class == ITEM_CLASS_SWITCH) ? poll_switches() : poll_axes();
}
//-------------------------------------------------
// input_seq_poll - continue polling
//-------------------------------------------------
bool input_manager::seq_poll()
{
int curlen = m_poll_seq.length();
input_code lastcode = m_poll_seq[curlen - 1];
// switch case: see if we have a new code to process
input_code newcode;
if (m_poll_seq_class == ITEM_CLASS_SWITCH)
{
newcode = poll_switches();
if (newcode != INPUT_CODE_INVALID)
{
// if code is duplicate, toggle the NOT state on the code
if (curlen > 0 && newcode == lastcode)
{
// back up over the existing code
m_poll_seq.backspace();
// if there was a NOT preceding it, delete it as well, otherwise append a fresh one
if (m_poll_seq[curlen - 2] == input_seq::not_code)
m_poll_seq.backspace();
else
m_poll_seq += input_seq::not_code;
}
}
}
// absolute/relative case: see if we have an analog change of sufficient amount
else
{
bool has_or = false;
if (lastcode == input_seq::or_code)
{
lastcode = m_poll_seq[curlen - 2];
has_or = true;
}
newcode = poll_axes();
// if the last code doesn't match absolute/relative of this code, ignore the new one
if ((lastcode.item_class() == ITEM_CLASS_ABSOLUTE && newcode.item_class() != ITEM_CLASS_ABSOLUTE) ||
(lastcode.item_class() == ITEM_CLASS_RELATIVE && newcode.item_class() != ITEM_CLASS_RELATIVE))
newcode = INPUT_CODE_INVALID;
// if the new code is valid, check for half-axis toggles on absolute controls
if (newcode != INPUT_CODE_INVALID && curlen > 0 && newcode.item_class() == ITEM_CLASS_ABSOLUTE)
{
input_code last_nomodifier = lastcode;
last_nomodifier.set_item_modifier(ITEM_MODIFIER_NONE);
if (newcode == last_nomodifier)
{
// increment the modifier, wrapping back to none
switch (lastcode.item_modifier())
{
case ITEM_MODIFIER_NONE: newcode.set_item_modifier(ITEM_MODIFIER_POS); break;
case ITEM_MODIFIER_POS: newcode.set_item_modifier(ITEM_MODIFIER_NEG); break;
default:
case ITEM_MODIFIER_NEG: newcode.set_item_modifier(ITEM_MODIFIER_NONE); break;
}
// back up over the previous code so we can re-append
if (has_or)
m_poll_seq.backspace();
m_poll_seq.backspace();
}
}
}
// if we got a new code to append it, append it and reset the timer
if (newcode != INPUT_CODE_INVALID)
{
m_poll_seq += newcode;
m_poll_seq_last_ticks = osd_ticks();
}
// if we're recorded at least one item and 2/3 of a second has passed, we're done
if (m_poll_seq_last_ticks != 0 && osd_ticks() > m_poll_seq_last_ticks + osd_ticks_per_second() * 2 / 3)
{
// if the final result is invalid, reset to nothing
if (!m_poll_seq.is_valid())
m_poll_seq.reset();
// return true to indicate that we are finished
return true;
}
// return false to indicate we are still polling
return false;
}
//-------------------------------------------------
// seq_name - generate the friendly name of a
// sequence
//-------------------------------------------------
std::string input_manager::seq_name(const input_seq &seq) const
{
// make a copy of our sequence, removing any invalid bits
input_code clean_codes[sizeof(seq) / sizeof(input_code)];
int clean_index = 0;
for (int codenum = 0; seq[codenum] != input_seq::end_code; codenum++)
{
// if this is a code item which is not valid, don't copy it and remove any preceding ORs/NOTs
input_code code = seq[codenum];
if (!code.internal() && code_name(code).empty())
{
while (clean_index > 0 && clean_codes[clean_index - 1].internal())
clean_index--;
}
else if (clean_index > 0 || !code.internal())
clean_codes[clean_index++] = code;
}
// special case: empty
if (clean_index == 0)
return std::string((seq.length() == 0) ? "None" : "n/a");
// start with an empty buffer
std::string str;
// loop until we hit the end
for (int codenum = 0; codenum < clean_index; codenum++)
{
// append a space if not the first code
if (codenum != 0)
str.append(" ");
// handle OR/NOT codes here
input_code code = clean_codes[codenum];
if (code == input_seq::or_code)
str.append("or");
else if (code == input_seq::not_code)
str.append("not");
