mame/src/devices/cpu/alto2/alto2cpu.cpp
2016-08-29 02:02:04 +10:00

2984 lines
100 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Juergen Buchmueller
/*****************************************************************************
*
* Xerox AltoII CPU core
*
*****************************************************************************/
#include "alto2cpu.h"
#include "a2roms.h"
#define DEBUG_UCODE_CONST_DATA 0 //!< define to 1 to dump decoded micro code and constants
#define DEBUG_ALU_A10_PROM 0 //!< define to 1 to dump ALU A10 PROM after loading
//**************************************************************************
// DEVICE DEFINITIONS
//**************************************************************************
const device_type ALTO2 = &device_creator<alto2_cpu_device>;
//**************************************************************************
// LOGGING AND DEBUGGING
//**************************************************************************
#if ALTO2_DEBUG
int alto2_log_t::log_types = LOG_DISK | LOG_ETH;
int alto2_log_t::log_level = 8;
bool alto2_log_t::log_newline = true;
const char *const alto2_log_t::type_name[] = {
"[CPU]",
"[EMU]",
"[T01]",
"[T02]",
"[T03]",
"[KSEC]",
"[T05]",
"[T06]",
"[ETH]",
"[MRT]",
"[DWT]",
"[CURT]",
"[DHT]",
"[DVT]",
"[PART]",
"[KWD]",
"[T17]",
"[MEM]",
"[RAM]",
"[DRIVE]",
"[DISK]",
"[DISPL]",
"[MOUSE]",
"[HW]",
"[KBD]"
};
const size_t alto2_log_t::type_name_count = sizeof(alto2_log_t::type_name) / sizeof(alto2_log_t::type_name[0]);
alto2_log_t logprintf;
#endif
//**************************************************************************
// LIVE DEVICE
//**************************************************************************
DEVICE_ADDRESS_MAP_START( ucode_map, 32, alto2_cpu_device )
AM_RANGE(0, 4*ALTO2_UCODE_PAGE_SIZE - 1) AM_READWRITE( crom_cram_r, crom_cram_w )
ADDRESS_MAP_END
DEVICE_ADDRESS_MAP_START( const_map, 16, alto2_cpu_device )
AM_RANGE(0, ALTO2_CONST_SIZE - 1) AM_READ ( const_r )
ADDRESS_MAP_END
DEVICE_ADDRESS_MAP_START( iomem_map, 16, alto2_cpu_device )
AM_RANGE(0, ALTO2_IO_PAGE_BASE - 1) AM_READWRITE( ioram_r, ioram_w )
// page 0376
AM_RANGE(0177000, 0177015) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177016, 0177016) AM_READWRITE( utilout_r, utilout_w ) // UTILOUT register
AM_RANGE(0177017, 0177017) AM_READWRITE( noop_r, noop_w ) // unused range
AM_RANGE(0177020, 0177023) AM_READWRITE( xbus_r, xbus_w ) // XBUS[0-3] registers
AM_RANGE(0177024, 0177024) AM_READ ( mear_r ) // MEAR (memory error address register)
AM_RANGE(0177025, 0177025) AM_READWRITE( mesr_r, mesr_w ) // MESR (memory error status register)
AM_RANGE(0177026, 0177026) AM_READWRITE( mecr_r, mecr_w ) // MECR (memory error control register)
AM_RANGE(0177027, 0177027) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177030, 0177033) AM_READ ( utilin_r ) // UTILIN register
AM_RANGE(0177034, 0177037) AM_READ ( kbd_ad_r ) // KBD_AD[0-3] matrix
AM_RANGE(0177040, 0177057) AM_READWRITE( bank_reg_r, bank_reg_w ) // BANK[0-17] registers (4 bit)
AM_RANGE(0177060, 0177077) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177100, 0177101) AM_READWRITE( noop_r, noop_w ) // { Summagraphics tablet X, Y }
AM_RANGE(0177102, 0177137) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177140, 0177157) AM_READWRITE( noop_r, noop_w ) // { Organ keyboard }
AM_RANGE(0177160, 0177177) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177200, 0177204) AM_READWRITE( noop_r, noop_w ) // { PROM programmer }
AM_RANGE(0177205, 0177233) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177234, 0177237) AM_READWRITE( noop_r, noop_w ) // { Experimental cursor control }
AM_RANGE(0177240, 0177257) AM_READWRITE( noop_r, noop_w ) // { Alto-II debugger }
// AM_RANGE(0177244, 0177247) AM_READWRITE( noop_r, noop_w ) // { Graphics keyboard }
AM_RANGE(0177260, 0177377) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
