mame/src/emu/machine.c
Aaron Giles af94c692bb Switch to using delegates for some callbacks:
- non-device timer callbacks
 - machine state changing callbacks
 - configuration callbacks
 - per-screen VBLANK callbacks
 - DRC backend callbacks

For the timer case only, I added wrappers for the old-style functions.
Over time, drivers should switch to device timers instead, reducing the
number of timers that are directly allocated through the scheduler.
2011-04-27 20:34:45 +00:00

1234 lines
36 KiB
C

/***************************************************************************
machine.c
Controls execution of the core MAME system.
****************************************************************************
Copyright Aaron Giles
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name 'MAME' nor the names of its contributors may be
used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
****************************************************************************
Since there has been confusion in the past over the order of
initialization and other such things, here it is, all spelled out
as of January, 2008:
main()
- does platform-specific init
- calls mame_execute() [mame.c]
mame_execute() [mame.c]
- calls mame_validitychecks() [validity.c] to perform validity checks on all compiled drivers
- begins resource tracking (level 1)
- calls create_machine [mame.c] to initialize the running_machine structure
- calls init_machine() [mame.c]
init_machine() [mame.c]
- calls fileio_init() [fileio.c] to initialize file I/O info
- calls config_init() [config.c] to initialize configuration system
- calls input_init() [input.c] to initialize the input system
- calls output_init() [output.c] to initialize the output system
- calls state_init() [state.c] to initialize save state system
- calls state_save_allow_registration() [state.c] to allow registrations
- calls palette_init() [palette.c] to initialize palette system
- calls render_init() [render.c] to initialize the rendering system
- calls ui_init() [ui.c] to initialize the user interface
- calls generic_machine_init() [machine/generic.c] to initialize generic machine structures
- calls generic_video_init() [video/generic.c] to initialize generic video structures
- calls generic_sound_init() [audio/generic.c] to initialize generic sound structures
- calls timer_init() [timer.c] to reset the timer system
- calls osd_init() [osdepend.h] to do platform-specific initialization
- calls input_port_init() [inptport.c] to set up the input ports
- calls rom_init() [romload.c] to load the game's ROMs
- calls memory_init() [memory.c] to process the game's memory maps
- calls watchdog_init() [watchdog.c] to initialize the watchdog system
- calls the driver's DRIVER_INIT callback
- calls device_list_start() [devintrf.c] to start any devices
- calls video_init() [video.c] to start the video system
- calls tilemap_init() [tilemap.c] to start the tilemap system
- calls crosshair_init() [crsshair.c] to configure the crosshairs
- calls sound_init() [sound.c] to start the audio system
- calls debugger_init() [debugger.c] to set up the debugger
- calls the driver's MACHINE_START, SOUND_START, and VIDEO_START callbacks
- calls cheat_init() [cheat.c] to initialize the cheat system
- calls image_init() [image.c] to initialize the image system
- calls config_load_settings() [config.c] to load the configuration file
- calls nvram_load [machine/generic.c] to load NVRAM
- calls ui_display_startup_screens() [ui.c] to display the the startup screens
- begins resource tracking (level 2)
- calls soft_reset() [mame.c] to reset all systems
-------------------( at this point, we're up and running )----------------------
- calls scheduler->timeslice() [schedule.c] over and over until we exit
- ends resource tracking (level 2), freeing all auto_mallocs and timers
- calls the nvram_save() [machine/generic.c] to save NVRAM
- calls config_save_settings() [config.c] to save the game's configuration
- calls all registered exit routines [mame.c]
