mame/src/emu/save.h

322 lines
12 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
save.h
Save state management functions.
***************************************************************************/
#pragma once
#ifndef __EMU_H__
#error Dont include this file directly; include emu.h instead.
#endif
#ifndef MAME_EMU_SAVE_H
#define MAME_EMU_SAVE_H
//**************************************************************************
// CONSTANTS
//**************************************************************************
enum save_error
{
STATERR_NONE,
STATERR_NOT_FOUND,
STATERR_ILLEGAL_REGISTRATIONS,
STATERR_INVALID_HEADER,
STATERR_READ_ERROR,
STATERR_WRITE_ERROR,
STATERR_DISABLED
};
//**************************************************************************
// MACROS
//**************************************************************************
// callback delegate for presave/postload
typedef named_delegate<void ()> save_prepost_delegate;
// use this to declare a given type is a simple, non-pointer type that can be
// saved; in general, this is intended only to be used for specific enum types
// defined by your device
#define ALLOW_SAVE_TYPE(TYPE) \
template<> struct save_manager::type_checker<TYPE> { static const bool is_atom = true; static const bool is_pointer = false; }
// use this as above, but also to declare that std::vector<TYPE> is safe as well
#define ALLOW_SAVE_TYPE_AND_ARRAY(TYPE) \
ALLOW_SAVE_TYPE(TYPE); \
template<> inline void save_manager::save_item(device_t *device, const char *module, const char *tag, int index, std::vector<TYPE> &value, const char *name) { save_memory(device, module, tag, index, name, &value[0], sizeof(TYPE), value.size()); }
//**************************************************************************
// TYPE DEFINITIONS
//**************************************************************************
class state_entry
{
public:
// construction/destruction
state_entry(void *data, const char *name, device_t *device, const char *module, const char *tag, int index, u8 size, u32 count);
// helpers
void flip_data();
// state
void * m_data; // pointer to the memory to save/restore
std::string m_name; // full name
device_t * m_device; // associated device, nullptr if none
std::string m_module; // module name
std::string m_tag; // tag name
int m_index; // index
u8 m_typesize; // size of the raw data type
u32 m_typecount; // number of items
u32 m_offset; // offset within the final structure
};
class ram_state;
class rewinder;
class save_manager
{
// type_checker is a set of templates to identify valid save types
template<typename ItemType> struct type_checker { static const bool is_atom = false; static const bool is_pointer = false; };
template<typename ItemType> struct type_checker<ItemType*> { static const bool is_atom = false; static const bool is_pointer = true; };
friend class ram_state;
friend class rewinder;
public:
// construction/destruction
save_manager(running_machine &machine);
// getters
running_machine &machine() const { return m_machine; }
rewinder *rewind() { return m_rewind.get(); }
int registration_count() const { return m_entry_list.size(); }
bool registration_allowed() const { return m_reg_allowed; }
// registration control
void allow_registration(bool allowed = true);
const char *indexed_item(int index, void *&base, u32 &valsize, u32 &valcount) const;
// function registration
void register_presave(save_prepost_delegate func);
void register_postload(save_prepost_delegate func);
// callback dispatching
void dispatch_presave();
void dispatch_postload();
// generic memory registration
void save_memory(device_t *device, const char *module, const char *tag, u32 index, const char *name, void *val, u32 valsize, u32 valcount = 1);
// templatized wrapper for general objects
template<typename ItemType>
void save_item(device_t *device, const char *module, const char *tag, int index, ItemType &value, const char *valname)
{
if (type_checker<ItemType>::is_pointer) throw emu_fatalerror("Called save_item on a pointer with no count!");
if (!type_checker<ItemType>::is_atom) throw emu_fatalerror("Called save_item on a non-fundamental type!");
save_memory(device, module, tag, index, valname, &value, sizeof(ItemType));
}
// templatized wrapper for 1-dimensional arrays
template<typename ItemType, std::size_t N>
void save_item(device_t *device, const char *module, const char *tag, int index, ItemType (&value)[N], const char *valname)
{
if (!type_checker<ItemType>::is_atom) throw emu_fatalerror("Called save_item on a non-fundamental type!");
save_memory(device, module, tag, index, valname, &value[0], sizeof(ItemType), N);
}
// templatized wrapper for 2-dimensional arrays
template<typename ItemType, std::size_t M, std::size_t N>
void save_item(device_t *device, const char *module, const char *tag, int index, ItemType (&value)[M][N], const char *valname)
{
if (!type_checker<ItemType>::is_atom) throw emu_fatalerror("Called save_item on a non-fundamental type!");
save_memory(device, module, tag, index, valname, &value[0][0], sizeof(ItemType), M * N);
}
// templatized wrapper for pointers
template<typename ItemType>
void save_pointer(device_t *device, const char *module, const char *tag, int index, ItemType *value, const char *valname, u32 count)
{
if (!type_checker<ItemType>::is_atom) throw emu_fatalerror("Called save_item on a non-fundamental type!");
save_memory(device, module, tag, index, valname, value, sizeof(ItemType), count);
}
// templatized wrapper for std::unique_ptr
template<typename ItemType>
void save_pointer(device_t *device, const char *module, const char *tag, int index, std::unique_ptr<ItemType[]> &value, const char *valname, u32 count)
{
if (!type_checker<ItemType>::is_atom) throw emu_fatalerror("Called save_item on a non-fundamental type!");
save_memory(device, module, tag, index, valname, value.get(), sizeof(ItemType), count);
}
// global memory registration
template<typename ItemType>
void save_item(ItemType &value, const char *valname, int index = 0) { save_item(nullptr, "global", nullptr, index, value, valname); }
template<typename ItemType>
void save_pointer(ItemType *value, const char *valname, u32 count, int index = 0) { save_pointer(nullptr, "global", nullptr, index, value, valname, count); }
// file processing
static save_error check_file(running_machine &machine, emu_file &file, const char *gamename, void (CLIB_DECL *errormsg)(const char *fmt, ...));
save_error write_file(emu_file &file);
save_error read_file(emu_file &file);
private:
// internal helpers
u32 signature() const;
void dump_registry() const;
static save_error validate_header(const u8 *header, const char *gamename, u32 signature, void (CLIB_DECL *errormsg)(const char *fmt, ...), const char *error_prefix);
// state callback item
class state_callback
{
public:
// construction/destruction
state_callback(save_prepost_delegate callback);
save_prepost_delegate m_func; // delegate
};
// internal state
running_machine & m_machine; // reference to our machine
std::unique_ptr<rewinder> m_rewind; // rewinder
bool m_reg_allowed; // are registrations allowed?