// page 0377
// AM_RANGE(0177400, 0177405) AM_READWRITE( noop_r, noop_w ) // { Maxc2 maintenance interface }
AM_RANGE(0177400, 0177400) AM_READWRITE( noop_r, noop_w ) // { Alto DLS input }
AM_RANGE(0177401, 0177417) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177420, 0177420) AM_READWRITE( noop_r, noop_w ) // { "" }
AM_RANGE(0177421, 0177437) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177440, 0177440) AM_READWRITE( noop_r, noop_w ) // { "" }
AM_RANGE(0177441, 0177457) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177460, 0177460) AM_READWRITE( noop_r, noop_w ) // { "" }
AM_RANGE(0177461, 0177577) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177600, 0177677) AM_READWRITE( noop_r, noop_w ) // { Alto DLS output }
AM_RANGE(0177700, 0177700) AM_READWRITE( noop_r, noop_w ) // { EIA interface output bit }
AM_RANGE(0177701, 0177701) AM_READWRITE( noop_r, noop_w ) // { EIA interface input bit }
AM_RANGE(0177702, 0177717) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177720, 0177737) AM_READWRITE( noop_r, noop_w ) // { TV camera interface }
AM_RANGE(0177740, 0177763) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177764, 0177773) AM_READWRITE( noop_r, noop_w ) // { Redactron tape drive }
AM_RANGE(0177774, 0177775) AM_READWRITE( noop_r, noop_w ) // UNUSED RANGE
AM_RANGE(0177776, 0177776) AM_READWRITE( noop_r, noop_w ) // { Digital-Analog Converter, Joystick }
AM_RANGE(0177777, 0177777) AM_READWRITE( noop_r, noop_w ) // { Digital-Analog Converter, Joystick }
AM_RANGE(0200000, 0377777) AM_READWRITE( ioram_r, ioram_w )
ADDRESS_MAP_END
//-------------------------------------------------
// alto2_cpu_device - constructor
//-------------------------------------------------
alto2_cpu_device::alto2_cpu_device(const machine_config& mconfig, const char* tag, device_t* owner, UINT32 clock) :
cpu_device(mconfig, ALTO2, "Xerox Alto-II", tag, owner, clock, "alto2_cpu", __FILE__),
m_ucode_config("ucode", ENDIANNESS_BIG, 32, 12, -2 ),
m_const_config("const", ENDIANNESS_BIG, 16, 8, -1 ),
m_iomem_config("iomem", ENDIANNESS_BIG, 16, 17, -1 ),
m_cram_config(2),
m_ucode_rom_pages(1),
m_ucode_ram_pages(2),
m_ucode_ram_base(ALTO2_UCODE_PAGE_SIZE),
m_ucode_size(3*ALTO2_UCODE_PAGE_SIZE),
m_sreg_banks(1),
m_ucode_crom(nullptr),
m_const_data(nullptr),
m_icount(0),
m_task(0),
m_next_task(0),
m_next2_task(0),
m_mpc(0),
m_mir(0),
m_rsel(0),
m_next(0),
m_next2(0),
m_bus(0),
m_t(0),
m_alu(0),
m_aluc0(0),
m_l(0),
m_shifter(0),
m_laluc0(0),
m_myl(0),
m_cram_addr(0),
m_task_wakeup(0),
m_reset_mode(0xffff),
m_rdram_flag(false),
m_wrtram_flag(false),
m_ether_enable(false),
m_ewfct(false),
m_display_time(0),
m_unload_time(0),
m_unload_word(0),
m_bitclk_time(0),
m_bitclk_index(0),
m_ctl2k_u3(nullptr),
m_ctl2k_u38(nullptr),
m_ctl2k_u76(nullptr),
m_cram3k_a37(nullptr),
m_madr_a64(nullptr),
m_madr_a65(nullptr),
m_madr_a90(nullptr),
m_madr_a91(nullptr),
m_cycle(0),
m_ether_id(0),
m_hw(),
m_mouse(),
m_dsk(),
m_dsp(),
m_disp_a38(nullptr),
m_disp_a63(nullptr),
m_disp_a66(nullptr),
m_mem(),
m_emu(),
m_ether_a41(nullptr),
m_ether_a42(nullptr),
m_ether_a49(nullptr),
m_eth()
{
m_ucode_config.m_is_octal = true;
m_const_config.m_is_octal = true;
m_iomem_config.m_is_octal = true;
memset(m_task_mpc, 0x00, sizeof(m_task_mpc));
memset(m_task_next2, 0x00, sizeof(m_task_next2));
memset(m_r, 0x00, sizeof(m_r));
memset(m_s, 0x00, sizeof(m_s));
memset(m_s_reg_bank, 0x00, sizeof(m_s_reg_bank));
memset(m_bank_reg, 0x00, sizeof(m_bank_reg));
memset(m_ram_related, 0x00, sizeof(m_ram_related));
memset(m_drive, 0x00, sizeof(m_drive));
memset(m_sysclka0, 0x00, sizeof(m_sysclka0));
memset(m_sysclka1, 0x00, sizeof(m_sysclka1));
memset(m_sysclkb0, 0x00, sizeof(m_sysclkb0));
memset(m_sysclkb1, 0x00, sizeof(m_sysclkb1));
m_speaker = 0;
}
alto2_cpu_device::~alto2_cpu_device()
{
// call all subdevice's exit code
exit_kwd();
