mame/src/tools/unidasm.cpp
2017-12-02 17:47:01 +01:00

1280 lines
50 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
mamedasm.c
Generic MAME disassembler.
****************************************************************************/
#include "emu.h"
#include <algorithm>
#include <cstring>
#include <ctype.h>
#include "cpu/8x300/8x300dasm.h"
#include "cpu/adsp2100/2100dasm.h"
#include "cpu/alph8201/8201dasm.h"
#include "cpu/alto2/alto2dsm.h"
#include "cpu/am29000/am29dasm.h"
#include "cpu/amis2000/amis2000d.h"
#include "cpu/apexc/apexcdsm.h"
#include "cpu/arc/arcdasm.h"
#include "cpu/arcompact/arcompactdasm.h"
#include "cpu/arm/armdasm.h"
#include "cpu/arm7/arm7dasm.h"
#include "cpu/asap/asapdasm.h"
#include "cpu/avr8/avr8dasm.h"
#include "cpu/capricorn/capricorn_dasm.h"
#include "cpu/ccpu/ccpudasm.h"
#include "cpu/clipper/clipperd.h"
#include "cpu/cop400/cop410ds.h"
#include "cpu/cop400/cop420ds.h"
#include "cpu/cop400/cop424ds.h"
#include "cpu/cop400/cop444ds.h"
#include "cpu/cosmac/cosdasm.h"
#include "cpu/cp1610/1610dasm.h"
#include "cpu/cubeqcpu/cubedasm.h"
#include "cpu/dsp16/dsp16dis.h"
#include "cpu/dsp32/dsp32dis.h"
#include "cpu/dsp56k/dsp56dsm.h"
#include "cpu/e0c6200/e0c6200d.h"
#include "cpu/e132xs/32xsdasm.h"
#include "cpu/es5510/es5510d.h"
#include "cpu/esrip/esripdsm.h"
#include "cpu/f8/f8dasm.h"
#include "cpu/g65816/g65816ds.h"
#include "cpu/h6280/6280dasm.h"
#include "cpu/h8/h8d.h"
#include "cpu/h8/h8hd.h"
#include "cpu/h8/h8s2000d.h"
#include "cpu/h8/h8s2600d.h"
#include "cpu/hcd62121/hcd62121d.h"
#include "cpu/hd61700/hd61700d.h"
#include "cpu/hmcs40/hmcs40d.h"
#include "cpu/hphybrid/hphybrid_dasm.h"
#include "cpu/i386/i386dasm.h"
#include "cpu/i8008/8008dasm.h"
#include "cpu/i8085/8085dasm.h"
#include "cpu/i8089/i8089_dasm.h"
#include "cpu/i860/i860dis.h"
#include "cpu/i960/i960dis.h"
#include "cpu/ie15/ie15dasm.h"
#include "cpu/jaguar/jagdasm.h"
#include "cpu/lc8670/lc8670dsm.h"
#include "cpu/lh5801/5801dasm.h"
#include "cpu/lr35902/lr35902d.h"
#include "cpu/m37710/m7700ds.h"
#include "cpu/m6502/m4510d.h"
#include "cpu/m6502/m6502d.h"
#include "cpu/m6502/m6509d.h"
#include "cpu/m6502/m6510d.h"
#include "cpu/m6502/m65c02d.h"
#include "cpu/m6502/m65ce02d.h"
#include "cpu/m6502/m740d.h"
#include "cpu/m6800/6800dasm.h"
#include "cpu/m68000/m68kdasm.h"
#include "cpu/m6805/6805dasm.h"
#include "cpu/m6809/6x09dasm.h"
#include "cpu/mb86233/mb86233d.h"
#include "cpu/mb86235/mb86235d.h"
#include "cpu/mb88xx/mb88dasm.h"
#include "cpu/mc68hc11/hc11dasm.h"
#include "cpu/mcs40/mcs40dasm.h"
#include "cpu/mcs48/mcs48dsm.h"
#include "cpu/mcs51/mcs51dasm.h"
#include "cpu/mcs96/i8x9xd.h"
#include "cpu/mcs96/i8xc196d.h"
#include "cpu/melps4/melps4d.h"
#include "cpu/minx/minxd.h"
#include "cpu/mips/mips3dsm.h"
#include "cpu/mips/r3kdasm.h"
#include "cpu/mn10200/mn102dis.h"
#include "cpu/nanoprocessor/nanoprocessor_dasm.h"
#include "cpu/nec/necdasm.h"
#include "cpu/patinhofeio/patinho_feio_dasm.h"
#include "cpu/pdp1/pdp1dasm.h"
#include "cpu/pdp1/tx0dasm.h"
#include "cpu/pdp8/pdp8dasm.h"
#include "cpu/pic16c5x/16c5xdsm.h"
#include "cpu/pic16c62x/16c62xdsm.h"
#include "cpu/powerpc/ppc_dasm.h"
#include "cpu/pps4/pps4dasm.h"
#include "cpu/psx/psxdasm.h"
#include "cpu/rsp/rsp_dasm.h"
#include "cpu/s2650/2650dasm.h"
#include "cpu/saturn/saturnds.h"
#include "cpu/sc61860/scdasm.h"
#include "cpu/scmp/scmpdasm.h"
#include "cpu/score/scoredsm.h"
#include "cpu/scudsp/scudspdasm.h"
#include "cpu/se3208/se3208dis.h"
#include "cpu/sh/sh_dasm.h"
#include "cpu/sharc/sharcdsm.h"
#include "cpu/sm510/sm510d.h"
#include "cpu/sm8500/sm8500d.h"
#include "cpu/sparc/sparcdasm.h"
#include "cpu/spc700/spc700ds.h"
#include "cpu/ssem/ssemdasm.h"
#include "cpu/ssp1601/ssp1601d.h"
#include "cpu/superfx/sfx_dasm.h"
#include "cpu/t11/t11dasm.h"
#include "cpu/tlcs870/tlcs870d.h"
#include "cpu/tlcs90/tlcs90d.h"
#include "cpu/tlcs900/dasm900.h"
#include "cpu/tms1000/tms1k_dasm.h"
#include "cpu/tms32010/32010dsm.h"
#include "cpu/tms32025/32025dsm.h"
#include "cpu/tms32031/dis32031.h"
#include "cpu/tms32051/dis32051.h"
#include "cpu/tms32082/dis_mp.h"
#include "cpu/tms32082/dis_pp.h"
#include "cpu/tms34010/34010dsm.h"
#include "cpu/tms57002/57002dsm.h"
#include "cpu/tms7000/7000dasm.h"
#include "cpu/tms9900/9900dasm.h"
#include "cpu/tms9900/tms99com.h"
#include "cpu/ucom4/ucom4d.h"
#include "cpu/unsp/unspdasm.h"
#include "cpu/upd7725/dasm7725.h"
#include "cpu/upd7810/upd7810_dasm.h"
#include "cpu/v60/v60d.h"
#include "cpu/v810/v810dasm.h"
#include "cpu/z180/z180dasm.h"
#include "cpu/z8/z8dasm.h"
#include "cpu/z80/z80dasm.h"
#include "cpu/z8000/8000dasm.h"
// Configuration classes
// Selected through dasm name
struct arm7_unidasm_t : public arm7_disassembler::config
{
bool t_flag;
arm7_unidasm_t() { t_flag = false; }
virtual ~arm7_unidasm_t() override = default;
virtual bool get_t_flag() const override { return t_flag; }
} arm7_unidasm;
// Configuration missing
struct g65816_unidasm_t : g65816_disassembler::config
{
bool m_flag;
bool x_flag;
g65816_unidasm_t() { m_flag = false; x_flag = false; }
virtual ~g65816_unidasm_t() override = default;
virtual bool get_m_flag() const override { return m_flag; }
virtual bool get_x_flag() const override { return x_flag; }
} g65816_unidasm;
// Configuration missing
struct m740_unidasm_t : m740_disassembler::config
{
u32 inst_state_base;
m740_unidasm_t() { inst_state_base = 0; }
virtual ~m740_unidasm_t() override = default;
virtual u32 get_state_base() const override { return inst_state_base; }
} m740_unidasm;
// Configuration missing
struct m7700_unidasm_t : m7700_disassembler::config
{
bool m_flag;
bool x_flag;
m7700_unidasm_t() { m_flag = false; x_flag = false; }
virtual ~m7700_unidasm_t() override = default;
virtual bool get_m_flag() const override { return m_flag; }
virtual bool get_x_flag() const override { return x_flag; }
} m7700_unidasm;
// Configuration missing
struct s2650_unidasm_t : s2650_disassembler::config
{
bool z80_mnemonics;
s2650_unidasm_t() { z80_mnemonics = false; }
virtual ~s2650_unidasm_t() override = default;
virtual bool get_z80_mnemonics_mode() const override { return z80_mnemonics; }
} s2650_unidasm;
// Configuration missing
struct saturn_unidasm_t : saturn_disassembler::config