// otherwise, assume it is an input code and ask the input system to generate it
else
str.append(code_name(code));
}
return str;
}
//-------------------------------------------------
// seq_to_tokens - generate the tokenized form of
// a sequence
//-------------------------------------------------
std::string input_manager::seq_to_tokens(const input_seq &seq) const
{
// start with an empty buffer
std::string str;
// loop until we hit the end
for (int codenum = 0; seq[codenum] != input_seq::end_code; codenum++)
{
// append a space if not the first code
if (codenum != 0)
str.append(" ");
// handle OR/NOT codes here
input_code code = seq[codenum];
if (code == input_seq::or_code)
str.append("OR");
else if (code == input_seq::not_code)
str.append("NOT");
else if (code == input_seq::default_code)
str.append("DEFAULT");
// otherwise, assume it is an input code and ask the input system to generate it
else
str.append(code_to_token(code));
}
return str;
}
//-------------------------------------------------
// seq_from_tokens - generate the tokenized form
// of a sequence
//-------------------------------------------------
void input_manager::seq_from_tokens(input_seq &seq, const char *string)
{
// start with a blank sequence
seq.reset();
// loop until we're done
std::string strcopy = string;
char *str = const_cast<char *>(strcopy.c_str());
while (1)
{
// trim any leading spaces
while (*str != 0 && isspace((UINT8)*str))
str++;
// bail if we're done
if (*str == 0)
return;
// find the end of the token and make it upper-case along the way
char *strtemp;
for (strtemp = str; *strtemp != 0 && !isspace((UINT8)*strtemp); strtemp++)
*strtemp = toupper((UINT8)*strtemp);
char origspace = *strtemp;
*strtemp = 0;
// look for common stuff
input_code code;
if (strcmp(str, "OR") == 0)
code = input_seq::or_code;
else if (strcmp(str, "NOT") == 0)
code = input_seq::not_code;
else if (strcmp(str, "DEFAULT") == 0)
code = input_seq::default_code;
else
code = code_from_token(str);
// translate and add to the sequence
seq += code;
// advance
if (origspace == 0)
return;
str = strtemp + 1;
}
}
//-------------------------------------------------
// set_global_joystick_map - set the joystick map
// for all devices
//-------------------------------------------------
bool input_manager::set_global_joystick_map(const char *mapstring)
{
// parse the map
joystick_map map;
if (!map.parse(mapstring))
return false;
osd_printf_verbose("Input: Changing default joystick map = %s\n", map.to_string().c_str());
// iterate over joysticks and set the map
for (int joynum = 0; joynum <= m_joystick_class.maxindex(); joynum++)
{
input_device *device = m_joystick_class.device(joynum);
if (device != nullptr)
device->set_joystick_map(map);
}
return true;
}
//**************************************************************************
// INPUT DEVICE ITEM
//**************************************************************************
//-------------------------------------------------
// input_device_item - constructor
//-------------------------------------------------
input_device_item::input_device_item(input_device &device, const char *name, void *internal, input_item_id itemid, item_get_state_func getstate, input_item_class itemclass)
: m_device(device),
m_name(name),
m_internal(internal),
m_itemid(itemid),
m_itemclass(itemclass),
m_getstate(getstate),
m_current(0),
m_memory(0)
{
// use a standard token name for know item IDs
if (itemid <= ITEM_ID_MAXIMUM && (*itemid_token_table)[itemid] != nullptr)
m_token.assign((*itemid_token_table)[itemid]);
// otherwise, create a tokenized name
else {
m_token.assign(name);
strmakeupper(m_token);
strdelchr(m_token, ' ');
strdelchr(m_token, '_');
}
}
//-------------------------------------------------
// input_device_item - destructor
//-------------------------------------------------
input_device_item::~input_device_item()
{
}
//**************************************************************************
// INPUT DEVICE SWITCH ITEM