- ends resource tracking (level 1), freeing all auto_mallocs and timers
- exits the program
***************************************************************************/
#include "emu.h"
#include "emuopts.h"
#include "osdepend.h"
#include "config.h"
#include "debugger.h"
#include "image.h"
#include "profiler.h"
#include "render.h"
#include "cheat.h"
#include "ui.h"
#include "uimenu.h"
#include "uiinput.h"
#include "crsshair.h"
#include "validity.h"
#include "unzip.h"
#include "debug/debugcon.h"
#include <time.h>
//**************************************************************************
// GLOBAL VARIABLES
//**************************************************************************
// a giant string buffer for temporary strings
static char giant_string_buffer[65536] = { 0 };
//**************************************************************************
// RUNNING MACHINE
//**************************************************************************
//-------------------------------------------------
// running_machine - constructor
//-------------------------------------------------
running_machine::running_machine(const machine_config &_config, osd_interface &osd, bool exit_to_game_select)
: firstcpu(NULL),
primary_screen(NULL),
palette(NULL),
pens(NULL),
colortable(NULL),
shadow_table(NULL),
priority_bitmap(NULL),
debug_flags(0),
memory_data(NULL),
palette_data(NULL),
tilemap_data(NULL),
romload_data(NULL),
input_data(NULL),
input_port_data(NULL),
ui_input_data(NULL),
debugcpu_data(NULL),
generic_machine_data(NULL),
generic_video_data(NULL),
generic_audio_data(NULL),
m_config(_config),
m_system(_config.gamedrv()),
m_osd(osd),
m_regionlist(m_respool),
m_save(*this),
m_scheduler(*this),
m_cheat(NULL),
m_render(NULL),
m_sound(NULL),
m_video(NULL),
m_debug_view(NULL),
m_driver_device(NULL),
m_current_phase(MACHINE_PHASE_PREINIT),
m_paused(false),
m_hard_reset_pending(false),
m_exit_pending(false),
m_exit_to_game_select(exit_to_game_select),
m_new_driver_pending(NULL),
m_soft_reset_timer(NULL),
m_rand_seed(0x9d14abd7),
m_ui_active(false),
m_basename(_config.gamedrv().name),
m_sample_rate(_config.options().sample_rate()),
m_logfile(NULL),
m_saveload_schedule(SLS_NONE),
m_saveload_schedule_time(attotime::zero),
m_saveload_searchpath(NULL),
m_logerror_list(m_respool)
{
memset(gfx, 0, sizeof(gfx));
memset(&generic, 0, sizeof(generic));
memset(&m_base_time, 0, sizeof(m_base_time));
// set the machine on all devices
const_cast<device_list &>(devicelist()).set_machine_all(*this);
// find the driver device config and tell it which game
m_driver_device = device<driver_device>("root");
if (m_driver_device == NULL)
throw emu_fatalerror("Machine configuration missing driver_device");
// find devices
primary_screen = downcast<screen_device *>(devicelist().first(SCREEN));
for (device_t *device = devicelist().first(); device != NULL; device = device->next())
if (dynamic_cast<cpu_device *>(device) != NULL)
{
firstcpu = downcast<cpu_device *>(device);
break;
}
// fetch core options
if (options().debug())
debug_flags = (DEBUG_FLAG_ENABLED | DEBUG_FLAG_CALL_HOOK) | (options().debug_internal() ? 0 : DEBUG_FLAG_OSD_ENABLED);
}
//-------------------------------------------------
// ~running_machine - destructor
//-------------------------------------------------
running_machine::~running_machine()
{
}
//-------------------------------------------------
// describe_context - return a string describing
// which device is currently executing and its
// PC
//-------------------------------------------------
const char *running_machine::describe_context()
{
device_execute_interface *executing = m_scheduler.currently_executing();
if (executing != NULL)
{
cpu_device *cpu = downcast<cpu_device *>(&executing->device());
if (cpu != NULL)
m_context.printf("'%s' (%s)", cpu->tag(), core_i64_hex_format(cpu->pc(), cpu->space(AS_PROGRAM)->logaddrchars()));
else
m_context.printf("'%s'", cpu->tag());
}
else
m_context.cpy("(no context)");
return m_context;
}
//-------------------------------------------------