exit_part();
exit_dvt();
exit_dht();
exit_curt();
exit_dwt();
exit_mrt();
exit_ether();
exit_ksec();
exit_emu();
exit_hw();
exit_mouse();
exit_kbd();
exit_disp();
exit_disk();
exit_memory();
}
//-------------------------------------------------
// driver interface to set diablo_hd_device
//-------------------------------------------------
void alto2_cpu_device::set_diablo(int unit, diablo_hd_device* ptr)
{
logerror("%s: unit=%d diablo_hd_device=%p\n", __FUNCTION__, unit, (void *) ptr);
m_drive[unit] = ptr;
}
//-------------------------------------------------
// driver interface to set speaker_sound_device
//-------------------------------------------------
void alto2_cpu_device::set_speaker(speaker_sound_device* speaker)
{
logerror("%s: speaker_sound_device=%p\n", __FUNCTION__, speaker);
m_speaker = speaker;
}
//-------------------------------------------------
// device_rom_region - device-specific (P)ROMs
//-------------------------------------------------
ROM_START( alto2_cpu )
ROM_REGION( 16 * 02000, "ucode_proms", 0 )
ROM_LOAD( "55x.3", 0*02000, 0x400, CRC(de870d75) SHA1(2b98cc769d8302cb39948711424d987d94e4159b) ) //!< 00000-01777 RSEL(0)',RSEL(1)',RSEL(2)',RSEL(3)'
ROM_LOAD( "64x.3", 1*02000, 0x400, CRC(51b444c0) SHA1(8756e51f7f3253a55d75886465beb7ee1be6e1c4) ) //!< 00000-01777 RSEL(4)',ALUF(0)',ALUF(1)',ALUF(2)'
ROM_LOAD( "65x.3", 2*02000, 0x400, CRC(741d1437) SHA1(01f7cf07c2173ac93799b2475180bfbbe7e0149b) ) //!< 00000-01777 ALUF(3)',BS(0)',BS(1)',BS(2)'
ROM_LOAD( "63x.3", 3*02000, 0x400, CRC(f22d5028) SHA1(c65a42baef702d4aff2d9ad8e363daec27de6801) ) //!< 00000-01777 F1(0),F1(1)',F1(2)',F1(3)'
ROM_LOAD( "53x.3", 4*02000, 0x400, CRC(3c89a740) SHA1(95d812d489b2bde03884b2f126f961caa6c8ec45) ) //!< 00000-01777 F2(0),F2(1)',F2(2)',F2(3)'
ROM_LOAD( "60x.3", 5*02000, 0x400, CRC(a35de0bf) SHA1(7fa4aead44dcf5393bbfd1706c0ada24aa6fd3ac) ) //!< 00000-01777 LOADT',LOADL,NEXT(0)',NEXT(1)'
ROM_LOAD( "61x.3", 6*02000, 0x400, CRC(f25bcb2d) SHA1(acb57f3104a8dc4ba750dd1bf22ccc81cce9f084) ) //!< 00000-01777 NEXT(2)',NEXT(3)',NEXT(4)',NEXT(5)'
ROM_LOAD( "62x.3", 7*02000, 0x400, CRC(1b20a63f) SHA1(41dc86438e91c12b0fe42ffcce6b2ac2eb9e714a) ) //!< 00000-01777 NEXT(6)',NEXT(7)',NEXT(8)',NEXT(9)'
// extended memory Mesa 5.1 micro code PROMs, 8 x 4bit
ROM_LOAD( "xm51.u54", 8*02000, 02000, CRC(11086ae9) SHA1(c394e3fadbfb91801ddc1a70cb25dc6f606c4f76) ) //!< 00000-01777 RSEL(0)',RSEL(1)',RSEL(2)',RSEL(3)'
ROM_LOAD( "xm51.u74", 9*02000, 02000, CRC(be8224f2) SHA1(ea9abcc3832b26a094319796901237e1e3f238b6) ) //!< 00000-01777 RSEL(4)',ALUF(0)',ALUF(1)',ALUF(2)'
ROM_LOAD( "xm51.u75", 10*02000, 02000, CRC(dfe3e3ac) SHA1(246fd29f92150a5d5d7627fbb4f2504c7b6cd5ec) ) //!< 00000-01777 ALUF(3)',BS(0)',BS(1)',BS(2)'
ROM_LOAD( "xm51.u73", 11*02000, 02000, CRC(6c20fa46) SHA1(a054330c65048011f12209aaed5c6da73d95f029) ) //!< 00000-01777 F1(0),F1(1)',F1(2)',F1(3)'
ROM_LOAD( "xm51.u52", 12*02000, 02000, CRC(0a31eec8) SHA1(4e2ad5daa5e6a6f2143ee4de00c7b625d096fb02) ) //!< 00000-01777 F2(0),F2(1)',F2(2)',F2(3)'
ROM_LOAD( "xm51.u70", 13*02000, 02000, CRC(5c64ee54) SHA1(0eb16d1b5e5967be7c1bf8c8ef6efdf0518a752c) ) //!< 00000-01777 LOADT',LOADL,NEXT(0)',NEXT(1)'
ROM_LOAD( "xm51.u71", 14*02000, 02000, CRC(7283bf71) SHA1(819fdcc407ed0acdd8f12b02db6efbcab7bec19a) ) //!< 00000-01777 NEXT(2)',NEXT(3)',NEXT(4)',NEXT(5)'
ROM_LOAD( "xm51.u72", 15*02000, 02000, CRC(a28e5251) SHA1(44dd8ad4ad56541b5394d30ce3521b4d1d561394) ) //!< 00000-01777 NEXT(6)',NEXT(7)',NEXT(8)',NEXT(9)'
// constant PROMs, 4 x 4bit
// UINT16 src = BITS(addr, 3,2,1,4,5,6,7,0);
ROM_REGION( 4 * 0400, "const_proms", 0 )
ROM_LOAD( "madr.a6", 0*00400, 00400, CRC(c2c196b2) SHA1(8b2a599ac839ec2a070dbfef2f1626e645c858ca) ) //!< 0000-0377 C(00)',C(01)',C(02)',C(03)'
ROM_LOAD( "madr.a5", 1*00400, 00400, CRC(42336101) SHA1(c77819cf40f063af3abf66ea43f17cc1a62e928b) ) //!< 0000-0377 C(04)',C(05)',C(06)',C(07)'