{
bool nonstandard_mnemonics;
saturn_unidasm_t() { nonstandard_mnemonics = false; }
virtual ~saturn_unidasm_t() override = default;
virtual bool get_nonstandard_mnemonics_mode() const override { return nonstandard_mnemonics; }
} saturn_unidasm;
// Configuration missing
struct superfx_unidasm_t : superfx_disassembler::config
{
u16 sfr;
superfx_unidasm_t() { sfr = superfx_disassembler::SUPERFX_SFR_ALT0; }
virtual ~superfx_unidasm_t() override = default;
virtual u16 get_alt() const override { return sfr; }
} superfx_unidasm;
// Selected through dasm name
struct i386_unidasm_t : i386_disassembler::config
{
int mode;
i386_unidasm_t() { mode = 32; }
virtual ~i386_unidasm_t() override = default;
virtual int get_mode() const override { return mode; }
} i386_unidasm;
// Configuration missing
struct z8000_unidasm_t : z8000_disassembler::config
{
bool segmented_mode;
z8000_unidasm_t() { segmented_mode = false; }
virtual ~z8000_unidasm_t() override = default;
virtual bool get_segmented_mode() const override { return segmented_mode; }
} z8000_unidasm;
// Configuration missing
struct hyperstone_unidasm_t : hyperstone_disassembler::config
{
bool h;
u8 fp;
hyperstone_unidasm_t() { h = false; fp = 0; }
virtual ~hyperstone_unidasm_t() = default;
virtual u8 get_fp() const { return fp; }
virtual bool get_h() const { return h; }
} hyperstone_unidasm;
enum endianness { le, be };
struct dasm_table_entry
{
const char * name;
endianness endian;
int8_t pcshift;
std::function<util::disasm_interface *()> alloc;
};
struct options
{
const char * filename;
offs_t basepc;
uint8_t norawbytes;
uint8_t lower;
uint8_t upper;
uint8_t flipped;
int mode;
const dasm_table_entry *dasm;
uint32_t skip;
uint32_t count;
};
static const dasm_table_entry dasm_table[] =
{
{ "8x300", be, 0, []() -> util::disasm_interface * { return new n8x300_disassembler; } },
{ "adsp21xx", le, -2, []() -> util::disasm_interface * { return new adsp21xx_disassembler; } },
{ "alpha8201", le, 0, []() -> util::disasm_interface * { return new alpha8201_disassembler; } },
{ "alto2", be, -2, []() -> util::disasm_interface * { return new alto2_disassembler; } },
{ "am29000", be, 0, []() -> util::disasm_interface * { return new am29000_disassembler; } },
{ "amis2000", le, 0, []() -> util::disasm_interface * { return new amis2000_disassembler; } },
{ "apexc", be, 0, []() -> util::disasm_interface * { return new apexc_disassembler; } },
{ "arc", be, 0, []() -> util::disasm_interface * { return new arc_disassembler; } },
{ "arcompact", le, 0, []() -> util::disasm_interface * { return new arcompact_disassembler; } },
{ "arm", le, 0, []() -> util::disasm_interface * { return new arm_disassembler; } },
{ "arm_be", be, 0, []() -> util::disasm_interface * { return new arm_disassembler; } },
{ "arm7", le, 0, []() -> util::disasm_interface * { arm7_unidasm.t_flag = false; return new arm7_disassembler(&arm7_unidasm); } },
{ "arm7_be", be, 0, []() -> util::disasm_interface * { arm7_unidasm.t_flag = false; return new arm7_disassembler(&arm7_unidasm); } },
{ "arm7thumb", le, 0, []() -> util::disasm_interface * { arm7_unidasm.t_flag = true; return new arm7_disassembler(&arm7_unidasm); } },
{ "arm7thumbb", be, 0, []() -> util::disasm_interface * { arm7_unidasm.t_flag = true; return new arm7_disassembler(&arm7_unidasm); } },
{ "asap", le, 0, []() -> util::disasm_interface * { return new asap_disassembler; } },
{ "avr8", le, 0, []() -> util::disasm_interface * { return new avr8_disassembler; } },
{ "capricorn", le, 0, []() -> util::disasm_interface * { return new capricorn_disassembler; } },
{ "ccpu", le, 0, []() -> util::disasm_interface * { return new ccpu_disassembler; } },
{ "cdp1801", le, 0, []() -> util::disasm_interface * { return new cosmac_disassembler(cosmac_disassembler::TYPE_1801); } },
{ "cdp1802", le, 0, []() -> util::disasm_interface * { return new cosmac_disassembler(cosmac_disassembler::TYPE_1802); } },
{ "clipper", le, 0, []() -> util::disasm_interface * { return new clipper_disassembler; } },
{ "coldfire", be, 0, []() -> util::disasm_interface * { return new m68k_disassembler(m68k_disassembler::TYPE_COLDFIRE); } },
{ "cop410", le, 0, []() -> util::disasm_interface * { return new cop410_disassembler; } },
{ "cop420", le, 0, []() -> util::disasm_interface * { return new cop420_disassembler; } },
{ "cop444", le, 0, []() -> util::disasm_interface * { return new cop444_disassembler; } },
{ "cop424", le, 0, []() -> util::disasm_interface * { return new cop424_disassembler; } },
{ "cp1610", be, -1, []() -> util::disasm_interface * { return new cp1610_disassembler; } },
{ "cquestlin", be, -3, []() -> util::disasm_interface * { return new cquestlin_disassembler; } },
{ "cquestrot", be, -3, []() -> util::disasm_interface * { return new cquestrot_disassembler; } },
{ "cquestsnd", be, -3, []() -> util::disasm_interface * { return new cquestsnd_disassembler; } },
{ "ds5002fp", le, 0, []() -> util::disasm_interface * { return new ds5002fp_disassembler; } },
{ "dsp16a", le, -1, []() -> util::disasm_interface * { return new dsp16a_disassembler; } },
{ "dsp32c", le, 0, []() -> util::disasm_interface * { return new dsp32c_disassembler; } },
{ "dsp56k", le, -1, []() -> util::disasm_interface * { return new dsp56k_disassembler; } },
{ "e0c6200", be, -1, []() -> util::disasm_interface * { return new e0c6200_disassembler; } },
// { "es5510", be, 0, []() -> util::disasm_interface * { return new es5510_disassembler; } }, // Currently does nothing
{ "esrip", be, 0, []() -> util::disasm_interface * { return new esrip_disassembler; } },
{ "f8", le, 0, []() -> util::disasm_interface * { return new f8_disassembler; } },
{ "g65816", le, 0, []() -> util::disasm_interface * { return new g65816_disassembler(&g65816_unidasm); } },
{ "h6280", le, 0, []() -> util::disasm_interface * { return new h6280_disassembler; } },
{ "h8", be, 0, []() -> util::disasm_interface * { return new h8_disassembler; } },
{ "h8h", be, 0, []() -> util::disasm_interface * { return new h8h_disassembler; } },
{ "h8s2000", be, 0, []() -> util::disasm_interface * { return new h8s2000_disassembler; } },
{ "h8s2600", be, 0, []() -> util::disasm_interface * { return new h8s2600_disassembler; } },