// start - initialize the emulated machine
//-------------------------------------------------
void running_machine::start()
{
// initialize basic can't-fail systems here
config_init(*this);
input_init(*this);
output_init(*this);
palette_init(*this);
m_render = auto_alloc(*this, render_manager(*this));
generic_machine_init(*this);
generic_sound_init(*this);
// allocate a soft_reset timer
m_soft_reset_timer = m_scheduler.timer_alloc(timer_expired_delegate(FUNC(running_machine::soft_reset), this));
// init the osd layer
m_osd.init(*this);
// create the video manager
m_video = auto_alloc(*this, video_manager(*this));
ui_init(*this);
// initialize the base time (needed for doing record/playback)
::time(&m_base_time);
// initialize the input system and input ports for the game
// this must be done before memory_init in order to allow specifying
// callbacks based on input port tags
time_t newbase = input_port_init(*this, m_system.ipt, devicelist());
if (newbase != 0)
m_base_time = newbase;
// intialize UI input
ui_input_init(*this);
// initialize the streams engine before the sound devices start
m_sound = auto_alloc(*this, sound_manager(*this));
// first load ROMs, then populate memory, and finally initialize CPUs
// these operations must proceed in this order
rom_init(*this);
memory_init(*this);
watchdog_init(*this);
// must happen after memory_init because this relies on generic.spriteram
generic_video_init(*this);
// allocate the gfx elements prior to device initialization
gfx_init(*this);
// initialize natural keyboard support
inputx_init(*this);
// initialize image devices
image_init(*this);
tilemap_init(*this);
crosshair_init(*this);
// initialize the debugger
if ((debug_flags & DEBUG_FLAG_ENABLED) != 0)
debugger_init(*this);
// call the game driver's init function
// this is where decryption is done and memory maps are altered
// so this location in the init order is important
ui_set_startup_text(*this, "Initializing...", true);
// start up the devices
const_cast<device_list &>(devicelist()).start_all();
// if we're coming in with a savegame request, process it now
const char *savegame = options().state();
if (savegame[0] != 0)
schedule_load(savegame);
// if we're in autosave mode, schedule a load
else if (options().autosave() && (m_system.flags & GAME_SUPPORTS_SAVE) != 0)
schedule_load("auto");
// set up the cheat engine
m_cheat = auto_alloc(*this, cheat_manager(*this));
// disallow save state registrations starting here
m_save.allow_registration(false);
}
//-------------------------------------------------
// add_dynamic_device - dynamically add a device
//-------------------------------------------------
device_t &running_machine::add_dynamic_device(device_t &owner, device_type type, const char *tag, UINT32 clock)
{
// allocate and append this device
astring tempstring;
device_t &device = const_cast<device_list &>(devicelist()).append(tag, *type(m_config, owner.subtag(tempstring, tag), &owner, clock));
// append any machine config additions from new devices
for (device_t *curdevice = devicelist().first(); curdevice != NULL; curdevice = curdevice->next())
if (!curdevice->configured())
{
machine_config_constructor machconfig = curdevice->machine_config_additions();
if (machconfig != NULL)
(*machconfig)(const_cast<machine_config &>(m_config), curdevice);
}
// notify any new devices that their configurations are complete
for (device_t *curdevice = devicelist().first(); curdevice != NULL; curdevice = curdevice->next())
if (!curdevice->configured())
curdevice->config_complete();
// start all the new devices
const_cast<device_list &>(devicelist()).start_new_devices();
return device;
}
//-------------------------------------------------
// run - execute the machine
//-------------------------------------------------
int running_machine::run(bool firstrun)
{
int error = MAMERR_NONE;
// use try/catch for deep error recovery
try
{
// move to the init phase
m_current_phase = MACHINE_PHASE_INIT;
// if we have a logfile, set up the callback
if (options().log())
{