ROM_LOAD( "madr.a4", 2*00400, 00400, CRC(b957e490) SHA1(c72660ad3ada4ca0ed8697c6bb6275a4fe703184) ) //!< 0000-0377 C(08)',C(09)',C(10)',C(11)'
ROM_LOAD( "madr.a3", 3*00400, 00400, CRC(e0992757) SHA1(5c45ea824970663cb9ee672dc50861539c860249) ) //!< 0000-0377 C(12)',C(13)',C(14)',C(15)'
// alternate ucode_proms with Mesa 4.1 in the second half
ROM_REGION( 16 * 02000, "xm_mesa_5.1", 0 )
ROM_LOAD( "55x.3", 0*02000, 0x400, CRC(de870d75) SHA1(2b98cc769d8302cb39948711424d987d94e4159b) ) //!< 00000-01777 RSEL(0)',RSEL(1)',RSEL(2)',RSEL(3)'
ROM_LOAD( "64x.3", 1*02000, 0x400, CRC(51b444c0) SHA1(8756e51f7f3253a55d75886465beb7ee1be6e1c4) ) //!< 00000-01777 RSEL(4)',ALUF(0)',ALUF(1)',ALUF(2)'
ROM_LOAD( "65x.3", 2*02000, 0x400, CRC(741d1437) SHA1(01f7cf07c2173ac93799b2475180bfbbe7e0149b) ) //!< 00000-01777 ALUF(3)',BS(0)',BS(1)',BS(2)'
ROM_LOAD( "63x.3", 3*02000, 0x400, CRC(f22d5028) SHA1(c65a42baef702d4aff2d9ad8e363daec27de6801) ) //!< 00000-01777 F1(0),F1(1)',F1(2)',F1(3)'
ROM_LOAD( "53x.3", 4*02000, 0x400, CRC(3c89a740) SHA1(95d812d489b2bde03884b2f126f961caa6c8ec45) ) //!< 00000-01777 F2(0),F2(1)',F2(2)',F2(3)'
ROM_LOAD( "60x.3", 5*02000, 0x400, CRC(a35de0bf) SHA1(7fa4aead44dcf5393bbfd1706c0ada24aa6fd3ac) ) //!< 00000-01777 LOADT',LOADL,NEXT(0)',NEXT(1)'
ROM_LOAD( "61x.3", 6*02000, 0x400, CRC(f25bcb2d) SHA1(acb57f3104a8dc4ba750dd1bf22ccc81cce9f084) ) //!< 00000-01777 NEXT(2)',NEXT(3)',NEXT(4)',NEXT(5)'
ROM_LOAD( "62x.3", 7*02000, 0x400, CRC(1b20a63f) SHA1(41dc86438e91c12b0fe42ffcce6b2ac2eb9e714a) ) //!< 00000-01777 NEXT(6)',NEXT(7)',NEXT(8)',NEXT(9)'
// extended memory Mesa 4.1 (?) micro code PROMs, 8 x 4bit (unused)
ROM_LOAD( "xm654.41", 8*02000, 02000, CRC(beace302) SHA1(0002fea03a0261f57365095c4b87385d833f7063) ) //!< 00000-01777 RSEL(0)',RSEL(1)',RSEL(2)',RSEL(3)'
ROM_LOAD( "xm674.41", 9*02000, 02000, CRC(7db5c097) SHA1(364bc41951baa3ad274031bd49abec1cf5b7a980) ) //!< 00000-01777 RSEL(4)',ALUF(0)',ALUF(1)',ALUF(2)'
ROM_LOAD( "xm675.41", 10*02000, 02000, CRC(26eac1e7) SHA1(9220a1386afae8de96bdb2cf084afbadeeb61d42) ) //!< 00000-01777 ALUF(3)',BS(0)',BS(1)',BS(2)'
ROM_LOAD( "xm673.41", 11*02000, 02000, CRC(8173d7e3) SHA1(7fbacf6dccb60dfe9cef88a248c3a1660efddcf4) ) //!< 00000-01777 F1(0),F1(1)',F1(2)',F1(3)'
ROM_LOAD( "xm652.41", 12*02000, 02000, CRC(ddfa94bb) SHA1(38625e269400aaf38cd07b5dbf36c0087a0f1b92) ) //!< 00000-01777 F2(0),F2(1)',F2(2)',F2(3)'
ROM_LOAD( "xm670.41", 13*02000, 02000, CRC(1cd187f3) SHA1(0fd5eff7c6b5c2383aa20148a795b80286554675) ) //!< 00000-01777 LOADT',LOADL,NEXT(0)',NEXT(1)'
ROM_LOAD( "xm671.41", 14*02000, 02000, CRC(f21b1ad7) SHA1(1e18bdb35de7802892ac373c128f900786d40886) ) //!< 00000-01777 NEXT(2)',NEXT(3)',NEXT(4)',NEXT(5)'
ROM_LOAD( "xm672.41", 15*02000, 02000, CRC(110ee075) SHA1(bb72fceba5ce9e5e8c8a0024915006bdd011a3f3) ) //!< 00000-01777 NEXT(6)',NEXT(7)',NEXT(8)',NEXT(9)'
ROM_REGION( 0400, "2kctl_u3", 0 )
ROM_LOAD( "2kctl.u3", 00000, 00400, CRC(5f8d89e8) SHA1(487cd944ab074290aea73425e81ef4900d92e250) ) //!< 3601-1 256x4 BPROM; Emulator address modifier
ROM_REGION( 0400, "2kctl_u38", 0 )
ROM_LOAD( "2kctl.u38", 00000, 00040, CRC(fc51b1d1) SHA1(e36c2a12a5da377394264899b5ae504e2ffda46e) ) //!< 82S23 32x8 BPROM; task priority and initial address
ROM_REGION( 0400, "2kctl_u76", 0 )
ROM_LOAD( "2kctl.u76", 00000, 00400, CRC(1edef867) SHA1(928b8a15ac515a99109f32672441832173883b81) ) //!< 3601-1 256x4 BPROM; 2KCTL replacement for u51 (1KCTL)
ROM_REGION( 0040, "alu_a10", 0 )
ROM_LOAD( "alu.a10", 00000, 00040, CRC(e0857892) SHA1(dcd389767139f0acc1f87cf074459115abc5b90b) )
ROM_REGION( 0400, "3kcram_a37", 0 )
ROM_LOAD( "3kcram.a37", 00000, 00400, CRC(9417360d) SHA1(bfcdbc56ee4ffafd0f2f672c0c869a55d6dd194b) )
ROM_REGION( 0400, "madr_a32", 0 )
ROM_LOAD( "madr.a32", 00000, 00400, CRC(a0e3b4a7) SHA1(24e50afdeb637a6a8588f8d3a3493c9188b8da2c) ) //! P3601 256x4 BPROM; mouse motion signals MX1, MX2, MY1, MY2
