mame/src/devices/cpu/ccpu/ccpu.cpp
AJR b1181f8602 diexec: Add callback to allow debugger to break into the middle of wait-type instructions whose execution time is normally indefinite. When this happens, a special message may be printed to the debug console stating the location of the last actual instruction executed before the wait (if there was one).
Note that since the callback ignores the current value of the program counter, this special type of debugger break cannot be entered through breakpoints or instruction stepping commands. The callback also leaves no effect on PC history tracking or trace logs.

* cpu/hd61700, cpu/tms32031: Add standard IRQ callback
* cpu/m68000gen.py: Change name of invoked executable to bin/python3
* cpu/m6809: Eliminate PC "massaging" for SYNC and similar instructions
2024-11-17 08:11:39 -05:00

705 lines
17 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
ccpu.c
Core implementation for the portable Cinematronics CPU emulator.
Written by Aaron Giles
Special thanks to Zonn Moore for his detailed documentation.
***************************************************************************/
#include "emu.h"
#include "ccpu.h"
#include "ccpudasm.h"
DEFINE_DEVICE_TYPE(CCPU, ccpu_cpu_device, "ccpu", "Cinematronics CPU")
/***************************************************************************
MACROS
***************************************************************************/
#define READOP(a) (m_cache.read_byte(a))
#define RDMEM(a) (m_data.read_word((a) & 0xfff))
#define WRMEM(a,v) (m_data.write_word((a), (v)))
#define READPORT(a) (m_io.read_byte(a))
#define WRITEPORT(a,v) (m_io.write_byte((a), (v)))
#define SET_A0 do { m_a0flag = m_A; } while (0)
#define SET_CMP_VAL(x) do { m_cmpacc = *m_acc; m_cmpval = (x) & 0xfff; } while (0)
#define SET_NC(a) do { m_ncflag = ~(a); } while (0)
#define SET_MI(a) do { m_nextnextmiflag = (a); } while (0)
#define TEST_A0 (m_a0flag & 1)
#define TEST_NC ((m_ncflag >> 12) & 1)
#define TEST_MI ((m_miflag >> 11) & 1)
#define TEST_LT (m_cmpval < m_cmpacc)
#define TEST_EQ (m_cmpval == m_cmpacc)
#define TEST_DR (m_drflag != 0)
#define NEXT_ACC_A do { SET_MI(*m_acc); m_acc = &m_A; } while (0)
#define NEXT_ACC_B do { SET_MI(*m_acc); if (m_acc == &m_A) m_acc = &m_B; else m_acc = &m_A; } while (0)
#define CYCLES(x) do { m_icount -= (x); } while (0)
#define ASR(x) (((x) >> 1) | ((x) & 0x800))
#define STANDARD_ACC_OP(resexp,cmpval) \
do { \
uint16_t result = resexp; \
SET_A0; /* set the A0 bit based on the previous 'A' value */ \
SET_CMP_VAL(cmpval); /* set the compare values to the previous accumulator and the cmpval */ \
SET_NC(result); /* set the NC flag based on the unmasked result */ \
*m_acc = result & 0xfff; /* store the low 12 bits of the new value */ \
} while (0)
/***************************************************************************
INITIALIZATION AND SHUTDOWN
***************************************************************************/
ccpu_cpu_device::ccpu_cpu_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
: cpu_device(mconfig, CCPU, tag, owner, clock)
, m_program_config("program", ENDIANNESS_BIG, 8, 15, 0)
, m_data_config("data", ENDIANNESS_BIG, 16, 32, -1)
, m_io_config("io", ENDIANNESS_BIG, 8, 5, 0)