m_logfile = auto_alloc(*this, emu_file(OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS));
file_error filerr = m_logfile->open("error.log");
assert_always(filerr == FILERR_NONE, "unable to open log file");
add_logerror_callback(logfile_callback);
}
// then finish setting up our local machine
start();
// load the configuration settings and NVRAM
bool settingsloaded = config_load_settings(*this);
nvram_load(*this);
sound().ui_mute(false);
// display the startup screens
ui_display_startup_screens(*this, firstrun, !settingsloaded);
// perform a soft reset -- this takes us to the running phase
soft_reset();
// run the CPUs until a reset or exit
m_hard_reset_pending = false;
while ((!m_hard_reset_pending && !m_exit_pending) || m_saveload_schedule != SLS_NONE)
{
g_profiler.start(PROFILER_EXTRA);
// execute CPUs if not paused
if (!m_paused)
m_scheduler.timeslice();
// otherwise, just pump video updates through
else
m_video->frame_update();
// handle save/load
if (m_saveload_schedule != SLS_NONE)
handle_saveload();
g_profiler.stop();
}
// and out via the exit phase
m_current_phase = MACHINE_PHASE_EXIT;
// save the NVRAM and configuration
sound().ui_mute(true);
nvram_save(*this);
config_save_settings(*this);
}
catch (emu_fatalerror &fatal)
{
mame_printf_error("%s\n", fatal.string());
error = MAMERR_FATALERROR;
if (fatal.exitcode() != 0)
error = fatal.exitcode();
}
catch (emu_exception &)
{
mame_printf_error("Caught unhandled emulator exception\n");
error = MAMERR_FATALERROR;
}
catch (std::bad_alloc &)
{
mame_printf_error("Out of memory!\n");
error = MAMERR_FATALERROR;
}
// call all exit callbacks registered
call_notifiers(MACHINE_NOTIFY_EXIT);
zip_file_cache_clear();
// close the logfile
auto_free(*this, m_logfile);
return error;
}
//-------------------------------------------------
// schedule_exit - schedule a clean exit
//-------------------------------------------------
void running_machine::schedule_exit()
{
// if we are in-game but we started with the select game menu, return to that instead
if (m_exit_to_game_select && options().system_name()[0] != 0)
{
options().set_system_name("");
ui_menu_force_game_select(*this, &render().ui_container());
}
// otherwise, exit for real
else
m_exit_pending = true;
// if we're executing, abort out immediately
m_scheduler.eat_all_cycles();
// if we're autosaving on exit, schedule a save as well
if (options().autosave() && (m_system.flags & GAME_SUPPORTS_SAVE) && this->time() > attotime::zero)
schedule_save("auto");
}
//-------------------------------------------------
// schedule_hard_reset - schedule a hard-reset of
// the machine
//-------------------------------------------------
void running_machine::schedule_hard_reset()
{
m_hard_reset_pending = true;
// if we're executing, abort out immediately
m_scheduler.eat_all_cycles();
}
//-------------------------------------------------
// schedule_soft_reset - schedule a soft-reset of
// the system
//-------------------------------------------------
void running_machine::schedule_soft_reset()
{
m_soft_reset_timer->adjust(attotime::zero);
// we can't be paused since the timer needs to fire
resume();
// if we're executing, abort out immediately
m_scheduler.eat_all_cycles();
}
//-------------------------------------------------
// schedule_new_driver - schedule a new game to
// be loaded
//-------------------------------------------------
void running_machine::schedule_new_driver(const game_driver &driver)
{
m_hard_reset_pending = true;
m_new_driver_pending = &driver;
// if we're executing, abort out immediately
m_scheduler.eat_all_cycles();
}
//-------------------------------------------------
// set_saveload_filename - specifies the filename
// for state loading/saving
//-------------------------------------------------
void running_machine::set_saveload_filename(const char *filename)
{
// free any existing request and allocate a copy of the requested name
if (osd_is_absolute_path(filename))
{
m_saveload_searchpath = NULL;
m_saveload_pending_file.cpy(filename);
}
else
{