ROM_REGION( 0400, "madr_a64", 0 )
ROM_LOAD( "madr.a64", 00000, 00400, CRC(a66b0eda) SHA1(4d9088f592caa3299e90966b17765be74e523144) ) //! P3601 256x4 BPROM; memory addressing
ROM_REGION( 0400, "madr_a65", 0 )
ROM_LOAD( "madr.a65", 00000, 00400, CRC(ba37febd) SHA1(82e9db1cb65f451755295f0d179e6f8fe3349d4d) ) //! P3601 256x4 BPROM; memory addressing
ROM_REGION( 0400, "madr_a90", 0 )
ROM_LOAD( "madr.a90", 00000, 00400, CRC(7a2d8799) SHA1(c3760dba147740729d33b9b88e59088a4cc7437a) )
ROM_REGION( 0400, "madr_a91", 0 )
ROM_LOAD( "madr.a91", 00000, 00400, CRC(dd556aeb) SHA1(900f333a091e3ccde0843019c25f25fba62e6023) )
ROM_REGION( 0400, "displ_a38", 0 )
ROM_LOAD( "displ.a38", 00000, 00400, CRC(fd30beb7) SHA1(65e4a19ba4ff748d525122128c514abedd55d866) ) //!< P3601 256x4 BPROM; display FIFO control: STOPWAKE, MBEMPTY
ROM_REGION( 0040, "displ_a63", 0 )
ROM_LOAD( "displ.a63", 00000, 00040, CRC(82a20d60) SHA1(39d90703568be5419ada950e112d99227873fdea) ) //!< 82S23 32x8 BPROM; display HBLANK, HSYNC, SCANEND, HLCGATE ...
ROM_REGION( 0400, "displ_a66", 0 )
ROM_LOAD( "displ.a66", 00000, 00400, CRC(9f91aad9) SHA1(69b1d4c71f4e18103112e8601850c2654e9265cf) ) //!< P3601 256x4 BPROM; display VSYNC and VBLANK
ROM_REGION( 0400, "ether_a41", 0 )
ROM_LOAD( "enet.a41", 00000, 00400, CRC(d5de8d86) SHA1(c134a4c898c73863124361a9b0218f7a7f00082a) )
ROM_REGION( 0400, "ether_a42", 0 )
ROM_LOAD( "enet.a42", 00000, 00400, CRC(9d5c81bd) SHA1(ac7e63332a3dad0bef7cd0349b24e156a96a4bf0) )
ROM_REGION( 0400, "ether_a49", 0 )
ROM_LOAD( "enet.a49", 00000, 00400, CRC(4d2dcdb2) SHA1(583327a7d70cd02702c941c0e43c1e9408ff7fd0) )
ROM_END
const tiny_rom_entry *alto2_cpu_device::device_rom_region() const
{
return ROM_NAME( alto2_cpu );
}
/**
* @brief list of microcode PROM loading options
*/
static const prom_load_t pl_ucode[] = {
{ // 0000-01777 RSEL(0)',RSEL(1)',RSEL(2)',RSEL(3)'
"55x.3",
nullptr,
"de870d75",
"2b98cc769d8302cb39948711424d987d94e4159b",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 28,
/* dmap */ DMAP_DEFAULT,
/* dand */ ZERO,
/* type */ sizeof(UINT32)
},
{ // 0000-01777 RSEL(4)',ALUF(0)',ALUF(1)',ALUF(2)'
"64x.3",
nullptr,
"51b444c0",
"8756e51f7f3253a55d75886465beb7ee1be6e1c4",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 24,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 0000-01777 ALUF(3)',BS(0)',BS(1)',BS(2)'
"65x.3",
nullptr,
"741d1437",
"01f7cf07c2173ac93799b2475180bfbbe7e0149b",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 20,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 0000-01777 F1(0),F1(1)',F1(2)',F1(3)'
"63x.3",
nullptr,
"f22d5028",
"c65a42baef702d4aff2d9ad8e363daec27de6801",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 007, // keep D0, invert D1-D3
/* width */ 4,
/* shift */ 16,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 0000-01777 F2(0),F2(1)',F2(2)',F2(3)'
"53x.3",
nullptr,
"3c89a740",
"95d812d489b2bde03884b2f126f961caa6c8ec45",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 007, // keep D0, invert D1-D3
/* width */ 4,
/* shift */ 12,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 0000-01777 LOADT',LOADL,NEXT(0)',NEXT(1)'
"60x.3",
nullptr,
"a35de0bf",
"7fa4aead44dcf5393bbfd1706c0ada24aa6fd3ac",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 013, // invert D0 and D2-D3
/* width */ 4,
/* shift */ 8,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 0000-01777 NEXT(2)',NEXT(3)',NEXT(4)',NEXT(5)'
"61x.3",
nullptr,
"f25bcb2d",
"acb57f3104a8dc4ba750dd1bf22ccc81cce9f084",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 4,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 0000-01777 NEXT(6)',NEXT(7)',NEXT(8)',NEXT(9)'
"62x.3",
nullptr,
"1b20a63f",
"41dc86438e91c12b0fe42ffcce6b2ac2eb9e714a",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 0,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
// NOTE: the Mesa 5.1 ucode PROM may be used as RAM, if m_cram_config == 3