, m_external_input(*this, 0)
, m_vector_callback(*this)
, m_flags(0)
{
}
device_memory_interface::space_config_vector ccpu_cpu_device::memory_space_config() const
{
return space_config_vector {
std::make_pair(AS_PROGRAM, &m_program_config),
std::make_pair(AS_DATA, &m_data_config),
std::make_pair(AS_IO, &m_io_config)
};
}
uint8_t ccpu_cpu_device::read_jmi()
{
/* this routine is called when there is no external input */
/* and the JMI jumper is present */
return TEST_MI;
}
void ccpu_cpu_device::wdt_timer_trigger()
{
m_waiting = false;
m_watchdog++;
if (m_watchdog >= 3)
m_PC = 0;
}
void ccpu_cpu_device::device_start()
{
/* copy input params */
m_vector_callback.resolve_safe();
space(AS_PROGRAM).cache(m_cache);
space(AS_PROGRAM).specific(m_program);
space(AS_DATA).specific(m_data);
space(AS_IO).specific(m_io);
save_item(NAME(m_PC));
save_item(NAME(m_A));
save_item(NAME(m_B));
save_item(NAME(m_I));
save_item(NAME(m_J));
save_item(NAME(m_P));
save_item(NAME(m_X));
save_item(NAME(m_Y));
save_item(NAME(m_T));
save_item(NAME(m_a0flag));
save_item(NAME(m_ncflag));
save_item(NAME(m_cmpacc));
save_item(NAME(m_cmpval));
save_item(NAME(m_miflag));
save_item(NAME(m_nextmiflag));
save_item(NAME(m_nextnextmiflag));
save_item(NAME(m_drflag));
save_item(NAME(m_waiting));
save_item(NAME(m_watchdog));
save_item(NAME(m_extinput));
// Register state for debugger
state_add( CCPU_PC, "PC", m_PC).formatstr("%04X");
state_add( CCPU_A, "A", m_A).mask(0xfff).formatstr("%03X");
state_add( CCPU_B, "B", m_B).mask(0xfff).formatstr("%03X");
state_add( CCPU_I, "I", m_I).mask(0xfff).formatstr("%03X");
state_add( CCPU_J, "J", m_J).mask(0xfff).formatstr("%03X");
state_add( CCPU_P, "P", m_P).mask(0xf).formatstr("%1X");
state_add( CCPU_X, "X", m_X).mask(0xfff).formatstr("%03X");
state_add( CCPU_Y, "Y", m_Y).mask(0xfff).formatstr("%03X");
state_add( CCPU_T, "T", m_T).mask(0xfff).formatstr("%03X");
state_add(STATE_GENPC, "GENPC", m_PC).noshow();
state_add(STATE_GENPCBASE, "CURPC", m_PC).noshow();
state_add(STATE_GENFLAGS, "GENFLAGS", m_flags).formatstr("%6s").noshow();
set_icountptr(m_icount);
}
void ccpu_cpu_device::state_string_export(const device_state_entry &entry, std::string &str) const
{
switch (entry.index())
{
case STATE_GENFLAGS:
str = string_format("%c%c%c%c%c%c",
TEST_A0 ? '0' : 'o',
TEST_NC ? 'N' : 'n',
TEST_LT ? 'L' : 'l',
TEST_EQ ? 'E' : 'e',
m_extinput ? 'M' : 'm',
TEST_DR ? 'D' : 'd');
break;
}
}
void ccpu_cpu_device::device_reset()
{
/* zero registers */
m_PC = 0;
m_A = 0;
m_B = 0;
m_I = 0;
m_J = 0;
m_P = 0;
m_X = 0;
m_Y = 0;
m_T = 0;
m_acc = &m_A;
/* zero flags */
m_a0flag = 0;
m_ncflag = 0;
m_cmpacc = 0;
m_cmpval = 1;
m_miflag = m_nextmiflag = m_nextnextmiflag = 0;
m_drflag = 0;
m_waiting = false;
m_watchdog = 0;
}
/***************************************************************************
CORE EXECUTION LOOP
***************************************************************************/
void ccpu_cpu_device::execute_run()
{
if (m_waiting)
{
debugger_wait_hook();
m_icount = 0;
return;
}
do
{
uint16_t tempval;
uint8_t opcode;
/* update the delayed MI flag */
m_miflag = m_nextmiflag;
m_nextmiflag = m_nextnextmiflag;
/* fetch the opcode */
opcode = READOP(m_PC);
if (opcode == 0x51 || opcode == 0x59)