{ "hc11", le, 0, []() -> util::disasm_interface * { return new hc11_disassembler; } },
{ "hcd62121", le, 0, []() -> util::disasm_interface * { return new hcd62121_disassembler; } },
{ "hd61700", le, 0, []() -> util::disasm_interface * { return new hd61700_disassembler; } },
{ "hd6301", le, 0, []() -> util::disasm_interface * { return new m680x_disassembler(6301); } },
{ "hd6309", le, 0, []() -> util::disasm_interface * { return new hd6309_disassembler; } },
{ "hd63701", le, 0, []() -> util::disasm_interface * { return new m680x_disassembler(63701); } },
{ "hmcs40", le, -1, []() -> util::disasm_interface * { return new hmcs40_disassembler; } },
{ "hp_hybrid", be, -1, []() -> util::disasm_interface * { return new hp_hybrid_disassembler; } },
{ "hp_5061_3001", be, -1, []() -> util::disasm_interface * { return new hp_5061_3001_disassembler; } },
{ "hyperstone", be, 0, []() -> util::disasm_interface * { return new hyperstone_disassembler(&hyperstone_unidasm); } },
{ "i4004", le, 0, []() -> util::disasm_interface * { return new i4004_disassembler; } },
{ "i4040", le, 0, []() -> util::disasm_interface * { return new i4040_disassembler; } },
{ "i8008", le, 0, []() -> util::disasm_interface * { return new i8008_disassembler; } },
{ "i8051", le, 0, []() -> util::disasm_interface * { return new i8051_disassembler; } },
{ "i8052", le, 0, []() -> util::disasm_interface * { return new i8052_disassembler; } },
{ "i8085", le, 0, []() -> util::disasm_interface * { return new i8085_disassembler; } },
{ "i8089", le, 0, []() -> util::disasm_interface * { return new i8089_disassembler; } },
{ "i80c51", le, 0, []() -> util::disasm_interface * { return new i80c51_disassembler; } },
{ "i80c52", le, 0, []() -> util::disasm_interface * { return new i80c52_disassembler; } },
{ "i860", le, 0, []() -> util::disasm_interface * { return new i860_disassembler; } },
{ "i8x9x", le, 0, []() -> util::disasm_interface * { return new i8x9x_disassembler; } },
{ "i8xc196", le, 0, []() -> util::disasm_interface * { return new i8xc196_disassembler; } },
{ "i960", le, 0, []() -> util::disasm_interface * { return new i960_disassembler; } },
{ "ie15", le, 0, []() -> util::disasm_interface * { return new ie15_disassembler; } },
{ "jaguardsp", be, 0, []() -> util::disasm_interface * { return new jaguar_disassembler(jaguar_disassembler::JAGUAR_VARIANT_DSP); } },
{ "jaguargpu", be, 0, []() -> util::disasm_interface * { return new jaguar_disassembler(jaguar_disassembler::JAGUAR_VARIANT_GPU); } },
{ "konami", le, 0, []() -> util::disasm_interface * { return new konami_disassembler; } },
{ "lc8670", be, 0, []() -> util::disasm_interface * { return new lc8670_disassembler; } },
{ "lh5801", le, 0, []() -> util::disasm_interface * { return new lh5801_disassembler; } },
{ "lr35902", le, 0, []() -> util::disasm_interface * { return new lr35902_disassembler; } },
{ "m146805", le, 0, []() -> util::disasm_interface * { return new m146805_disassembler; } },
{ "m37710", le, 0, []() -> util::disasm_interface * { return new m7700_disassembler(&m7700_unidasm); } },
{ "m4510", le, 0, []() -> util::disasm_interface * { return new m4510_disassembler; } },
{ "m58846", le, -1, []() -> util::disasm_interface * { return new melps4_disassembler; } },
{ "m6502", le, 0, []() -> util::disasm_interface * { return new m6502_disassembler; } },
{ "m6509", le, 0, []() -> util::disasm_interface * { return new m6509_disassembler; } },
{ "m6510", le, 0, []() -> util::disasm_interface * { return new m6510_disassembler; } },
{ "m65c02", le, 0, []() -> util::disasm_interface * { return new m65c02_disassembler; } },
{ "m65ce02", le, 0, []() -> util::disasm_interface * { return new m65ce02_disassembler; } },
{ "m6800", le, 0, []() -> util::disasm_interface * { return new m680x_disassembler(6800); } },
{ "m68000", be, 0, []() -> util::disasm_interface * { return new m68k_disassembler(m68k_disassembler::TYPE_68000); } },
{ "m68008", be, 0, []() -> util::disasm_interface * { return new m68k_disassembler(m68k_disassembler::TYPE_68008); } },
{ "m6801", le, 0, []() -> util::disasm_interface * { return new m680x_disassembler(6801); } },
{ "m68010", be, 0, []() -> util::disasm_interface * { return new m68k_disassembler(m68k_disassembler::TYPE_68010); } },
{ "m6802", le, 0, []() -> util::disasm_interface * { return new m680x_disassembler(6802); } },
{ "m68020", be, 0, []() -> util::disasm_interface * { return new m68k_disassembler(m68k_disassembler::TYPE_68020); } },
{ "m6803", le, 0, []() -> util::disasm_interface * { return new m680x_disassembler(6803); } },
{ "m68030", be, 0, []() -> util::disasm_interface * { return new m68k_disassembler(m68k_disassembler::TYPE_68030); } },
{ "m68040", be, 0, []() -> util::disasm_interface * { return new m68k_disassembler(m68k_disassembler::TYPE_68040); } },
{ "m6805", le, 0, []() -> util::disasm_interface * { return new m6805_disassembler; } },
{ "m6808", le, 0, []() -> util::disasm_interface * { return new m680x_disassembler(6808); } },
{ "m6809", le, 0, []() -> util::disasm_interface * { return new m6809_disassembler; } },
{ "m68340", be, 0, []() -> util::disasm_interface * { return new m68k_disassembler(m68k_disassembler::TYPE_68340); } },
{ "m68hc05", le, 0, []() -> util::disasm_interface * { return new m68hc05_disassembler; } },
{ "m740", le, 0, []() -> util::disasm_interface * { return new m740_disassembler(&m740_unidasm); } },
{ "mb86233", le, -2, []() -> util::disasm_interface * { return new mb86233_disassembler; } },
{ "mb86235", le, -3, []() -> util::disasm_interface * { return new mb86235_disassembler; } },
{ "mb88", le, 0, []() -> util::disasm_interface * { return new mb88_disassembler; } },
{ "mcs48", le, 0, []() -> util::disasm_interface * { return new mcs48_disassembler(false); } },
{ "minx", le, 0, []() -> util::disasm_interface * { return new minx_disassembler; } },
{ "mips3be", be, 0, []() -> util::disasm_interface * { return new mips3_disassembler; } },
{ "mips3le", le, 0, []() -> util::disasm_interface * { return new mips3_disassembler; } },
{ "mn10200", le, 0, []() -> util::disasm_interface * { return new mn10200_disassembler; } },
{ "nanoprocessor", le, 0, []() -> util::disasm_interface * { return new hp_nanoprocessor_disassembler; } },
