mame/src/emu/machine/upd1990a.c

503 lines
12 KiB
C

// license:BSD-3-Clause
// copyright-holders:Curt Coder
/**********************************************************************
NEC uPD1990AC Serial I/O Calendar & Clock emulation
Copyright MESS Team.
Visit http://mamedev.org for licensing and usage restrictions.
**********************************************************************/
/*
TODO:
- test mode is mostly untested
- how does timer-interval differ from timer-pulse?
*/
#include "upd1990a.h"
//**************************************************************************
// MACROS / CONSTANTS
//**************************************************************************
#define LOG 0
//**************************************************************************
// DEVICE DEFINITIONS
//**************************************************************************
// device type definition
const device_type UPD1990A = &device_creator<upd1990a_device>;
const device_type UPD4990A = &device_creator<upd4990a_device>;
//**************************************************************************
// LIVE DEVICE
//**************************************************************************
//-------------------------------------------------
// upd1990a_device - constructor
//-------------------------------------------------
upd1990a_device::upd1990a_device(const machine_config &mconfig, device_type type, const char *name, const char *tag, device_t *owner, UINT32 clock, UINT32 variant, const char *shortname, const char *source)
: device_t(mconfig, type, name, tag, owner, clock, shortname, source),
device_rtc_interface(mconfig, *this),
m_write_data(*this),
m_write_tp(*this),
m_variant(variant)
{
}
upd1990a_device::upd1990a_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
: device_t(mconfig, UPD1990A, "uPD1990A", tag, owner, clock, "upd1990a", __FILE__),
device_rtc_interface(mconfig, *this),
m_write_data(*this),
m_write_tp(*this),
m_variant(TYPE_1990A)
{
}
upd4990a_device::upd4990a_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
: upd1990a_device(mconfig, UPD4990A, "uPD4990A", tag, owner, clock, TYPE_4990A, "upd4990a", __FILE__) { }
bool upd1990a_device::is_serial_mode()
{
// uPD4990A is in serial mode if c0/1/2 = high/VDD
return (m_variant == TYPE_4990A && m_c_unlatched == 7);
}
//-------------------------------------------------
// device_start - device-specific startup
//-------------------------------------------------
void upd1990a_device::device_start()
{
(void)m_variant;
// resolve callbacks
m_write_data.resolve_safe();
m_write_tp.resolve_safe();
// initialize
set_current_time(machine());
for (int i = 0; i < 7; i++)
m_shift_reg[i] = 0;
m_oe = 0;
m_cs = 0;
m_stb = 0;
m_data_in = 0;
m_data_out = 0;
m_c = 0;
m_clk = 0;
m_tp = 0;
m_c_unlatched = 0;
m_testmode = false;
// allocate timers
m_timer_clock = timer_alloc(TIMER_CLOCK);
m_timer_clock->adjust(attotime::from_hz(clock() / 32768.0), 0, attotime::from_hz(clock() / 32768.0)); // 1 second on XTAL_32_768kHz
m_timer_tp = timer_alloc(TIMER_TP);
m_timer_data_out = timer_alloc(TIMER_DATA_OUT);
m_timer_test_mode = timer_alloc(TIMER_TEST_MODE);
// state saving
save_item(NAME(m_time_counter));
save_item(NAME(m_shift_reg));
save_item(NAME(m_oe));
save_item(NAME(m_cs));
save_item(NAME(m_stb));
save_item(NAME(m_data_in));
save_item(NAME(m_data_out));
save_item(NAME(m_c));
save_item(NAME(m_clk));
save_item(NAME(m_tp));
save_item(NAME(m_c_unlatched));
save_item(NAME(m_testmode));
}
//-------------------------------------------------
// rtc_clock_updated -
//-------------------------------------------------
void upd1990a_device::rtc_clock_updated(int year, int month, int day, int day_of_week, int hour, int minute, int second)
{
m_time_counter[0] = convert_to_bcd(second);