m_extinput = m_external_input();
debugger_instruction_hook(m_PC);
m_PC++;
switch (opcode)
{
/* LDAI */
case 0x00: case 0x01: case 0x02: case 0x03:
case 0x04: case 0x05: case 0x06: case 0x07:
case 0x08: case 0x09: case 0x0a: case 0x0b:
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
tempval = (opcode & 0x0f) << 8;
STANDARD_ACC_OP(tempval, tempval);
NEXT_ACC_A; CYCLES(1);
break;
/* INP */
case 0x10: case 0x11: case 0x12: case 0x13:
case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18: case 0x19: case 0x1a: case 0x1b:
case 0x1c: case 0x1d: case 0x1e: case 0x1f:
if (m_acc == &m_A)
tempval = READPORT(opcode & 0x0f) & 1;
else
tempval = READPORT(16 + (opcode & 0x07)) & 1;
STANDARD_ACC_OP(tempval, tempval);
NEXT_ACC_A; CYCLES(1);
break;
/* A8I */
case 0x20:
tempval = READOP(m_PC++);
STANDARD_ACC_OP(*m_acc + tempval, tempval);
NEXT_ACC_A; CYCLES(3);
break;
/* A4I */
case 0x21: case 0x22: case 0x23:
case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b:
case 0x2c: case 0x2d: case 0x2e: case 0x2f:
tempval = opcode & 0x0f;
STANDARD_ACC_OP(*m_acc + tempval, tempval);
NEXT_ACC_A; CYCLES(1);
break;
/* S8I */
case 0x30:
tempval = READOP(m_PC++);
STANDARD_ACC_OP(*m_acc + (tempval ^ 0xfff) + 1, tempval);
NEXT_ACC_A; CYCLES(3);
break;
/* S4I */
case 0x31: case 0x32: case 0x33:
case 0x34: case 0x35: case 0x36: case 0x37:
case 0x38: case 0x39: case 0x3a: case 0x3b:
case 0x3c: case 0x3d: case 0x3e: case 0x3f:
tempval = opcode & 0x0f;
STANDARD_ACC_OP(*m_acc + (tempval ^ 0xfff) + 1, tempval);
NEXT_ACC_A; CYCLES(1);
break;
/* LPAI */
case 0x40: case 0x41: case 0x42: case 0x43:
case 0x44: case 0x45: case 0x46: case 0x47:
case 0x48: case 0x49: case 0x4a: case 0x4b:
case 0x4c: case 0x4d: case 0x4e: case 0x4f:
tempval = READOP(m_PC++);
m_J = (opcode & 0x0f) + (tempval & 0xf0) + ((tempval & 0x0f) << 8);
NEXT_ACC_A; CYCLES(3);
break;
/* T4K */
case 0x50:
m_PC = (m_P << 12) + m_J;
NEXT_ACC_B; CYCLES(4);
break;
/* JMIB/JEHB */
case 0x51:
if (m_extinput) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_B; CYCLES(2);
break;
/* JVNB */
case 0x52:
if (TEST_DR) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_B; CYCLES(2);
break;
/* JLTB */
case 0x53:
if (TEST_LT) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_B; CYCLES(2);
break;
/* JEQB */
case 0x54:
if (TEST_EQ) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_B; CYCLES(2);
break;
/* JCZB */
case 0x55:
if (TEST_NC) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_B; CYCLES(2);
break;
/* JOSB */
case 0x56:
if (TEST_A0) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_B; CYCLES(2);
break;
/* SSA */
case 0x57:
NEXT_ACC_B; CYCLES(2);
break;
/* JMP */
case 0x58:
m_PC = ((m_PC - 1) & 0xf000) + m_J;
NEXT_ACC_A; CYCLES(4);
break;
/* JMI/JEH */
case 0x59:
if (m_extinput) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_A; CYCLES(2);
break;
/* JVN */
case 0x5a:
if (TEST_DR) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_A; CYCLES(2);
break;
/* JLT */
case 0x5b:
if (TEST_LT) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_A; CYCLES(2);
break;
/* JEQ */
case 0x5c:
if (TEST_EQ) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_A; CYCLES(2);
break;
/* JCZ */
case 0x5d:
if (TEST_NC) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_A; CYCLES(2);
break;
/* JOS */
case 0x5e:
if (TEST_A0) { m_PC = ((m_PC - 1) & 0xf000) + m_J; CYCLES(2); }
NEXT_ACC_A; CYCLES(2);
break;
/* NOP */
case 0x5f:
NEXT_ACC_A; CYCLES(2);
break;
/* ADD */
case 0x60: case 0x61: case 0x62: case 0x63:
case 0x64: case 0x65: case 0x66: case 0x67:
case 0x68: case 0x69: case 0x6a: case 0x6b:
case 0x6c: case 0x6d: case 0x6e: case 0x6f:
m_I = (m_P << 4) + (opcode & 0x0f);
tempval = RDMEM(m_I);
STANDARD_ACC_OP(*m_acc + tempval, tempval);
NEXT_ACC_A; CYCLES(3);
break;
/* SUB */
case 0x70: case 0x71: case 0x72: case 0x73:
case 0x74: case 0x75: case 0x76: case 0x77:
case 0x78: case 0x79: case 0x7a: case 0x7b:
case 0x7c: case 0x7d: case 0x7e: case 0x7f:
m_I = (m_P << 4) + (opcode & 0x0f);
tempval = RDMEM(m_I);
STANDARD_ACC_OP(*m_acc + (tempval ^ 0xfff) + 1, tempval);
NEXT_ACC_A; CYCLES(3);
break;
/* SETP */
case 0x80: case 0x81: case 0x82: case 0x83:
case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b:
case 0x8c: case 0x8d: case 0x8e: case 0x8f:
m_P = opcode & 0x0f;
NEXT_ACC_A; CYCLES(1);
break;
/* OUT */
case 0x90: case 0x91: case 0x92: case 0x93:
case 0x94: case 0x95: case 0x96: case 0x97:
case 0x98: case 0x99: case 0x9a: case 0x9b:
case 0x9c: case 0x9d: case 0x9e: case 0x9f:
if (m_acc == &m_A)
WRITEPORT(opcode & 0x07, ~*m_acc & 1);
NEXT_ACC_A; CYCLES(1);
break;
/* LDA */
case 0xa0: case 0xa1: case 0xa2: case 0xa3:
case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab:
case 0xac: case 0xad: case 0xae: case 0xaf:
m_I = (m_P << 4) + (opcode & 0x0f);
tempval = RDMEM(m_I);
STANDARD_ACC_OP(tempval, tempval);
NEXT_ACC_A; CYCLES(3);
break;
/* TST */
case 0xb0: case 0xb1: case 0xb2: case 0xb3:
case 0xb4: case 0xb5: case 0xb6: case 0xb7:
case 0xb8: case 0xb9: case 0xba: case 0xbb:
case 0xbc: case 0xbd: case 0xbe: case 0xbf:
m_I = (m_P << 4) + (opcode & 0x0f);
tempval = RDMEM(m_I);
{
uint16_t result = *m_acc + (tempval ^ 0xfff) + 1;
SET_A0;
SET_CMP_VAL(tempval);
SET_NC(result);
SET_MI(result);
}
NEXT_ACC_A; CYCLES(3);
break;
/* WS */
case 0xc0: case 0xc1: case 0xc2: case 0xc3:
case 0xc4: case 0xc5: case 0xc6: case 0xc7:
case 0xc8: case 0xc9: case 0xca: case 0xcb:
case 0xcc: case 0xcd: case 0xce: case 0xcf:
m_I = (m_P << 4) + (opcode & 0x0f);
m_I = RDMEM(m_I) & 0xff;
NEXT_ACC_A; CYCLES(3);
break;
/* STA */
case 0xd0: case 0xd1: case 0xd2: case 0xd3:
case 0xd4: case 0xd5: case 0xd6: case 0xd7:
case 0xd8: case 0xd9: case 0xda: case 0xdb:
case 0xdc: case 0xdd: case 0xde: case 0xdf:
m_I = (m_P << 4) + (opcode & 0x0f);
WRMEM(m_I, *m_acc);
NEXT_ACC_A; CYCLES(3);
break;
/* DV */
case 0xe0:
{
int16_t stopX = util::sext(m_A, 12);
int16_t stopY = util::sext(m_B, 12);
stopX = ((int16_t)(stopX - m_X) >> m_T) + m_X;
stopY = ((int16_t)(stopY - m_Y) >> m_T) + m_Y;
m_vector_callback(m_X, m_Y, stopX, stopY, m_T);
/* hack to make QB3 display semi-correctly during explosions */
m_A = m_X & 0xfff;
m_B = m_Y & 0xfff;
}
NEXT_ACC_A; CYCLES(1);
break;
/* LPAP */
case 0xe1:
m_J = RDMEM(m_I);
NEXT_ACC_A; CYCLES(3);
break;
/* WSP */
case 0xf1:
m_I = RDMEM(m_I) & 0xff;
NEXT_ACC_A; CYCLES(3);
break;
/* LKP */
case 0xe2:
case 0xf2:
tempval = READOP(((m_PC - 1) & 0xf000) + *m_acc);
STANDARD_ACC_OP(tempval, tempval);
NEXT_ACC_A; CYCLES(7);