{ "nec", le, 0, []() -> util::disasm_interface * { return new nec_disassembler; } },
{ "nsc8105", le, 0, []() -> util::disasm_interface * { return new m680x_disassembler(8105); } },
{ "patinho_feio", le, 0, []() -> util::disasm_interface * { return new patinho_feio_disassembler; } },
{ "pdp1", be, 0, []() -> util::disasm_interface * { return new pdp1_disassembler; } },
{ "pdp8", be, 0, []() -> util::disasm_interface * { return new pdp8_disassembler; } },
{ "pic16c5x", le, -1, []() -> util::disasm_interface * { return new pic16c5x_disassembler; } },
{ "pic16c62x", le, -1, []() -> util::disasm_interface * { return new pic16c62x_disassembler; } },
{ "powerpc", be, 0, []() -> util::disasm_interface * { return new powerpc_disassembler; } },
{ "pps4", le, 0, []() -> util::disasm_interface * { return new pps4_disassembler; } },
{ "psxcpu", le, 0, []() -> util::disasm_interface * { return new psxcpu_disassembler; } },
{ "r3000be", be, 0, []() -> util::disasm_interface * { return new r3000_disassembler; } },
{ "r3000le", le, 0, []() -> util::disasm_interface * { return new r3000_disassembler; } },
{ "rsp", le, 0, []() -> util::disasm_interface * { return new rsp_disassembler; } },
{ "s2650", le, 0, []() -> util::disasm_interface * { return new s2650_disassembler(&s2650_unidasm); } },
{ "saturn", le, 0, []() -> util::disasm_interface * { return new saturn_disassembler(&saturn_unidasm); } },
{ "sc61860", le, 0, []() -> util::disasm_interface * { return new sc61860_disassembler; } },
{ "scmp", le, 0, []() -> util::disasm_interface * { return new scmp_disassembler; } },
{ "scudsp", be, 0, []() -> util::disasm_interface * { return new scudsp_disassembler; } },
{ "se3208", le, 0, []() -> util::disasm_interface * { return new se3208_disassembler; } },
{ "sh2", be, 0, []() -> util::disasm_interface * { return new sh_disassembler(false); } },
{ "sh4", le, 0, []() -> util::disasm_interface * { return new sh_disassembler(true); } },
{ "sh4be", be, 0, []() -> util::disasm_interface * { return new sh_disassembler(true); } },
{ "sharc", le, -2, []() -> util::disasm_interface * { return new sharc_disassembler; } },
{ "sm500", le, 0, []() -> util::disasm_interface * { return new sm500_disassembler; } },
{ "sm510", le, 0, []() -> util::disasm_interface * { return new sm510_disassembler; } },
{ "sm511", le, 0, []() -> util::disasm_interface * { return new sm511_disassembler; } },
{ "sm590", le, 0, []() -> util::disasm_interface * { return new sm590_disassembler; } },
{ "sm5a", le, 0, []() -> util::disasm_interface * { return new sm5a_disassembler; } },
{ "sm8500", le, 0, []() -> util::disasm_interface * { return new sm8500_disassembler; } },
{ "sparcv7", be, 0, []() -> util::disasm_interface * { return new sparc_disassembler(nullptr, 7); } },
{ "sparcv8", be, 0, []() -> util::disasm_interface * { return new sparc_disassembler(nullptr, 8); } },
{ "sparcv9", be, 0, []() -> util::disasm_interface * { return new sparc_disassembler(nullptr, 9); } },
{ "sparcv9vis1", be, 0, []() -> util::disasm_interface * { return new sparc_disassembler(nullptr, 9, sparc_disassembler::vis_1); } },
{ "sparcv9vis2", be, 0, []() -> util::disasm_interface * { return new sparc_disassembler(nullptr, 9, sparc_disassembler::vis_2); } },
{ "sparcv9vis2p", be, 0, []() -> util::disasm_interface * { return new sparc_disassembler(nullptr, 9, sparc_disassembler::vis_2p); } },
{ "sparcv9vis3", be, 0, []() -> util::disasm_interface * { return new sparc_disassembler(nullptr, 9, sparc_disassembler::vis_3); } },
{ "sparcv9vis3b", be, 0, []() -> util::disasm_interface * { return new sparc_disassembler(nullptr, 9, sparc_disassembler::vis_3b); } },
{ "spc700", le, 0, []() -> util::disasm_interface * { return new spc700_disassembler; } },
{ "ssem", le, 0, []() -> util::disasm_interface * { return new ssem_disassembler; } },
{ "ssp1601", be, -1, []() -> util::disasm_interface * { return new ssp1601_disassembler; } },
{ "superfx", le, 0, []() -> util::disasm_interface * { return new superfx_disassembler(&superfx_unidasm); } },
{ "t11", le, 0, []() -> util::disasm_interface * { return new t11_disassembler; } },
{ "tlcs870", le, 0, []() -> util::disasm_interface * { return new tlcs870_disassembler; } },
{ "tlcs90", le, 0, []() -> util::disasm_interface * { return new tlcs90_disassembler; } },
{ "tlcs900", le, 0, []() -> util::disasm_interface * { return new tlcs900_disassembler; } },
{ "tms0980", be, 0, []() -> util::disasm_interface * { return new tms0980_disassembler; } },
{ "tms1000", le, 0, []() -> util::disasm_interface * { return new tms1000_disassembler; } },
{ "tms1100", le, 0, []() -> util::disasm_interface * { return new tms1100_disassembler; } },
{ "tms32010", be, -1, []() -> util::disasm_interface * { return new tms32010_disassembler; } },
{ "tms32025", be, -1, []() -> util::disasm_interface * { return new tms32025_disassembler; } },
{ "tms32031", le, -2, []() -> util::disasm_interface * { return new tms32031_disassembler; } },
{ "tms32051", le, -1, []() -> util::disasm_interface * { return new tms32051_disassembler; } },
{ "tms32082_mp", be, 0, []() -> util::disasm_interface * { return new tms32082_mp_disassembler; } },
{ "tms32082_pp", be, 0, []() -> util::disasm_interface * { return new tms32082_pp_disassembler; } },
{ "tms34010", le, 3, []() -> util::disasm_interface * { return new tms34010_disassembler(false); } },
{ "tms34020", le, 3, []() -> util::disasm_interface * { return new tms34010_disassembler(true); } },
{ "tms57002", le, -2, []() -> util::disasm_interface * { return new tms57002_disassembler; } },
{ "tms7000", le, 0, []() -> util::disasm_interface * { return new tms7000_disassembler; } },
{ "tms9900", be, 0, []() -> util::disasm_interface * { return new tms9900_disassembler(TMS9900_ID); } },
{ "tms9980", le, 0, []() -> util::disasm_interface * { return new tms9900_disassembler(TMS9980_ID); } },
{ "tms9995", le, 0, []() -> util::disasm_interface * { return new tms9900_disassembler(TMS9995_ID); } },
{ "tp0320", be, 0, []() -> util::disasm_interface * { return new tp0320_disassembler; } },
{ "tx0_64kw", be, -2, []() -> util::disasm_interface * { return new tx0_64kw_disassembler; } },
{ "tx0_8kw", be, -2, []() -> util::disasm_interface * { return new tx0_8kw_disassembler; } },