//**************************************************************************
//-------------------------------------------------
// input_device_switch_item - constructor
//-------------------------------------------------
input_device_switch_item::input_device_switch_item(input_device &device, const char *name, void *internal, input_item_id itemid, item_get_state_func getstate)
: input_device_item(device, name, internal, itemid, getstate, ITEM_CLASS_SWITCH),
m_steadykey(0),
m_oldkey(0)
{
}
//-------------------------------------------------
// read_as_switch - return the raw switch value,
// modified as necessary
//-------------------------------------------------
INT32 input_device_switch_item::read_as_switch(input_item_modifier modifier)
{
// if we're doing a lightgun reload hack, button 1 and 2 operate differently
input_device_class devclass = m_device.devclass();
if (devclass == DEVICE_CLASS_LIGHTGUN && m_device.lightgun_reload_button())
{
// button 1 is pressed if either button 1 or 2 are active
if (m_itemid == ITEM_ID_BUTTON1)
{
input_device_item *button2_item = m_device.item(ITEM_ID_BUTTON2);
if (button2_item != nullptr)
return button2_item->update_value() | update_value();
}
// button 2 is never officially pressed
if (m_itemid == ITEM_ID_BUTTON2)
return 0;
}
// steadykey for keyboards
if (devclass == DEVICE_CLASS_KEYBOARD && m_device.steadykey_enabled())
return m_steadykey;
// everything else is just the current value as-is
return update_value();
}
//-------------------------------------------------
// read_as_relative - return the switch input as
// a relative axis value
//-------------------------------------------------
INT32 input_device_switch_item::read_as_relative(input_item_modifier modifier)
{
// no translation to relative
return 0;
}
//-------------------------------------------------
// read_as_absolute - return the switch input as
// an absolute axis value
//-------------------------------------------------
INT32 input_device_switch_item::read_as_absolute(input_item_modifier modifier)
{
// no translation to absolute
return 0;
}
//-------------------------------------------------
// steadykey_changed - update for steadykey
// behavior, returning true if the current state
// has changed since the last call
//-------------------------------------------------
bool input_device_switch_item::steadykey_changed()
{
INT32 old = m_oldkey;
m_oldkey = update_value();
if (((m_current ^ old) & 1) == 0)
return false;
// if the keypress was missed, turn it on for one frame
if (((m_current | m_steadykey) & 1) == 0)
m_steadykey = 1;
return true;
}
//**************************************************************************
// INPUT DEVICE RELATIVE ITEM
//**************************************************************************
//-------------------------------------------------
// input_device_relative_item - constructor
//-------------------------------------------------
input_device_relative_item::input_device_relative_item(input_device &device, const char *name, void *internal, input_item_id itemid, item_get_state_func getstate)
: input_device_item(device, name, internal, itemid, getstate, ITEM_CLASS_RELATIVE)
{
}
//-------------------------------------------------
// read_as_switch - return the relative value as
// a switch result based on the modifier
//-------------------------------------------------
INT32 input_device_relative_item::read_as_switch(input_item_modifier modifier)
{
// process according to modifiers
if (modifier == ITEM_MODIFIER_POS || modifier == ITEM_MODIFIER_RIGHT || modifier == ITEM_MODIFIER_DOWN)
return (update_value() > 0);
else if (modifier == ITEM_MODIFIER_NEG || modifier == ITEM_MODIFIER_LEFT || modifier == ITEM_MODIFIER_UP)
return (update_value() < 0);
// all other cases just return 0
return 0;
}
//-------------------------------------------------
// read_as_relative - return the relative input
// as a relative axis value
//-------------------------------------------------
