mame/src/lib/netlist/solver/nld_matrix_solver.h

315 lines
7.4 KiB
C++

// license:GPL-2.0+
// copyright-holders:Couriersud
/*
* nld_matrix_solver.h
*
*/
#ifndef NLD_MATRIX_SOLVER_H_
#define NLD_MATRIX_SOLVER_H_
#include <type_traits>
//#include "solver/nld_solver.h"
#include "nl_base.h"
#include "plib/pstream.h"
namespace netlist
{
namespace devices
{
/* FIXME: these should become proper devices */
struct solver_parameters_t
{
int m_pivot;
nl_double m_accuracy;
nl_double m_lte;
nl_double m_min_timestep;
nl_double m_max_timestep;
nl_double m_sor;
bool m_dynamic;
int m_gs_loops;
int m_nr_loops;
netlist_time m_nt_sync_delay;
bool m_log_stats;
};
class terms_t
{
P_PREVENT_COPYING(terms_t)
public:
terms_t()
: m_railstart(0)
, m_last_V(0.0)
, m_DD_n_m_1(0.0)
, m_h_n_m_1(1e-6)
{}
void clear()
{
m_term.clear();
m_net_other.clear();
m_gt.clear();
m_go.clear();
m_Idr.clear();
m_other_curanalog.clear();
}
void add(terminal_t *term, int net_other, bool sorted);
inline unsigned count() { return m_term.size(); }
inline terminal_t **terms() { return m_term.data(); }
inline int *net_other() { return m_net_other.data(); }
inline nl_double *gt() { return m_gt.data(); }
inline nl_double *go() { return m_go.data(); }
inline nl_double *Idr() { return m_Idr.data(); }
inline nl_double **other_curanalog() { return m_other_curanalog.data(); }
void set_pointers();
unsigned m_railstart;
std::vector<unsigned> m_nz; /* all non zero for multiplication */
std::vector<unsigned> m_nzrd; /* non zero right of the diagonal for elimination, may include RHS element */
std::vector<unsigned> m_nzbd; /* non zero below of the diagonal for elimination */
/* state */
nl_double m_last_V;
nl_double m_DD_n_m_1;
nl_double m_h_n_m_1;
private:
std::vector<int> m_net_other;
std::vector<nl_double> m_go;
std::vector<nl_double> m_gt;
std::vector<nl_double> m_Idr;
std::vector<nl_double *> m_other_curanalog;
std::vector<terminal_t *> m_term;
};
class proxied_analog_output_t : public analog_output_t
{
public:
proxied_analog_output_t(core_device_t &dev, const pstring &aname)
: analog_output_t(dev, aname)
, m_proxied_net(nullptr)
{ }
analog_net_t *m_proxied_net; // only for proxy nets in analog input logic
};
class matrix_solver_t : public device_t
{
public:
using list_t = std::vector<matrix_solver_t *>;
enum eSortType
{
NOSORT,
ASCENDING,
DESCENDING
};
matrix_solver_t(netlist_t &anetlist, const pstring &name,
const eSortType sort, const solver_parameters_t *params)
: device_t(anetlist, name)
, m_params(*params)
, m_stat_calculations(*this, "m_stat_calculations", 0)
, m_stat_newton_raphson(*this, "m_stat_newton_raphson", 0)
, m_stat_vsolver_calls(*this, "m_stat_vsolver_calls", 0)
, m_iterative_fail(*this, "m_iterative_fail", 0)
, m_iterative_total(*this, "m_iterative_total", 0)
, m_last_step(*this, "m_last_step", netlist_time::quantum())
, m_cur_ts(*this, "m_cur_ts", 0)
, m_fb_sync(*this, "FB_sync")
, m_Q_sync(*this, "Q_sync")
, m_sort(sort)
{
connect_post_start(m_fb_sync, m_Q_sync);
}
virtual ~matrix_solver_t();
void setup(analog_net_t::list_t &nets) { vsetup(nets); }
const netlist_time solve_base();
const netlist_time solve();
inline bool has_dynamic_devices() const { return m_dynamic_devices.size() > 0; }
inline bool has_timestep_devices() const { return m_step_devices.size() > 0; }
void update_forced();
void update_after(const netlist_time &after)
{
m_Q_sync.net().toggle_new_Q();
m_Q_sync.net().reschedule_in_queue(after);
}
/* netdevice functions */
NETLIB_UPDATEI();
NETLIB_RESETI();
public:
int get_net_idx(net_t *net);
plib::plog_base<NL_DEBUG> &log() { return netlist().log(); }
virtual void log_stats();
virtual void create_solver_code(plib::postream &strm)
{