m_time_counter[1] = convert_to_bcd(minute);
m_time_counter[2] = convert_to_bcd(hour);
m_time_counter[3] = convert_to_bcd(day);
m_time_counter[4] = (month << 4) | (day_of_week - 1);
m_time_counter[5] = convert_to_bcd(year);
}
//-------------------------------------------------
// device_timer - handler timer events
//-------------------------------------------------
void upd1990a_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
switch (id)
{
case TIMER_CLOCK:
advance_seconds();
break;
case TIMER_TP:
m_tp = !m_tp;
m_write_tp(m_tp);
break;
case TIMER_DATA_OUT:
m_data_out = !m_data_out;
m_write_data(get_data_out());
break;
case TIMER_TEST_MODE:
if (m_oe)
{
/* TODO: completely untested */
/* time counter is advanced from "Second" counter input */
int max_shift = is_serial_mode() ? 6 : 5;
m_data_out = (m_time_counter[max_shift - 1] == 0);
m_write_data(get_data_out());
for (int i = 0; i < max_shift; i++)
{
m_time_counter[i]++;
if (m_time_counter[i] != 0)
return;
}
}
else
{
/* each counter is advanced in parallel, overflow carry does not affect next counter */
m_data_out = 0;
int max_shift = is_serial_mode() ? 6 : 5;
for (int i = 0; i < max_shift; i++)
{
m_time_counter[i]++;
m_data_out |= (m_time_counter[i] == 0);
}
m_write_data(get_data_out());
}
break;
}
}
//-------------------------------------------------
// stb_w -
//-------------------------------------------------
WRITE_LINE_MEMBER( upd1990a_device::stb_w )
{
if (!m_cs)
return;
if (LOG) logerror("uPD1990A '%s' STB %u\n", tag(), state);
// rising edge
if (!m_stb && state)
{
// read command
if (is_serial_mode())
m_c = m_shift_reg[6];
else
{
m_c = m_c_unlatched;
if (m_c == 7)
m_c = MODE_TEST;
}
if (LOG) logerror("uPD1990A '%s' Command %x\n", tag(), m_c);
// common functions
if (m_c == MODE_REGISTER_HOLD || (m_c >= MODE_TP_64HZ && m_c < MODE_TEST))
{
// enable time counter
m_timer_clock->enable(1);
// disable testmode
m_testmode = false;
m_timer_test_mode->enable(0);
}
switch (m_c)
{
case MODE_REGISTER_HOLD:
// 1Hz data out pulse
m_timer_data_out->adjust(attotime::zero, 0, attotime::from_hz((clock() / 32768.0) * 2.0));
// 64Hz time pulse
m_timer_tp->adjust(attotime::zero, 0, attotime::from_hz((clock() / 512.0) * 2.0));
break;
case MODE_SHIFT:
// enable time counter
if (!m_testmode)
m_timer_clock->enable(1);
// data out LSB of shift register
m_timer_data_out->enable(0);
m_data_out = m_shift_reg[0] & 1;
m_write_data(get_data_out());
// 32Hz time pulse in testmode
if (m_testmode)
m_timer_tp->adjust(attotime::zero, 0, attotime::from_hz((clock() / 1024.0) * 2.0));
break;
case MODE_TIME_SET:
{
// disable time counter
m_timer_clock->enable(0);
// data out LSB of shift register
m_timer_data_out->enable(0);
m_data_out = m_shift_reg[0] & 1;
m_write_data(get_data_out());
// load shift register data into time counter
int max_shift = is_serial_mode() ? 6 : 5;
for (int i = 0; i < max_shift; i++)
m_time_counter[i] = m_shift_reg[i];
set_time(false,
bcd_to_integer(m_time_counter[5]),
m_time_counter[4] >> 4,
bcd_to_integer(m_time_counter[3]),
(m_time_counter[4] & 0xf) + 1,
bcd_to_integer(m_time_counter[2]),
bcd_to_integer(m_time_counter[1]),
bcd_to_integer(m_time_counter[0])
);
// reset stage 10-15 of clock divider
m_timer_clock->adjust(attotime::from_ticks(m_timer_clock->remaining().as_ticks(clock()) % (clock() / 512), clock()), 0, attotime::from_hz(clock() / 32768.0));
// disable(low) time pulse in testmode
if (m_testmode)
{
m_timer_tp->enable(0);
m_tp = 0;
m_write_tp(m_tp);
}
break;
}
case MODE_TIME_READ:
{
// enable time counter
if (!m_testmode)
m_timer_clock->enable(1);
// load time counter data into shift register
int max_shift = is_serial_mode() ? 6 : 5;
for (int i = 0; i < max_shift; i++)
m_shift_reg[i] = m_time_counter[i];
// data out pulse: uPD4990A: 1Hz, uPD1990A: 512Hz in testmode, 0.5Hz in normal mode