INT32 input_device_relative_item::read_as_relative(input_item_modifier modifier)
{
// just return directly
return update_value();
}
//-------------------------------------------------
// read_as_absolute - return the relative input
// as an absolute axis value
//-------------------------------------------------
INT32 input_device_relative_item::read_as_absolute(input_item_modifier modifier)
{
// no translation to absolute
return 0;
}
//**************************************************************************
// INPUT DEVICE ABSOLUTE ITEM
//**************************************************************************
//-------------------------------------------------
// input_device_absolute_item - constructor
//-------------------------------------------------
input_device_absolute_item::input_device_absolute_item(input_device &device, const char *name, void *internal, input_item_id itemid, item_get_state_func getstate)
: input_device_item(device, name, internal, itemid, getstate, ITEM_CLASS_ABSOLUTE)
{
}
//-------------------------------------------------
// read_as_switch - return the absolute value as
// a switch result based on the modifier
//-------------------------------------------------
INT32 input_device_absolute_item::read_as_switch(input_item_modifier modifier)
{
// start with the current value
INT32 result = m_device.apply_deadzone_and_saturation(update_value());
assert(result >= INPUT_ABSOLUTE_MIN && result <= INPUT_ABSOLUTE_MAX);
// left/right/up/down: if this is a joystick, fetch the paired X/Y axis values and convert
if (m_device.devclass() == DEVICE_CLASS_JOYSTICK && modifier >= ITEM_MODIFIER_LEFT && modifier <= ITEM_MODIFIER_DOWN)
{
input_device_item *xaxis_item = m_device.item(ITEM_ID_XAXIS);
input_device_item *yaxis_item = m_device.item(ITEM_ID_YAXIS);
if (xaxis_item != nullptr && yaxis_item != nullptr)
{
// determine which item we didn't update, and update it
assert(this == xaxis_item || this == yaxis_item);
if (this == xaxis_item)
yaxis_item->update_value();
else
xaxis_item->update_value();
// now map the X and Y axes to a 9x9 grid using the raw values
return (m_device.joymap().update(xaxis_item->current(), yaxis_item->current()) >> (modifier - ITEM_MODIFIER_LEFT)) & 1;
}
}
// positive/negative: TRUE if past the deadzone in either direction
if (modifier == ITEM_MODIFIER_POS || modifier == ITEM_MODIFIER_RIGHT || modifier == ITEM_MODIFIER_DOWN)
return (result > 0);
else if (modifier == ITEM_MODIFIER_NEG || modifier == ITEM_MODIFIER_LEFT || modifier == ITEM_MODIFIER_UP)
return (result < 0);
// all other cases just return 0
return 0;
}
//-------------------------------------------------
// read_as_relative - return the absolute input
// as a relative axis value
//-------------------------------------------------
INT32 input_device_absolute_item::read_as_relative(input_item_modifier modifier)
{
// no translation to relative
return 0;
}
//-------------------------------------------------
// read_as_absolute - return the absolute input
// as an absolute axis value, with appropriate
// tweaks
//-------------------------------------------------
INT32 input_device_absolute_item::read_as_absolute(input_item_modifier modifier)
{
// start with the current value
INT32 result = m_device.apply_deadzone_and_saturation(update_value());
assert(result >= INPUT_ABSOLUTE_MIN && result <= INPUT_ABSOLUTE_MAX);
// if we're doing a lightgun reload hack, override the value
if (m_device.devclass() == DEVICE_CLASS_LIGHTGUN && m_device.lightgun_reload_button())
{
// if it is pressed, return (min,max)
input_device_item *button2_item = m_device.item(ITEM_ID_BUTTON2);
if (button2_item != nullptr && button2_item->update_value())
result = (m_itemid == ITEM_ID_XAXIS) ? INPUT_ABSOLUTE_MIN : INPUT_ABSOLUTE_MAX;
}
// positive/negative: scale to full axis
if (modifier == ITEM_MODIFIER_POS)
result = MAX(result, 0) * 2 + INPUT_ABSOLUTE_MIN;
if (modifier == ITEM_MODIFIER_NEG)
result = MAX(-result, 0) * 2 + INPUT_ABSOLUTE_MIN;
return result;
}