{ // 02000-03777 RSEL(0)',RSEL(1)',RSEL(2)',RSEL(3)'
"xm51.u54",
nullptr,
"11086ae9",
"c394e3fadbfb91801ddc1a70cb25dc6f606c4f76",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 28,
/* dmap */ DMAP_DEFAULT,
/* dand */ ZERO,
/* type */ sizeof(UINT32)
},
{ // 02000-03777 RSEL(4)',ALUF(0)',ALUF(1)',ALUF(2)'
"xm51.u74",
nullptr,
"be8224f2",
"ea9abcc3832b26a094319796901237e1e3f238b6",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 24,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 02000-03777 ALUF(3)',BS(0)',BS(1)',BS(2)'
"xm51.u75",
nullptr,
"dfe3e3ac",
"246fd29f92150a5d5d7627fbb4f2504c7b6cd5ec",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 20,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 02000-03777 F1(0),F1(1)',F1(2)',F1(3)'
"xm51.u73",
nullptr,
"6c20fa46",
"a054330c65048011f12209aaed5c6da73d95f029",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 007, // keep D0, invert D1-D3
/* width */ 4,
/* shift */ 16,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 02000-03777 F2(0),F2(1)',F2(2)',F2(3)'
"xm51.u52",
nullptr,
"0a31eec8",
"4e2ad5daa5e6a6f2143ee4de00c7b625d096fb02",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 007, // keep D0, invert D1-D3
/* width */ 4,
/* shift */ 12,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 02000-03777 LOADT',LOADL,NEXT(0)',NEXT(1)'
"xm51.u70",
nullptr,
"5c64ee54",
"0eb16d1b5e5967be7c1bf8c8ef6efdf0518a752c",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 013, // invert D0 and D2-D3
/* width */ 4,
/* shift */ 8,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 02000-03777 NEXT(2)',NEXT(3)',NEXT(4)',NEXT(5)'
"xm51.u71",
nullptr,
"7283bf71",
"819fdcc407ed0acdd8f12b02db6efbcab7bec19a",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 4,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
},
{ // 02000-03777 NEXT(6)',NEXT(7)',NEXT(8)',NEXT(9)'
"xm51.u72",
nullptr,
"a28e5251",
"44dd8ad4ad56541b5394d30ce3521b4d1d561394",
/* size */ ALTO2_UCODE_PAGE_SIZE,
/* amap */ AMAP_DEFAULT,
/* axor */ ALTO2_UCODE_PAGE_MASK,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 0,
/* dmap */ DMAP_DEFAULT,
/* dand */ KEEP,
/* type */ sizeof(UINT32)
}
};
/**
* @brief list of constant PROM loading options
*/
static const prom_load_t pl_const[] = {
{ // constant prom D0-D3
"madr.a6",
"c3.3",
"c2c196b2",
"8b2a599ac839ec2a070dbfef2f1626e645c858ca",
/* size */ ALTO2_CONST_SIZE,
/* amap */ AMAP_CONST_PROM, // descramble constant address
/* axor */ 0,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 0,
/* dmap */ DMAP_REVERSE_0_3, // reverse D0-D3 to D3-D0
/* dand */ ZERO,
/* type */ sizeof(UINT16)
},
{ // constant prom D4-D7
"madr.a5",
"c2.3",
"42336101",
"c77819cf40f063af3abf66ea43f17cc1a62e928b",
/* size */ ALTO2_CONST_SIZE,
/* amap */ AMAP_CONST_PROM, // descramble constant address
/* axor */ 0,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 4,
/* dmap */ DMAP_REVERSE_0_3, // reverse D0-D3 to D3-D0
/* dand */ KEEP,
/* type */ sizeof(UINT16)
},
{ // constant prom D8-D11
"madr.a4",
"c1.3",
"b957e490",
"c72660ad3ada4ca0ed8697c6bb6275a4fe703184",
/* size */ ALTO2_CONST_SIZE,
/* amap */ AMAP_CONST_PROM, // descramble constant address
/* axor */ 0,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 8,
/* dmap */ DMAP_REVERSE_0_3, // reverse D0-D3 to D3-D0
/* dand */ KEEP,
/* type */ sizeof(UINT16)
},
{ // constant PROM D12-D15
"madr.a3",
"c0.3",
"e0992757",
"5c45ea824970663cb9ee672dc50861539c860249",
/* size */ ALTO2_CONST_SIZE,
/* amap */ AMAP_CONST_PROM, // descramble constant address
/* axor */ 0,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 12,
/* dmap */ DMAP_REVERSE_0_3, // reverse D0-D3 to D3-D0
/* dand */ KEEP,
/* type */ sizeof(UINT16)
}
};
//! 3601-1 256x4 BPROM; Emulator address modifier
static const prom_load_t pl_2kctl_u3 =
{
"2kctl.u3",
nullptr,
"5f8d89e8",
"487cd944ab074290aea73425e81ef4900d92e250",