{ "ucom4", le, 0, []() -> util::disasm_interface * { return new ucom4_disassembler; } },
{ "unsp", be, 0, []() -> util::disasm_interface * { return new unsp_disassembler; } },
{ "upd7725", be, 0, []() -> util::disasm_interface * { return new necdsp_disassembler; } },
{ "upd7801", le, 0, []() -> util::disasm_interface * { return new upd7801_disassembler; } },
{ "upd7807", le, 0, []() -> util::disasm_interface * { return new upd7807_disassembler; } },
{ "upd7810", le, 0, []() -> util::disasm_interface * { return new upd7810_disassembler; } },
{ "upd78c05", le, 0, []() -> util::disasm_interface * { return new upd78c05_disassembler; } },
{ "upi41", le, 0, []() -> util::disasm_interface * { return new mcs48_disassembler(true); } },
{ "v60", le, 0, []() -> util::disasm_interface * { return new v60_disassembler; } },
{ "v810", le, 0, []() -> util::disasm_interface * { return new v810_disassembler; } },
{ "x86_16", le, 0, []() -> util::disasm_interface * { i386_unidasm.mode = 16; return new i386_disassembler(&i386_unidasm); } },
{ "x86_32", le, 0, []() -> util::disasm_interface * { i386_unidasm.mode = 32; return new i386_disassembler(&i386_unidasm); } },
{ "x86_64", le, 0, []() -> util::disasm_interface * { i386_unidasm.mode = 64; return new i386_disassembler(&i386_unidasm); } },
{ "z180", le, 0, []() -> util::disasm_interface * { return new z180_disassembler; } },
{ "z8", le, 0, []() -> util::disasm_interface * { return new z8_disassembler; } },
{ "z80", le, 0, []() -> util::disasm_interface * { return new z80_disassembler; } },
{ "z8000", be, 0, []() -> util::disasm_interface * { return new z8000_disassembler(&z8000_unidasm); } },
};
class unidasm_data_buffer : public util::disasm_interface::data_buffer
{
public:
std::vector<u8> data;
offs_t base_pc;
u32 size;
unidasm_data_buffer(util::disasm_interface *disasm, const dasm_table_entry *entry);
virtual ~unidasm_data_buffer() = default;
void decrypt(const unidasm_data_buffer &buffer, bool opcode);
virtual u8 r8 (offs_t pc) const override { return lr8 (pc); }
virtual u16 r16(offs_t pc) const override { return lr16(pc); }
virtual u32 r32(offs_t pc) const override { return lr32(pc); }
virtual u64 r64(offs_t pc) const override { return lr64(pc); }
private:
std::function<u8 (offs_t pc)> lr8;
std::function<u16 (offs_t pc)> lr16;
std::function<u32 (offs_t pc)> lr32;
std::function<u64 (offs_t pc)> lr64;
util::disasm_interface *disasm;
const dasm_table_entry *entry;
template<typename T> const T *get_ptr(offs_t pc) const {
if(pc < base_pc)
return nullptr;
offs_t delta = (pc - base_pc) * sizeof(T);
if(delta >= size)
return nullptr;
return reinterpret_cast<const T *>(&data[delta]);
}
template<typename T> T get(offs_t pc) const {
auto p = get_ptr<T>(pc);
return p ? *p : 0;
}
};
struct dasm_line
{
offs_t pc;
offs_t size;
std::string dasm;
};
unidasm_data_buffer::unidasm_data_buffer(util::disasm_interface *_disasm, const dasm_table_entry *_entry) : disasm(_disasm), entry(_entry)
{
u32 flags = disasm->interface_flags();
u32 page_mask = flags & util::disasm_interface::PAGED ? (1 << disasm->page_address_bits()) - 1 : 0;
if(flags & util::disasm_interface::NONLINEAR_PC) {
switch(entry->pcshift) {
case -1:
lr8 = [](offs_t pc) -> u8 { throw emu_fatalerror("debug_disasm_buffer::debug_data_buffer: r8 access on 16-bits granularity bus\n"); };
lr16 = [this](offs_t pc) -> u16 {
const u16 *src = get_ptr<u16>(pc);
return src[0];
};
switch(entry->endian) {
case le:
lr32 = [this, page_mask](offs_t pc) -> u32 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u32 r = 0;
for(int j=0; j != 2; j++) {
r |= get<u16>(disasm->pc_linear_to_real(lpc)) << (j*16);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
lr64 = [this, page_mask](offs_t pc) -> u64 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u64 r = 0;
for(int j=0; j != 4; j++) {
r |= u64(get<u16>(disasm->pc_linear_to_real(lpc))) << (j*16);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
break;
case be:
lr32 = [this, page_mask](offs_t pc) -> u32 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u32 r = 0;
for(int j=0; j != 2; j++) {
r |= get<u16>(disasm->pc_linear_to_real(lpc)) << ((1-j)*16);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
lr64 = [this, page_mask](offs_t pc) -> u64 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u64 r = 0;
for(int j=0; j != 4; j++) {
r |= u64(get<u16>(disasm->pc_linear_to_real(lpc))) << ((3-j)*16);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
break;
}
break;
case 0:
lr8 = [this](offs_t pc) -> u8 {
const u8 *src = get_ptr<u8>(pc);
return src[0];
};
switch(entry->endian) {
case le:
lr16 = [this, page_mask](offs_t pc) -> u16 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u16 r = 0;
for(int j=0; j != 2; j++) {
r |= get<u8>(disasm->pc_linear_to_real(lpc)) << (j*8);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
lr32 = [this, page_mask](offs_t pc) -> u32 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u32 r = 0;
for(int j=0; j != 2; j++) {
r |= get<u8>(disasm->pc_linear_to_real(lpc)) << (j*8);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
lr64 = [this, page_mask](offs_t pc) -> u64 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u64 r = 0;
for(int j=0; j != 8; j++) {
r |= u64(get<u8>(disasm->pc_linear_to_real(lpc))) << (j*8);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
break;
case be:
lr16 = [this, page_mask](offs_t pc) -> u16 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u16 r = 0;
for(int j=0; j != 2; j++) {
r |= get<u8>(disasm->pc_linear_to_real(lpc)) << ((1-j)*8);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
lr32 = [this, page_mask](offs_t pc) -> u32 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u32 r = 0;
for(int j=0; j != 2; j++) {
r |= get<u8>(disasm->pc_linear_to_real(lpc)) << ((3-j)*8);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
lr64 = [this, page_mask](offs_t pc) -> u64 {
offs_t lpc = disasm->pc_real_to_linear(pc);
u64 r = 0;
for(int j=0; j != 8; j++) {
r |= u64(get<u8>(disasm->pc_linear_to_real(lpc))) << ((7-j)*8);
lpc = (lpc & ~page_mask) | ((lpc + 1) & page_mask);
}
return r;
};
break;
}
break;
}
} else {
switch(entry->pcshift) {
case 0:
lr8 = [this](offs_t pc) -> u8 {
const u8 *p = get_ptr<u8>(pc);
return p ?