m_saveload_searchpath = options().state_directory();
m_saveload_pending_file.cpy(basename()).cat(PATH_SEPARATOR).cat(filename).cat(".sta");
}
}
//-------------------------------------------------
// schedule_save - schedule a save to occur as
// soon as possible
//-------------------------------------------------
void running_machine::schedule_save(const char *filename)
{
// specify the filename to save or load
set_saveload_filename(filename);
// note the start time and set a timer for the next timeslice to actually schedule it
m_saveload_schedule = SLS_SAVE;
m_saveload_schedule_time = this->time();
// we can't be paused since we need to clear out anonymous timers
resume();
}
//-------------------------------------------------
// schedule_load - schedule a load to occur as
// soon as possible
//-------------------------------------------------
void running_machine::schedule_load(const char *filename)
{
// specify the filename to save or load
set_saveload_filename(filename);
// note the start time and set a timer for the next timeslice to actually schedule it
m_saveload_schedule = SLS_LOAD;
m_saveload_schedule_time = this->time();
// we can't be paused since we need to clear out anonymous timers
resume();
}
//-------------------------------------------------
// pause - pause the system
//-------------------------------------------------
void running_machine::pause()
{
// ignore if nothing has changed
if (m_paused)
return;
m_paused = true;
// call the callbacks
call_notifiers(MACHINE_NOTIFY_PAUSE);
}
//-------------------------------------------------
// resume - resume the system
//-------------------------------------------------
void running_machine::resume()
{
// ignore if nothing has changed
if (!m_paused)
return;
m_paused = false;
// call the callbacks
call_notifiers(MACHINE_NOTIFY_RESUME);
}
//-------------------------------------------------
// region_alloc - allocates memory for a region
//-------------------------------------------------
memory_region *running_machine::region_alloc(const char *name, UINT32 length, UINT8 width, endianness_t endian)
{
// make sure we don't have a region of the same name; also find the end of the list
memory_region *info = m_regionlist.find(name);
if (info != NULL)
fatalerror("region_alloc called with duplicate region name \"%s\"\n", name);
// allocate the region
return &m_regionlist.append(name, *auto_alloc(*this, memory_region(*this, name, length, width, endian)));
}
//-------------------------------------------------
// region_free - releases memory for a region
//-------------------------------------------------
void running_machine::region_free(const char *name)
{
m_regionlist.remove(name);
}
//-------------------------------------------------
// add_notifier - add a notifier of the
// given type
//-------------------------------------------------
void running_machine::add_notifier(machine_notification event, machine_notify_delegate callback)
{
assert_always(m_current_phase == MACHINE_PHASE_INIT, "Can only call add_notifier at init time!");
// exit notifiers are added to the head, and executed in reverse order
if (event == MACHINE_NOTIFY_EXIT)
m_notifier_list[event].prepend(*global_alloc(notifier_callback_item(callback)));
// all other notifiers are added to the tail, and executed in the order registered
else
m_notifier_list[event].append(*global_alloc(notifier_callback_item(callback)));
}
//-------------------------------------------------
// add_logerror_callback - adds a callback to be
// called on logerror()
//-------------------------------------------------
void running_machine::add_logerror_callback(logerror_callback callback)
{
assert_always(m_current_phase == MACHINE_PHASE_INIT, "Can only call add_logerror_callback at init time!");
m_logerror_list.append(*auto_alloc(*this, logerror_callback_item(callback)));
}
//-------------------------------------------------
// logerror - printf-style error logging
//-------------------------------------------------
void CLIB_DECL running_machine::logerror(const char *format, ...)