strm.writeline(plib::pfmt("/* {1} doesn't support static compile */"));
}
protected:
void setup_base(analog_net_t::list_t &nets);
void update_dynamic();
virtual void vsetup(analog_net_t::list_t &nets) = 0;
virtual int vsolve_non_dynamic(const bool newton_raphson) = 0;
/* virtual */ netlist_time compute_next_timestep();
/* virtual */ void add_term(int net_idx, terminal_t *term);
template <typename T>
void store(const T * RESTRICT V);
template <typename T>
T delta(const T * RESTRICT V);
template <typename T>
void build_LE_A();
template <typename T>
void build_LE_RHS();
std::vector<terms_t *> m_terms;
std::vector<analog_net_t *> m_nets;
std::vector<std::unique_ptr<proxied_analog_output_t>> m_inps;
std::vector<terms_t *> m_rails_temp;
const solver_parameters_t &m_params;
state_var<int> m_stat_calculations;
state_var<int> m_stat_newton_raphson;
state_var<int> m_stat_vsolver_calls;
state_var<int> m_iterative_fail;
state_var<int> m_iterative_total;
inline nl_double current_timestep() { return m_cur_ts; }
private:
state_var<netlist_time> m_last_step;
state_var<nl_double> m_cur_ts;
std::vector<core_device_t *> m_step_devices;
std::vector<core_device_t *> m_dynamic_devices;
logic_input_t m_fb_sync;
logic_output_t m_Q_sync;
/* calculate matrix */
void setup_matrix();
void step(const netlist_time &delta);
void update_inputs();
const eSortType m_sort;
};
template <typename T>
T matrix_solver_t::delta(const T * RESTRICT V)
{
/* FIXME: Ideally we should also include currents (RHS) here. This would
* need a reevaluation of the right hand side after voltages have been updated
* and thus belong into a different calculation. This applies to all solvers.
*/
const unsigned iN = this->m_terms.size();
T cerr = 0;
for (unsigned i = 0; i < iN; i++)
cerr = std::max(cerr, std::abs(V[i] - (T) this->m_nets[i]->m_cur_Analog));
return cerr;
}
template <typename T>
void matrix_solver_t::store(const T * RESTRICT V)
{
for (unsigned i = 0, iN=m_terms.size(); i < iN; i++)
this->m_nets[i]->m_cur_Analog = V[i];
}
template <typename T>
void matrix_solver_t::build_LE_A()
{
static_assert(std::is_base_of<matrix_solver_t, T>::value, "T must derive from matrix_solver_t");
T &child = static_cast<T &>(*this);
const unsigned iN = child.N();
for (unsigned k = 0; k < iN; k++)
{
for (unsigned i=0; i < iN; i++)
child.A(k,i) = 0.0;
const unsigned terms_count = m_terms[k]->count();
const unsigned railstart = m_terms[k]->m_railstart;
const nl_double * RESTRICT gt = m_terms[k]->gt();
{
nl_double akk = 0.0;
for (unsigned i = 0; i < terms_count; i++)
akk += gt[i];
child.A(k,k) = akk;
}
const nl_double * RESTRICT go = m_terms[k]->go();
const int * RESTRICT net_other = m_terms[k]->net_other();
for (unsigned i = 0; i < railstart; i++)
child.A(k,net_other[i]) -= go[i];
}
}
template <typename T>
void matrix_solver_t::build_LE_RHS()
{
static_assert(std::is_base_of<matrix_solver_t, T>::value, "T must derive from matrix_solver_t");
T &child = static_cast<T &>(*this);
const unsigned iN = child.N();
for (unsigned k = 0; k < iN; k++)
{
nl_double rhsk_a = 0.0;
nl_double rhsk_b = 0.0;
const unsigned terms_count = m_terms[k]->count();
const nl_double * RESTRICT go = m_terms[k]->go();
const nl_double * RESTRICT Idr = m_terms[k]->Idr();
const nl_double * const * RESTRICT other_cur_analog = m_terms[k]->other_curanalog();
for (unsigned i = 0; i < terms_count; i++)
rhsk_a = rhsk_a + Idr[i];
for (unsigned i = m_terms[k]->m_railstart; i < terms_count; i++)
//rhsk = rhsk + go[i] * terms[i]->m_otherterm->net().as_analog().Q_Analog();
rhsk_b = rhsk_b + go[i] * *other_cur_analog[i];
child.RHS(k) = rhsk_a + rhsk_b;
}
}
} //namespace devices
} // namespace netlist
#endif /* NLD_MS_DIRECT_H_ */