p[0]
: 0x00;
};
switch(entry->endian) {
case le:
lr16 = [this](offs_t pc) -> u16 {
const u8 *p = get_ptr<u8>(pc);
return p ?
p[0] |
(p[1] << 8)
: 0x0000;
};
lr32 = [this](offs_t pc) -> u32 {
const u8 *p = get_ptr<u8>(pc);
return p ?
p[0] |
(p[1] << 8) |
(p[2] << 16) |
(p[3] << 24)
: 0x00000000;
};
lr64 = [this](offs_t pc) -> u64 {
const u8 *p = get_ptr<u8>(pc);
return p ?
p[0] |
(p[1] << 8) |
(p[2] << 16) |
(p[3] << 24) |
(u64(p[4]) << 32) |
(u64(p[5]) << 40) |
(u64(p[6]) << 48) |
(u64(p[7]) << 56)
: 0x0000000000000000; };
break;
case be:
lr16 = [this](offs_t pc) -> u16 {
const u8 *p = get_ptr<u8>(pc);
return p ?
(p[0] << 8) |
p[1]
: 0x0000;
};
lr32 = [this](offs_t pc) -> u32 {
const u8 *p = get_ptr<u8>(pc);
return p ?
(p[0] << 24) |
(p[1] << 16) |
(p[2] << 8) |
p[3]
: 0x00000000;
};
lr64 = [this](offs_t pc) -> u64 {
const u8 *p = get_ptr<u8>(pc);
return p ?
(u64(p[0]) << 56) |
(u64(p[1]) << 48) |
(u64(p[2]) << 40) |
(u64(p[3]) << 32) |
(p[4] << 24) |
(p[5] << 16) |
(p[6] << 8) |
p[7]
: 0x0000000000000000; };
break;
}
break;
case -1:
lr8 = [](offs_t pc) -> u8 { abort(); };
lr16 = [this](offs_t pc) -> u16 {
const u16 *p = get_ptr<u16>(pc);
return p ?
p[0]
: 0x0000;
};
switch(entry->endian) {
case le:
lr32 = [this](offs_t pc) -> u32 {
const u16 *p = get_ptr<u16>(pc);
return p ?
p[0] |
(p[1] << 16)
: 0x00000000;
};
lr64 = [this](offs_t pc) -> u64 {
const u16 *p = get_ptr<u16>(pc);
return p ?
p[0] |
(p[1] << 16) |
(u64(p[2]) << 32) |
(u64(p[3]) << 48)
: 0x0000000000000000;
};
break;
case be:
lr32 = [this](offs_t pc) -> u32 {
const u16 *p = get_ptr<u16>(pc);
return p ?
(p[0] << 16)|
p[1]
: 0x00000000;
};
lr64 = [this](offs_t pc) -> u64 {
const u16 *p = get_ptr<u16>(pc);
return p ?
(u64(p[0]) << 48) |
(u64(p[1]) << 32) |
(p[2] << 16) |
p[3]
: 0x0000000000000000;
};
break;
}
break;
case -2:
lr8 = [](offs_t pc) -> u8 { abort(); };
lr16 = [](offs_t pc) -> u16 { abort(); };
lr32 = [this](offs_t pc) -> u16 {
const u32 *p = get_ptr<u32>(pc);
return p ?
p[0]
: 0x00000000;
};
switch(entry->endian) {
case le:
lr64 = [this](offs_t pc) -> u64 {
const u32 *p = get_ptr<u32>(pc);
return p ?
p[0] |
(u64(p[1]) << 32)
: 0x0000000000000000;
};
break;
case be:
lr64 = [this](offs_t pc) -> u64 {
const u32 *p = get_ptr<u32>(pc);
return p ?
(u64(p[0]) << 32) |
p[1]
: 0x0000000000000000;
};
break;
}
break;
case -3:
lr8 = [](offs_t pc) -> u8 { abort(); };
lr16 = [](offs_t pc) -> u16 { abort(); };
lr32 = [](offs_t pc) -> u32 { abort(); };
lr64 = [this](offs_t pc) -> u64 {
const u64 *p = get_ptr<u64>(pc);
return p ?
p[0]
: 0x0000000000000000;
};
break;
case 3:
lr8 = [](offs_t pc) -> u8 { abort(); };
lr32 = [](offs_t pc) -> u32 { abort(); };
lr64 = [](offs_t pc) -> u64 { abort(); };
lr16 = [this](offs_t pc) -> u16 {
if(pc < base_pc)
return 0x0000;
offs_t delta = (pc - base_pc) >> 3;
if(delta >= size)
return 0x0000;
return reinterpret_cast<const u16 *>(&data[delta])[0];
};
break;
default:
abort();
}
}
}
void unidasm_data_buffer::decrypt(const unidasm_data_buffer &buffer, bool opcode)
{
abort();
}
static int parse_options(int argc, char *argv[], options *opts)
{
bool pending_base = false;
bool pending_arch = false;
bool pending_mode = false;
bool pending_skip = false;
bool pending_count = false;
memset(opts, 0, sizeof(*opts));
// loop through arguments
for(unsigned arg = 1; arg < argc; arg++) {
char *curarg = argv[arg];
// is it a switch?