{
// process only if there is a target
if (m_logerror_list.first() != NULL)
{
va_list arg;
va_start(arg, format);
vlogerror(format, arg);
va_end(arg);
}
}
//-------------------------------------------------
// vlogerror - vprintf-style error logging
//-------------------------------------------------
void CLIB_DECL running_machine::vlogerror(const char *format, va_list args)
{
// process only if there is a target
if (m_logerror_list.first() != NULL)
{
g_profiler.start(PROFILER_LOGERROR);
// dump to the buffer
vsnprintf(giant_string_buffer, ARRAY_LENGTH(giant_string_buffer), format, args);
// log to all callbacks
for (logerror_callback_item *cb = m_logerror_list.first(); cb != NULL; cb = cb->next())
(*cb->m_func)(*this, giant_string_buffer);
g_profiler.stop();
}
}
//-------------------------------------------------
// base_datetime - retrieve the time of the host
// system; useful for RTC implementations
//-------------------------------------------------
void running_machine::base_datetime(system_time &systime)
{
systime.set(m_base_time);
}
//-------------------------------------------------
// current_datetime - retrieve the current time
// (offset by the base); useful for RTC
// implementations
//-------------------------------------------------
void running_machine::current_datetime(system_time &systime)
{
systime.set(m_base_time + this->time().seconds);
}
//-------------------------------------------------
// rand - standardized random numbers
//-------------------------------------------------
UINT32 running_machine::rand()
{
m_rand_seed = 1664525 * m_rand_seed + 1013904223;
// return rotated by 16 bits; the low bits have a short period
// and are frequently used
return (m_rand_seed >> 16) | (m_rand_seed << 16);
}
//-------------------------------------------------
// call_notifiers - call notifiers of the given
// type
//-------------------------------------------------
void running_machine::call_notifiers(machine_notification which)
{
for (notifier_callback_item *cb = m_notifier_list[which].first(); cb != NULL; cb = cb->next())
cb->m_func();
}
//-------------------------------------------------
// handle_saveload - attempt to perform a save
// or load
//-------------------------------------------------
void running_machine::handle_saveload()
{
UINT32 openflags = (m_saveload_schedule == SLS_LOAD) ? OPEN_FLAG_READ : (OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
const char *opnamed = (m_saveload_schedule == SLS_LOAD) ? "loaded" : "saved";
const char *opname = (m_saveload_schedule == SLS_LOAD) ? "load" : "save";
file_error filerr = FILERR_NONE;
// if no name, bail
emu_file file(m_saveload_searchpath, openflags);
if (!m_saveload_pending_file)
goto cancel;
// if there are anonymous timers, we can't save just yet, and we can't load yet either
// because the timers might overwrite data we have loaded
if (m_scheduler.can_save())
{
// if more than a second has passed, we're probably screwed
if ((this->time() - m_saveload_schedule_time) > attotime::from_seconds(1))
{
popmessage("Unable to %s due to pending anonymous timers. See error.log for details.", opname);
goto cancel;
}
return;
}
// open the file
filerr = file.open(m_saveload_pending_file);
if (filerr == FILERR_NONE)
{
// read/write the save state
save_error saverr = (m_saveload_schedule == SLS_LOAD) ? m_save.read_file(file) : m_save.write_file(file);
// handle the result
switch (saverr)
{
case STATERR_ILLEGAL_REGISTRATIONS:
popmessage("Error: Unable to %s state due to illegal registrations. See error.log for details.", opname);
break;
case STATERR_INVALID_HEADER:
popmessage("Error: Unable to %s state due to an invalid header. Make sure the save state is correct for this game.", opname);
break;
case STATERR_READ_ERROR:
popmessage("Error: Unable to %s state due to a read error (file is likely corrupt).", opname);
break;
case STATERR_WRITE_ERROR:
popmessage("Error: Unable to %s state due to a write error. Verify there is enough disk space.", opname);
break;
case STATERR_NONE:
if (!(m_system.flags & GAME_SUPPORTS_SAVE))
popmessage("State successfully %s.\nWarning: Save states are not officially supported for this game.", opnamed);
else
popmessage("State successfully %s.", opnamed);
break;
default:
popmessage("Error: Unknown error during state %s.", opnamed);
break;
}
// close and perhaps delete the file
if (saverr != STATERR_NONE && m_saveload_schedule == SLS_SAVE)
file.remove_on_close();
}
else
popmessage("Error: Failed to open file for %s operation.", opname);
// unschedule the operation
cancel:
m_saveload_pending_file.reset();
m_saveload_searchpath = NULL;
m_saveload_schedule = SLS_NONE;
}
//-------------------------------------------------
// soft_reset - actually perform a soft-reset