/* size */ 0400,
/* amap */ AMAP_REVERSE_0_7, // reverse address lines A0-A7
/* axor */ 0377, // invert address lines A0-A7
/* dxor */ 017, // invert data lines D0-D3
/* width */ 4,
/* shift */ 0,
/* dmap */ DMAP_DEFAULT,
/* dand */ ZERO,
/* type */ sizeof(UINT8)
};
//! 82S23 32x8 BPROM; task priority and initial address
static const prom_load_t pl_2kctl_u38 =
{
"2kctl.u38",
nullptr,
"fc51b1d1",
"e36c2a12a5da377394264899b5ae504e2ffda46e",
/* size */ 0040,
/* amap */ AMAP_DEFAULT,
/* axor */ 0,
/* dxor */ 0,
/* width */ 8,
/* shift */ 0,
/* dmap */ DMAP_DEFAULT,
/* dand */ ZERO,
/* type */ sizeof(UINT8)
};
//! 3601-1 256x4 BPROM; 2KCTL replacement for u51 (1KCTL)
static const prom_load_t pl_2kctl_u76 =
{
"2kctl.u76",
nullptr,
"1edef867",
"928b8a15ac515a99109f32672441832173883b81",
/* size */ 0400,
/* amap */ AMAP_DEFAULT,
/* axor */ 0077, // invert address lines A0-A5
/* dxor */ 0,
/* width */ 4,
/* shift */ 0,
/* dmap */ DMAP_DEFAULT,
/* dand */ ZERO,
/* type */ sizeof(UINT8)
};
//! ALUF to ALU 741818 functions and carry in mapper
static const prom_load_t pl_alu_a10 =
{
"alu.a10",
nullptr,
"e0857892",
"dcd389767139f0acc1f87cf074459115abc5b90b",
/* size */ 0040,
/* amap */ AMAP_DEFAULT,
/* axor */ 0,
/* dxor */ 0372, // invert D7-D3 and D1
/* width */ 8,
/* shift */ 0,
/* dmap */ DMAP_DEFAULT,
/* dand */ ZERO,
/* type */ sizeof(UINT8)
};
static const prom_load_t pl_3kcram_a37 =
{
"3kcram.a37",
nullptr,
"9417360d",
"bfcdbc56ee4ffafd0f2f672c0c869a55d6dd194b",
/* size */ 0400,
/* amap */ AMAP_DEFAULT,
/* axor */ 0,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 0,
/* dmap */ DMAP_DEFAULT,
/* dand */ ZERO,
/* type */ sizeof(UINT8)
};
static const prom_load_t pl_madr_a90 =
{
"madr.a90",
nullptr,
"7a2d8799",
"c3760dba147740729d33b9b88e59088a4cc7437a",
/* size */ 0400,
/* amap */ AMAP_DEFAULT,
/* axor */ 0,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 0,
/* dmap */ DMAP_DEFAULT,
/* dand */ ZERO,
/* type */ sizeof(UINT8)
};
static const prom_load_t pl_madr_a91 =
{
"madr.a91",
nullptr,
"dd556aeb",
"900f333a091e3ccde0843019c25f25fba62e6023",
/* size */ 0400,
/* amap */ AMAP_DEFAULT,
/* axor */ 0,
/* dxor */ 017, // invert D0-D3
/* width */ 4,
/* shift */ 0,
/* dmap */ DMAP_DEFAULT,
/* dand */ ZERO,
/* type */ sizeof(UINT8)
};
//-------------------------------------------------
// device_memory_interface overrides
//-------------------------------------------------
const address_space_config*alto2_cpu_device::memory_space_config(address_spacenum spacenum) const
{
if (AS_0 == spacenum)
return &m_ucode_config;
if (AS_1 == spacenum)
return &m_const_config;
if (AS_2 == spacenum)
return &m_iomem_config;
return nullptr;
}
//-------------------------------------------------
// device_start - device-specific startup
//-------------------------------------------------
void alto2_cpu_device::device_start()
{
// get a pointer to the IO address space
m_iomem = &space(AS_2);
// Decode 2 pages of micro code PROMs to CROM
// If m_cram_config == 1 or 3, only the first page will be used
m_ucode_crom = prom_load(machine(), pl_ucode, memregion("ucode_proms")->base(), 2, 8);
// allocate micro code CRAM for max 3 pages
m_ucode_cram = std::make_unique<UINT8[]>(sizeof(UINT32) * 3 * ALTO2_UCODE_PAGE_SIZE);
// fill with the micro code inverted bits value
for (offs_t offset = 0; offset < 3 * ALTO2_UCODE_PAGE_SIZE; offset++)
*reinterpret_cast<UINT32 *>(m_ucode_cram.get() + offset * 4) = ALTO2_UCODE_INVERTED;
// decode constant PROMs to m_const_data
m_const_data = prom_load(machine(), pl_const, memregion("const_proms")->base(), 1, 4);
m_ctl2k_u3 = prom_load(machine(), &pl_2kctl_u3, memregion("2kctl_u3")->base());
m_ctl2k_u38 = prom_load(machine(), &pl_2kctl_u38, memregion("2kctl_u38")->base());
m_ctl2k_u76 = prom_load(machine(), &pl_2kctl_u76, memregion("2kctl_u76")->base());