if(curarg[0] == '-') {
if(pending_base || pending_arch || pending_mode || pending_skip || pending_count)
goto usage;
if(tolower((uint8_t)curarg[1]) == 'a')
pending_arch = true;
else if(tolower((uint8_t)curarg[1]) == 'b')
pending_base = true;
else if(tolower((uint8_t)curarg[1]) == 'f')
opts->flipped = true;
else if(tolower((uint8_t)curarg[1]) == 'l')
opts->lower = true;
else if(tolower((uint8_t)curarg[1]) == 'm')
pending_mode = true;
else if(tolower((uint8_t)curarg[1]) == 's')
pending_skip = true;
else if(tolower((uint8_t)curarg[1]) == 'c')
pending_count = true;
else if(tolower((uint8_t)curarg[1]) == 'n')
opts->norawbytes = true;
else if(tolower((uint8_t)curarg[1]) == 'u')
opts->upper = true;
else
goto usage;
}
// base PC
else if(pending_base)
{
int result;
if(curarg[0] == '0' && curarg[1] == 'x')
result = sscanf(&curarg[2], "%x", &opts->basepc);
else if(curarg[0] == '$')
result = sscanf(&curarg[1], "%x", &opts->basepc);
else
result = sscanf(&curarg[0], "%x", &opts->basepc);
if(result != 1)
goto usage;
pending_base = false;
}
// mode
else if(pending_mode)
{
if(sscanf(curarg, "%d", &opts->mode) != 1)
goto usage;
pending_mode = false;
}
// architecture
else if(pending_arch) {
int curarch;
for(curarch = 0; curarch < ARRAY_LENGTH(dasm_table); curarch++)
if(core_stricmp(curarg, dasm_table[curarch].name) == 0)
break;
if(curarch == ARRAY_LENGTH(dasm_table))
goto usage;
opts->dasm = &dasm_table[curarch];
pending_arch = false;
}
// skip bytes
else if(pending_skip) {
if(sscanf(curarg, "%d", &opts->skip) != 1)
goto usage;
pending_skip = false;
}
// size
else if(pending_count) {
if(sscanf(curarg, "%d", &opts->count) != 1)
goto usage;
pending_count = false;
}
// filename
else if(opts->filename == nullptr)
opts->filename = curarg;
// fail
else
goto usage;
}
// if we have a dangling option, error
if(pending_base || pending_arch || pending_mode || pending_skip || pending_count)
goto usage;
// if no file or no architecture, fail
if(opts->filename == nullptr || opts->dasm == nullptr)
goto usage;
return 0;
usage:
printf("Usage: %s <filename> -arch <architecture> [-basepc <pc>] \n", argv[0]);
printf(" [-mode <n>] [-norawbytes] [-flipped] [-upper] [-lower]\n");
printf(" [-skip <n>] [-count <n>]\n");
printf("\n");
printf("Supported architectures:");
const int colwidth = 1 + std::strlen(std::max_element(std::begin(dasm_table), std::end(dasm_table), [](const dasm_table_entry &a, const dasm_table_entry &b) { return std::strlen(a.name) < std::strlen(b.name); })->name);
const int columns = std::max(1, 80 / colwidth);
const int numrows = (ARRAY_LENGTH(dasm_table) + columns - 1) / columns;
for(unsigned curarch = 0; curarch < numrows * columns; curarch++)
{
const int row = curarch / columns;
const int col = curarch % columns;
const int index = col * numrows + row;
if(col == 0)
printf("\n ");
printf("%-*s", colwidth, (index < ARRAY_LENGTH(dasm_table)) ? dasm_table[index].name : "");
}
printf("\n");
return 1;
};
int main(int argc, char *argv[])
{
// Parse options first
options opts;
if(parse_options(argc, argv, &opts))
return 1;
// Load the file
void *data;
uint32_t length;
osd_file::error filerr = util::core_file::load(opts.filename, &data, length);
if(filerr != osd_file::error::NONE)
{
fprintf(stderr, "Error opening file '%s'\n", opts.filename);
return 1;
}
// Build the disasm object
std::unique_ptr<util::disasm_interface> disasm(opts.dasm->alloc());
u32 flags = disasm->interface_flags();
// Compute the granularity in bytes (1-8)
offs_t granularity = opts.dasm->pcshift < 0 ? disasm->opcode_alignment() << -opts.dasm->pcshift : disasm->opcode_alignment() >> opts.dasm->pcshift;
// Build the base buffer and fill it (with a margin)
unidasm_data_buffer base_buffer(disasm.get(), opts.dasm);
u32 rounded_size = (((length - opts.skip) | (granularity - 1)) & ~(granularity - 1));
base_buffer.data.resize(rounded_size + 8, 0x00);
base_buffer.size = length;
base_buffer.base_pc = opts.basepc;
memcpy(&base_buffer.data[0], (const u8 *)data + opts.skip, length - opts.skip);
// Build the decryption buffers if needed
unidasm_data_buffer opcodes_buffer(disasm.get(), opts.dasm), params_buffer(disasm.get(), opts.dasm);
if(flags & util::disasm_interface::INTERNAL_DECRYPTION) {
opcodes_buffer.decrypt(base_buffer, true);
if((flags & util::disasm_interface::SPLIT_DECRYPTION) == util::disasm_interface::SPLIT_DECRYPTION)
params_buffer.decrypt(base_buffer, false);
}
// Select the buffers to actually use
unidasm_data_buffer *popcodes = opcodes_buffer.data.empty() ? &base_buffer : &opcodes_buffer;
unidasm_data_buffer *pparams = params_buffer.data.empty() ? popcodes : &params_buffer;
// Compute the pc warparound
offs_t pclength = opts.dasm->pcshift < 0 ? rounded_size >> -opts.dasm->pcshift : rounded_size << opts.dasm->pcshift;
offs_t limit = opts.basepc + pclength;
offs_t pc_mask;
if(!limit)
pc_mask = 0xffffffff;
else {
for(pc_mask = 2; pc_mask && pc_mask < limit; pc_mask *= 2);
pc_mask--;
}
// Compute the page warparound
offs_t page_mask = flags & util::disasm_interface::PAGED ? (1 << disasm->page_address_bits()) - 1 : 0;
// Next pc computation lambdas
std::function<offs_t (offs_t, offs_t)> next_pc;
std::function<offs_t (offs_t, offs_t)> next_pc_wrap;
if(flags & util::disasm_interface::NONLINEAR_PC) {
// lfsr pc is always paged
next_pc = [pc_mask, page_mask, dis = disasm.get()](offs_t pc, offs_t size) {
offs_t lpc = dis->pc_real_to_linear(pc);
offs_t lpce = lpc + size;
if((lpc ^ lpce) & ~page_mask)
lpce = (lpc | page_mask) + 1;
lpce &= pc_mask;
return dis->pc_linear_to_real(lpce);
};
next_pc_wrap = [page_mask, dis = disasm.get()](offs_t pc, offs_t size) {
offs_t lpc = dis->pc_real_to_linear(pc);
offs_t lpce = (lpc & ~page_mask) | ((lpc + size) & page_mask);
return dis->pc_linear_to_real(lpce);
};
} else if(flags & util::disasm_interface::PAGED) {
next_pc = [pc_mask, page_mask](offs_t pc, offs_t size) {
offs_t pce = pc + size;
if((pc ^ pce) & ~page_mask)
pce = (pc | page_mask) + 1;
pce &= pc_mask;
return pce;
};
next_pc_wrap = [page_mask](offs_t pc, offs_t size) {
offs_t pce = (pc & ~page_mask) | ((pc + size) & page_mask);
return pce;
};
} else {
next_pc = [pc_mask](offs_t pc, offs_t size) {
return (pc + size) & pc_mask;
};
next_pc_wrap = [pc_mask](offs_t pc, offs_t size) {
return (pc + size) & pc_mask;
};
}
// Compute the shift amount from pc delta to granularity-sized elements
u32 granularity_shift = 31 - count_leading_zeros(disasm->opcode_alignment());
// Number of pc steps to disassemble
u32 count = pclength;
if((count > opts.count) && (opts.count != 0))
count = opts.count;
// pc to string conversion
std::function<std::string (offs_t pc)> pc_to_string;
int aw = 32 - count_leading_zeros(pc_mask);
bool is_octal = false; // Parameter? Per-cpu config?