m_PC++;
break;
/* MUL */
case 0xe3:
case 0xf3:
tempval = RDMEM(m_I);
SET_A0;
m_cmpval = tempval & 0xfff;
if (m_acc == &m_A)
{
if (m_A & 1)
{
uint16_t result;
m_cmpacc = m_B;
m_A = (m_A >> 1) | ((m_B << 11) & 0x800);
m_B = ASR(m_B);
result = m_B + tempval;
SET_NC(result);
SET_MI(result);
m_B = result & 0xfff;
}
else
{
uint16_t result;
m_cmpacc = m_A;
result = m_A + tempval;
m_A = (m_A >> 1) | ((m_B << 11) & 0x800);
m_B = ASR(m_B);
SET_NC(result);
SET_MI(result);
}
}
else
{
uint16_t result;
m_cmpacc = m_B;
m_B = ASR(m_B);
result = m_B + tempval;
SET_NC(result);
SET_MI(result);
if (m_A & 1)
m_B = result & 0xfff;
}
NEXT_ACC_A; CYCLES(2);
break;
/* NV */
case 0xe4:
case 0xf4:
m_T = 0;
while (((m_A & 0xa00) == 0x000 || (m_A & 0xa00) == 0xa00) &&
((m_B & 0xa00) == 0x000 || (m_B & 0xa00) == 0xa00) &&
m_T < 16)
{
m_A = (m_A << 1) & 0xfff;
m_B = (m_B << 1) & 0xfff;
m_T++;
CYCLES(1);
}
NEXT_ACC_A; CYCLES(1);
break;
/* FRM */
case 0xe5:
case 0xf5:
m_waiting = true;
NEXT_ACC_A;
m_icount = -1;
/* some games repeat the FRM opcode twice; it apparently does not cause
a second wait, so we make sure we skip any duplicate opcode at this
point */
if (READOP(m_PC) == opcode)
m_PC++;
break;
/* STAP */
case 0xe6:
case 0xf6:
WRMEM(m_I, *m_acc);
NEXT_ACC_A; CYCLES(2);
break;
/* CST */
case 0xf7:
m_watchdog = 0;
[[fallthrough]];
/* ADDP */
case 0xe7:
tempval = RDMEM(m_I);
STANDARD_ACC_OP(*m_acc + tempval, tempval);
NEXT_ACC_A; CYCLES(2);
break;
/* SUBP */
case 0xe8:
case 0xf8:
tempval = RDMEM(m_I);
STANDARD_ACC_OP(*m_acc + (tempval ^ 0xfff) + 1, tempval);
NEXT_ACC_A; CYCLES(3);
break;
/* ANDP */
case 0xe9:
case 0xf9:
tempval = RDMEM(m_I);
STANDARD_ACC_OP(*m_acc & tempval, tempval);
NEXT_ACC_A; CYCLES(2);
break;
/* LDAP */
case 0xea:
case 0xfa:
tempval = RDMEM(m_I);
STANDARD_ACC_OP(tempval, tempval);
NEXT_ACC_A; CYCLES(2);
break;
/* SHR */
case 0xeb:
case 0xfb:
tempval = (m_acc == &m_A) ? (m_A >> 1) : ASR(m_B);
tempval |= (*m_acc + (0xb0b | (opcode & 0xf0))) & 0x1000;
STANDARD_ACC_OP(tempval, 0xb0b | (opcode & 0xf0));
NEXT_ACC_A; CYCLES(1);
break;
/* SHL */
case 0xec:
case 0xfc:
tempval = (*m_acc << 1) & 0xfff;
tempval |= (*m_acc + (0xc0c | (opcode & 0xf0))) & 0x1000;
STANDARD_ACC_OP(tempval, 0xc0c | (opcode & 0xf0));
NEXT_ACC_A; CYCLES(1);
break;
/* ASR */
case 0xed:
case 0xfd:
tempval = ASR(*m_acc);
STANDARD_ACC_OP(tempval, 0xd0d | (opcode & 0xf0));
NEXT_ACC_A; CYCLES(1);
break;
/* SHRB */
case 0xee:
case 0xfe:
if (m_acc == &m_A)
{
tempval = (m_A >> 1) | ((m_B << 11) & 0x800);
m_B = ASR(m_B);
}
else
tempval = ASR(m_B);
tempval |= (*m_acc + (0xe0e | (opcode & 0xf0))) & 0x1000;
STANDARD_ACC_OP(tempval, 0xe0e | (opcode & 0xf0));
NEXT_ACC_A; CYCLES(1);
break;
/* SHLB */
case 0xef:
case 0xff:
if (m_acc == &m_A)
{
tempval = (m_A << 1) & 0xfff;
m_B = (m_B << 1) & 0xfff;
}
else
tempval = (m_B << 1) & 0xfff;
tempval |= (*m_acc + (0xf0f | (opcode & 0xf0))) & 0x1000;
STANDARD_ACC_OP(tempval, 0xf0f | (opcode & 0xf0));
NEXT_ACC_A; CYCLES(1);
break;
/* IV */
case 0xf0:
m_X = util::sext(m_A, 12);
m_Y = util::sext(m_B, 12);
NEXT_ACC_A; CYCLES(1);
break;
}
} while (m_icount > 0);
}
std::unique_ptr<util::disasm_interface> ccpu_cpu_device::create_disassembler()
{
return std::make_unique<ccpu_disassembler>();
}