s32 m_illegal_regs; // number of illegal registrations
std::vector<std::unique_ptr<state_entry>> m_entry_list; // list of registered entries
std::vector<std::unique_ptr<ram_state>> m_ramstate_list; // list of ram states
std::vector<std::unique_ptr<state_callback>> m_presave_list; // list of pre-save functions
std::vector<std::unique_ptr<state_callback>> m_postload_list; // list of post-load functions
};
class ram_state
{
save_manager & m_save; // reference to save_manager
util::vectorstream m_data; // save data buffer
public:
bool m_valid; // can we load this state?
attotime m_time; // machine timestamp
ram_state(save_manager &save);
static size_t get_size(save_manager &save);
save_error save();
save_error load();
};
class rewinder
{
save_manager & m_save; // reference to save_manager
bool m_enabled; // enable rewind savestates
size_t m_capacity; // total memory rewind states can occupy (MB, limited to 1-2048 in options)
s32 m_current_index; // where we are in time
s32 m_first_invalid_index; // all states before this one are guarateed to be valid
bool m_first_time_warning; // keep track of warnings we report
bool m_first_time_note; // keep track of notes
std::vector<std::unique_ptr<ram_state>> m_state_list; // rewinder's own ram states
// load/save management
enum class rewind_operation
{
SAVE,
LOAD
};
enum
{
REWIND_INDEX_NONE = -1,
REWIND_INDEX_FIRST
};
bool check_size();
bool current_index_is_last() { return m_current_index == m_state_list.size() - 1; }
void report_error(save_error type, rewind_operation operation);
public:
rewinder(save_manager &save);
bool enabled() { return m_enabled; }
void clamp_capacity();
void invalidate();
bool capture();
bool step();
};
// template specializations to enumerate the fundamental atomic types you are allowed to save
ALLOW_SAVE_TYPE_AND_ARRAY(char)
ALLOW_SAVE_TYPE (bool); // std::vector<bool> may be packed internally
ALLOW_SAVE_TYPE_AND_ARRAY(s8)
ALLOW_SAVE_TYPE_AND_ARRAY(u8)
ALLOW_SAVE_TYPE_AND_ARRAY(s16)
ALLOW_SAVE_TYPE_AND_ARRAY(u16)
ALLOW_SAVE_TYPE_AND_ARRAY(s32)
ALLOW_SAVE_TYPE_AND_ARRAY(u32)
ALLOW_SAVE_TYPE_AND_ARRAY(s64)
ALLOW_SAVE_TYPE_AND_ARRAY(u64)
ALLOW_SAVE_TYPE_AND_ARRAY(PAIR)
ALLOW_SAVE_TYPE_AND_ARRAY(PAIR64)
ALLOW_SAVE_TYPE_AND_ARRAY(float)
ALLOW_SAVE_TYPE_AND_ARRAY(double)
ALLOW_SAVE_TYPE_AND_ARRAY(endianness_t)
ALLOW_SAVE_TYPE_AND_ARRAY(rgb_t)
//**************************************************************************
// INLINE FUNCTIONS
//**************************************************************************
//-------------------------------------------------
// save_item - specialized save_item for bitmaps
//-------------------------------------------------
template<>
inline void save_manager::save_item(device_t *device, const char *module, const char *tag, int index, bitmap_ind8 &value, const char *name)
{
save_memory(device, module, tag, index, name, &value.pix(0), value.bpp() / 8, value.rowpixels() * value.height());
}
template<>
inline void save_manager::save_item(device_t *device, const char *module, const char *tag, int index, bitmap_ind16 &value, const char *name)
{
save_memory(device, module, tag, index, name, &value.pix(0), value.bpp() / 8, value.rowpixels() * value.height());
}
template<>
inline void save_manager::save_item(device_t *device, const char *module, const char *tag, int index, bitmap_ind32 &value, const char *name)
{
save_memory(device, module, tag, index, name, &value.pix(0), value.bpp() / 8, value.rowpixels() * value.height());
}
template<>
inline void save_manager::save_item(device_t *device, const char *module, const char *tag, int index, bitmap_rgb32 &value, const char *name)
{
save_memory(device, module, tag, index, name, &value.pix(0), value.bpp() / 8, value.rowpixels() * value.height());
}
//-------------------------------------------------
// save_item - specialized save_item for attotimes
//-------------------------------------------------
template<>
inline void save_manager::save_item(device_t *device, const char *module, const char *tag, int index, attotime &value, const char *name)
{
std::string tempstr = std::string(name).append(".attoseconds");
save_memory(device, module, tag, index, tempstr.c_str(), &value.m_attoseconds, sizeof(value.m_attoseconds));
tempstr.assign(name).append(".seconds");
save_memory(device, module, tag, index, tempstr.c_str(), &value.m_seconds, sizeof(value.m_seconds));
}
#endif /* MAME_EMU_SAVE_H */