if((flags & util::disasm_interface::PAGED2LEVEL) == util::disasm_interface::PAGED2LEVEL) {
int bits1 = disasm->page_address_bits();
int bits2 = disasm->page2_address_bits();
int bits3 = aw - bits1 - bits2;
offs_t sm1 = (1 << bits1) - 1;
int sh2 = bits1;
offs_t sm2 = (1 << bits2) - 1;
int sh3 = bits1+bits2;
if(is_octal) {
int nc1 = (bits1+2)/3;
int nc2 = (bits2+2)/3;
int nc3 = (bits3+2)/3;
pc_to_string = [nc1, nc2, nc3, sm1, sm2, sh2, sh3](offs_t pc) -> std::string {
return util::string_format("%0*o:%0*o:%0*o",
nc3, pc >> sh3,
nc2, (pc >> sh2) & sm2,
nc1, pc & sm1);
};
} else {
int nc1 = (bits1+3)/4;
int nc2 = (bits2+3)/4;
int nc3 = (bits3+3)/4;
pc_to_string = [nc1, nc2, nc3, sm1, sm2, sh2, sh3](offs_t pc) -> std::string {
return util::string_format("%0*x:%0*x:%0*x",
nc3, pc >> sh3,
nc2, (pc >> sh2) & sm2,
nc1, pc & sm1);
};
}
} else if(flags & util::disasm_interface::PAGED) {
int bits1 = disasm->page_address_bits();
int bits2 = aw - bits1;
offs_t sm1 = (1 << bits1) - 1;
int sh2 = bits1;
if(is_octal) {
int nc1 = (bits1+2)/3;
int nc2 = (bits2+2)/3;
pc_to_string = [nc1, nc2, sm1, sh2](offs_t pc) -> std::string {
return util::string_format("%0*o:%0*o",
nc2, pc >> sh2,
nc1, pc & sm1);
};
} else {
int nc1 = (bits1+3)/4;
int nc2 = (bits2+3)/4;
pc_to_string = [nc1, nc2, sm1, sh2](offs_t pc) -> std::string {
return util::string_format("%0*x:%0*x",
nc2, pc >> sh2,
nc1, pc & sm1);
};
}
} else {
int bits1 = aw;
if(is_octal) {
int nc1 = (bits1+2)/3;
pc_to_string = [nc1](offs_t pc) -> std::string {
return util::string_format("%0*o",
nc1, pc);
};
} else {
int nc1 = (bits1+3)/4;
pc_to_string = [nc1](offs_t pc) -> std::string {
return util::string_format("%0*x",
nc1, pc);
};
}
}
// Lower/upper optional transform
std::function<std::string (const std::string &)> tf;
if(opts.lower)
tf = [](const std::string &str) -> std::string {
std::string result = str;
std::transform(result.begin(), result.end(), result.begin(), [](char c) { return tolower(c); });
return result;
};
else if(opts.upper)
tf = [](const std::string &str) -> std::string {
std::string result = str;
std::transform(result.begin(), result.end(), result.begin(), [](char c) { return toupper(c); });
return result;
};
else
tf = [](const std::string &str) -> std::string {
return str;
};
// Do the disassembly
std::vector<dasm_line> dasm_lines;
offs_t curpc = opts.basepc;
for(u32 i=0; i < count;) {
std::ostringstream stream;
offs_t result = disasm->disassemble(stream, curpc, *popcodes, *pparams);
offs_t len = result & util::disasm_interface::LENGTHMASK;
dasm_lines.emplace_back(dasm_line{ curpc, len, stream.str() });
curpc = next_pc(curpc, len);
i += len;
}
// Compute the extrema
offs_t max_len = 0;
size_t max_text = 0;
for(const auto &l : dasm_lines) {
if(max_len < l.size)
max_len = l.size;
size_t s = l.dasm.size();
if(max_text < s)
max_text = s;
}
// Build the raw bytes generator and compute the field size
max_len >>= granularity_shift;
std::function<std::string (offs_t pc, offs_t size)> dump_raw_bytes;
switch(granularity) {
case 1:
dump_raw_bytes = [step = disasm->opcode_alignment(), next_pc, base_buffer](offs_t pc, offs_t size) -> std::string {
std::string result = "";
for(offs_t i=0; i != size; i++) {
if(i)
result += ' ';
result += util::string_format("%02x", base_buffer.r8(pc));
pc = next_pc(pc, step);
}
return result;
};
max_len = (max_len * 3) - 1;
break;
case 2:
dump_raw_bytes = [step = disasm->opcode_alignment(), next_pc, base_buffer](offs_t pc, offs_t size) -> std::string {
std::string result = "";
for(offs_t i=0; i != size; i++) {
if(i)
result += ' ';
result += util::string_format("%04x", base_buffer.r16(pc));
pc = next_pc(pc, step);
}
return result;
};
max_len = (max_len * 5) - 1;
break;
case 4:
dump_raw_bytes = [step = disasm->opcode_alignment(), next_pc, base_buffer](offs_t pc, offs_t size) -> std::string {
std::string result = "";
for(offs_t i=0; i != size; i++) {
if(i)
result += ' ';
result += util::string_format("%08x", base_buffer.r32(pc));
pc = next_pc(pc, step);
}
return result;
};
max_len = (max_len * 9) - 1;
break;
case 8:
dump_raw_bytes = [step = disasm->opcode_alignment(), next_pc, base_buffer](offs_t pc, offs_t size) -> std::string {
std::string result = "";
for(offs_t i=0; i != size; i++) {
if(i)
result += ' ';
result += util::string_format("%016x", base_buffer.r64(pc));
pc = next_pc(pc, step);
}
return result;
};
max_len = (max_len * 17) - 1;
break;
}
if(opts.flipped) {
if(opts.norawbytes)
for(const auto &l : dasm_lines)
util::stream_format(std::cout, "%-*s ; %s\n", max_text, tf(l.dasm), tf(pc_to_string(l.pc)));
else
for(const auto &l : dasm_lines)
util::stream_format(std::cout, "%-*s ; %s: %s\n", max_text, tf(l.dasm), tf(pc_to_string(l.pc)), tf(dump_raw_bytes(l.pc, l.size >> granularity_shift)));
} else {
if(opts.norawbytes)
for(const auto &l : dasm_lines)
util::stream_format(std::cout, "%s: %s\n", tf(pc_to_string(l.pc)), tf(l.dasm));
else
for(const auto &l : dasm_lines)
util::stream_format(std::cout, "%s: %-*s %s\n", tf(pc_to_string(l.pc)), max_len, tf(dump_raw_bytes(l.pc, l.size >> granularity_shift)), tf(l.dasm));
}
free(data);
return 0;
}