float div;
if (m_variant == TYPE_4990A)
div = 32768.0;
else if (m_testmode)
div = 64.0;
else div = 65536.0;
m_timer_data_out->adjust(attotime::zero, 0, attotime::from_hz((clock() / div) * 2.0));
// 32Hz time pulse in testmode
if (m_testmode)
m_timer_tp->adjust(attotime::zero, 0, attotime::from_hz((clock() / 1024.0) * 2.0));
break;
}
case MODE_TP_64HZ:
case MODE_TP_256HZ:
case MODE_TP_2048HZ:
case MODE_TP_4096HZ:
{
// set timer pulse
const float div[4] = { 512.0, 128.0, 16.0, 8.0 };
m_timer_tp->adjust(attotime::zero, 0, attotime::from_hz((clock() / div[m_c - MODE_TP_64HZ]) * 2.0));
break;
}
case MODE_TP_1S_INT:
case MODE_TP_10S_INT:
case MODE_TP_30S_INT:
case MODE_TP_60S_INT:
{
// set timer pulse
attotime one_second = attotime::from_hz(clock() / 32768.0);
const float mul[4] = { 1.0, 10.0, 30.0, 60.0 };
m_timer_tp->adjust(attotime::zero, 0, one_second * mul[m_c - MODE_TP_1S_INT] / 2.0);
break;
}
case MODE_INT_RESET_OUTPUT:
case MODE_INT_RUN_CLOCK:
case MODE_INT_STOP_CLOCK:
// TODO
break;
case MODE_TEST:
{
// disable time counter
m_timer_clock->enable(0);
// disable data out pulse
m_timer_data_out->enable(0);
// enable testmode
m_testmode = true;
m_timer_test_mode->enable(1);
const float div = (m_variant == TYPE_4990A) ? 4.0 : 32.0; // uPD4990A: 8192Hz, uPD1990A: 1024Hz
m_timer_test_mode->adjust(attotime::zero, 0, attotime::from_hz(clock() / div));
break;
}
default:
break;
}
}
m_stb = state;
}
//-------------------------------------------------
// clk_w -
//-------------------------------------------------
WRITE_LINE_MEMBER( upd1990a_device::clk_w )
{
if (!m_cs)
return;
if (LOG) logerror("uPD1990A '%s' CLK %u\n", tag(), state);
// rising edge
if (!m_clk && state)
{
int in = m_data_in;
if (is_serial_mode())
{
// always clock serial command register
in = m_shift_reg[6] & 1;
m_shift_reg[6] >>= 1;
m_shift_reg[6] |= (m_data_in << 3);
}
if (m_c == MODE_SHIFT)
{
// clock shift register
int max_shift = is_serial_mode() ? 6 : 5;
for (int i = 0; i < max_shift; i++)
{
m_shift_reg[i] >>= 1;
if (i == (max_shift - 1))
m_shift_reg[i] |= (in << 7); // shift in new bit
else
m_shift_reg[i] |= (m_shift_reg[i + 1] << 7 & 0x80);
}
// data out LSB of shift register
m_data_out = m_shift_reg[0] & 1;
m_write_data(get_data_out());
}
}
m_clk = state;
}
//-------------------------------------------------
// misc input pins
//-------------------------------------------------
WRITE_LINE_MEMBER( upd1990a_device::cs_w )
{
// chip select
if (LOG) logerror("uPD1990A '%s' CS %u\n", tag(), state);
m_cs = state;
}
WRITE_LINE_MEMBER( upd1990a_device::oe_w )
{
// output enable
if (LOG) logerror("uPD1990A '%s' OE %u\n", tag(), state);
int prev_oe = m_oe;
m_oe = state;
if (m_oe != prev_oe && m_c != MODE_TEST)
m_write_data(get_data_out());
}
WRITE_LINE_MEMBER( upd1990a_device::c0_w )
{
if (LOG) logerror("uPD1990A '%s' C0 %u\n", tag(), state);
m_c_unlatched = (m_c_unlatched & 0x06) | state;
}
WRITE_LINE_MEMBER( upd1990a_device::c1_w )
{
if (LOG) logerror("uPD1990A '%s' C1 %u\n", tag(), state);
m_c_unlatched = (m_c_unlatched & 0x05) | (state << 1);
}
WRITE_LINE_MEMBER( upd1990a_device::c2_w )
{
if (LOG) logerror("uPD1990A '%s' C2 %u\n", tag(), state);
m_c_unlatched = (m_c_unlatched & 0x03) | (state << 2);
}
WRITE_LINE_MEMBER( upd1990a_device::data_in_w )
{
// data input
if (LOG) logerror("uPD1990A '%s' DATA IN %u\n", tag(), state);
m_data_in = state;
}
//-------------------------------------------------
// output pins
//-------------------------------------------------
int upd1990a_device::get_data_out()
{
// except when in testmode, data_out is high impedance when OE is low
return (m_oe || m_testmode) ? m_data_out : 1;
}
READ_LINE_MEMBER( upd1990a_device::data_out_r )
{
return get_data_out();
}
READ_LINE_MEMBER( upd1990a_device::tp_r )
{
return m_tp;
}