// of the system
//-------------------------------------------------
void running_machine::soft_reset(void *ptr, INT32 param)
{
logerror("Soft reset\n");
// temporarily in the reset phase
m_current_phase = MACHINE_PHASE_RESET;
// call all registered reset callbacks
call_notifiers(MACHINE_NOTIFY_RESET);
// now we're running
m_current_phase = MACHINE_PHASE_RUNNING;
}
//-------------------------------------------------
// logfile_callback - callback for logging to
// logfile
//-------------------------------------------------
void running_machine::logfile_callback(running_machine &machine, const char *buffer)
{
if (machine.m_logfile != NULL)
machine.m_logfile->puts(buffer);
}
/***************************************************************************
MEMORY REGIONS
***************************************************************************/
//-------------------------------------------------
// memory_region - constructor
//-------------------------------------------------
memory_region::memory_region(running_machine &machine, const char *name, UINT32 length, UINT8 width, endianness_t endian)
: m_machine(machine),
m_next(NULL),
m_name(name),
m_length(length),
m_width(width),
m_endianness(endian)
{
assert(width == 1 || width == 2 || width == 4 || width == 8);
m_base.u8 = auto_alloc_array(machine, UINT8, length);
}
//-------------------------------------------------
// ~memory_region - destructor
//-------------------------------------------------
memory_region::~memory_region()
{
auto_free(machine(), m_base.v);
}
//**************************************************************************
// CALLBACK ITEMS
//**************************************************************************
//-------------------------------------------------
// notifier_callback_item - constructor
//-------------------------------------------------
running_machine::notifier_callback_item::notifier_callback_item(machine_notify_delegate func)
: m_next(NULL),
m_func(func)
{
}
//-------------------------------------------------
// logerror_callback_item - constructor
//-------------------------------------------------
running_machine::logerror_callback_item::logerror_callback_item(logerror_callback func)
: m_next(NULL),
m_func(func)
{
}
//**************************************************************************
// DRIVER DEVICE
//**************************************************************************
//-------------------------------------------------
// driver_device - constructor
//-------------------------------------------------
driver_device::driver_device(const machine_config &mconfig, device_type type, const char *tag)
: device_t(mconfig, type, "Driver Device", tag, NULL, 0),
m_system(NULL),
m_palette_init(NULL)
{
memset(m_callbacks, 0, sizeof(m_callbacks));
}
//-------------------------------------------------
// driver_device - destructor
//-------------------------------------------------
driver_device::~driver_device()
{
}
//-------------------------------------------------
// static_set_game - set the game in the device
// configuration
//-------------------------------------------------
void driver_device::static_set_game(device_t &device, const game_driver &game)
{
driver_device &driver = downcast<driver_device &>(device);
// set the system
driver.m_system = &game;
// set the short name to the game's name
driver.m_shortname = game.name;
// and set the search path to include all parents
driver.m_searchpath = game.name;
for (int parent = driver_list::clone(game); parent != -1; parent = driver_list::clone(parent))
driver.m_searchpath.cat(";").cat(driver_list::driver(parent).name);
}
//-------------------------------------------------
// static_set_machine_start - set the legacy
// machine start callback in the device
// configuration
//-------------------------------------------------
void driver_device::static_set_callback(device_t &device, callback_type type, legacy_callback_func callback)
{
downcast<driver_device &>(device).m_callbacks[type] = callback;
}
//-------------------------------------------------
// static_set_palette_init - set the legacy
// palette init callback in the device
// configuration
//-------------------------------------------------
void driver_device::static_set_palette_init(device_t &device, palette_init_func callback)
{
downcast<driver_device &>(device).m_palette_init = callback;
}
//-------------------------------------------------
// driver_start - default implementation which
// does nothing
//-------------------------------------------------
void driver_device::driver_start()
{
}
//-------------------------------------------------
// machine_start - default implementation which
// calls to the legacy machine_start function
//-------------------------------------------------
void driver_device::machine_start()
{
if (m_callbacks[CB_MACHINE_START] != NULL)
(*m_callbacks[CB_MACHINE_START])(machine());
}
//-------------------------------------------------
// sound_start - default implementation which
// calls to the legacy sound_start function
//-------------------------------------------------
void driver_device::sound_start()
{
if (m_callbacks[CB_SOUND_START] != NULL)
(*m_callbacks[CB_SOUND_START])(machine());
}
//-------------------------------------------------
// video_start - default implementation which
// calls to the legacy video_start function
//-------------------------------------------------
void driver_device::video_start()
{
if (m_callbacks[CB_VIDEO_START] != NULL)
(*m_callbacks[CB_VIDEO_START])(machine());
}
//-------------------------------------------------
// driver_reset - default implementation which
// does nothing
//-------------------------------------------------
void driver_device::driver_reset()
{
}
//-------------------------------------------------
// machine_reset - default implementation which
// calls to the legacy machine_reset function
//-------------------------------------------------
void driver_device::machine_reset()
{
if (m_callbacks[CB_MACHINE_RESET] != NULL)
(*m_callbacks[CB_MACHINE_RESET])(machine());
}
//-------------------------------------------------
// sound_reset - default implementation which
// calls to the legacy sound_reset function
//-------------------------------------------------
void driver_device::sound_reset()
{
if (m_callbacks[CB_SOUND_RESET] != NULL)
(*m_callbacks[CB_SOUND_RESET])(machine());
}
//-------------------------------------------------
// video_reset - default implementation which
// calls to the legacy video_reset function
//-------------------------------------------------
void driver_device::video_reset()
{
if (m_callbacks[CB_VIDEO_RESET] != NULL)
(*m_callbacks[CB_VIDEO_RESET])(machine());
}
//-------------------------------------------------
// video_update - default implementation which
// calls to the legacy video_update function
//-------------------------------------------------
bool driver_device::screen_update(screen_device &screen, bitmap_t &bitmap, const rectangle &cliprect)
{
return 0;
}
//-------------------------------------------------
// video_eof - default implementation which
// calls to the legacy video_eof function
//-------------------------------------------------
void driver_device::screen_eof()
{
}
//-------------------------------------------------
// device_rom_region - return a pointer to the
// game's ROMs
//-------------------------------------------------
const rom_entry *driver_device::device_rom_region() const
{
return m_system->rom;
}
//-------------------------------------------------
// device_start - device override which calls
// the various helpers
//-------------------------------------------------
void driver_device::device_start()
{
// reschedule ourselves to be last
if (next() != NULL)
throw device_missing_dependencies();
// call the game-specific init
if (m_system->driver_init != NULL)
(*m_system->driver_init)(machine());
// finish image devices init process
image_postdevice_init(machine());
// call palette_init if present
if (m_palette_init != NULL)
(*m_palette_init)(machine(), machine().region("proms")->base());
// start the various pieces
driver_start();
machine_start();
sound_start();
video_start();
}
//-------------------------------------------------
// device_reset - device override which calls
// the various helpers
//-------------------------------------------------
void driver_device::device_reset()
{
// reset each piece
driver_reset();
machine_reset();
sound_reset();
video_reset();
}
//**************************************************************************
// SYSTEM TIME
//**************************************************************************
//-------------------------------------------------
// system_time - constructor
//-------------------------------------------------
system_time::system_time()
{
set(0);
}
//-------------------------------------------------
// set - fills out a system_time structure
//-------------------------------------------------
void system_time::set(time_t t)
{
time = t;
local_time.set(*localtime(&t));
utc_time.set(*gmtime(&t));
}
//-------------------------------------------------
// get_tm_time - converts a tm struction to a
// MAME mame_system_tm structure
//-------------------------------------------------
void system_time::full_time::set(struct tm &t)
{
second = t.tm_sec;
minute = t.tm_min;
hour = t.tm_hour;
mday = t.tm_mday;
month = t.tm_mon;
year = t.tm_year + 1900;
weekday = t.tm_wday;
day = t.tm_yday;
is_dst = t.tm_isdst;
}