m_alu_a10 = prom_load(machine(), &pl_alu_a10, memregion("alu_a10")->base());
m_cram3k_a37 = prom_load(machine(), &pl_3kcram_a37, memregion("3kcram_a37")->base());
m_madr_a90 = prom_load(machine(), &pl_madr_a90, memregion("madr_a90")->base());
m_madr_a91 = prom_load(machine(), &pl_madr_a91, memregion("madr_a91")->base());
#if DEBUG_ALU_A10_PROM
// dump ALU a10 PROM after loading
for (UINT8 i = 0; i < 32; i++) {
UINT8 a = m_alu_a10[i];
printf("%03o: S3-S0:%u%u%u%u M:%u CI:%u T:%u ?:%u\n",
i, (a >> 7) & 1, (a >> 6) & 1, (a >> 5) & 1, (a >> 4) & 1,
(a >> 3) & 1, (a >> 2) & 1, (a >> 1) & 1, (a >> 0) & 1);
}
#endif
save_item(NAME(m_task_mpc));
save_item(NAME(m_task_next2));
save_item(NAME(m_task));
save_item(NAME(m_next_task));
save_item(NAME(m_next2_task));
save_item(NAME(m_mpc));
save_item(NAME(m_mir));
save_item(NAME(m_rsel));
save_item(NAME(m_next));
save_item(NAME(m_next2));
save_item(NAME(m_r));
save_item(NAME(m_s));
save_item(NAME(m_bus));
save_item(NAME(m_t));
save_item(NAME(m_alu));
save_item(NAME(m_aluc0));
save_item(NAME(m_l));
save_item(NAME(m_shifter));
save_item(NAME(m_laluc0));
save_item(NAME(m_myl));
save_item(NAME(m_cram_addr));
save_item(NAME(m_task_wakeup));
save_item(NAME(m_reset_mode));
save_item(NAME(m_rdram_flag));
save_item(NAME(m_wrtram_flag));
save_item(NAME(m_s_reg_bank));
save_item(NAME(m_bank_reg));
save_item(NAME(m_ether_enable));
save_item(NAME(m_ewfct));
save_item(NAME(m_display_time));
save_item(NAME(m_unload_time));
save_item(NAME(m_unload_word));
save_item(NAME(m_bitclk_time));
save_item(NAME(m_bitclk_index));
save_item(NAME(m_mouse.x));
save_item(NAME(m_mouse.y));
save_item(NAME(m_mouse.dx));
save_item(NAME(m_mouse.dy));
save_item(NAME(m_mouse.latch));
hard_reset();
state_add( A2_TASK, "TASK", m_task).callimport().formatstr("%6s");
state_add( A2_MPC, "MPC", m_mpc).formatstr("%06O");
state_add( A2_NEXT, "NEXT", m_next).formatstr("%06O");
state_add( A2_NEXT2, "NEXT2", m_next2).formatstr("%06O");
state_add( A2_BUS, "BUS", m_bus).formatstr("%06O");
state_add( A2_T, "T", m_t).formatstr("%06O");
state_add( A2_ALU, "ALU", m_alu).formatstr("%06O");
state_add( A2_ALUC0, "ALUC0", m_aluc0).mask(1);
state_add( A2_L, "L", m_l).formatstr("%06O");
state_add( A2_SHIFTER, "SHIFTER", m_shifter).formatstr("%06O");
state_add( A2_LALUC0, "LALUC0", m_laluc0).mask(1);
state_add( A2_M, "M", m_myl).formatstr("%06O");
state_add_divider(-1);
state_add( A2_AC3, "AC(3)", m_r[000]).formatstr("%06O");
state_add( A2_AC2, "AC(2)", m_r[001]).formatstr("%06O");
state_add( A2_AC1, "AC(1)", m_r[002]).formatstr("%06O");
state_add( A2_AC0, "AC(0)", m_r[003]).formatstr("%06O");
state_add( A2_R04, "R04", m_r[004]).formatstr("%06O");
state_add( A2_R05, "R05", m_r[005]).formatstr("%06O");
state_add( A2_PC, "PC", m_r[006]).formatstr("%06O");
state_add( A2_R07, "R07", m_r[007]).formatstr("%06O");
state_add( A2_R10, "R10", m_r[010]).formatstr("%06O");
state_add( A2_R11, "R11", m_r[011]).formatstr("%06O");
state_add( A2_R12, "R12", m_r[012]).formatstr("%06O");
state_add( A2_R13, "R13", m_r[013]).formatstr("%06O");
state_add( A2_R14, "R14", m_r[014]).formatstr("%06O");
state_add( A2_R15, "R15", m_r[015]).formatstr("%06O");
state_add( A2_R16, "R16", m_r[016]).formatstr("%06O");
state_add( A2_R17, "R17", m_r[017]).formatstr("%06O");
state_add( A2_R20, "R20", m_r[020]).formatstr("%06O");
state_add( A2_R21, "R21", m_r[021]).formatstr("%06O");
state_add( A2_R22, "R22", m_r[022]).formatstr("%06O");
state_add( A2_R23, "R23", m_r[023]).formatstr("%06O");
state_add( A2_R24, "R24", m_r[024]).formatstr("%06O");
state_add( A2_R25, "R25", m_r[025]).formatstr("%06O");
state_add( A2_R26, "R26", m_r[026]).formatstr("%06O");
state_add( A2_R27, "R27", m_r[027]).formatstr("%06O");
state_add( A2_R30, "R30", m_r[030]).formatstr("%06O");
state_add( A2_R31, "R31", m_r[031]).formatstr("%06O");
state_add( A2_R32, "R32", m_r[032]).formatstr("%06O");
state_add( A2_R33, "R33", m_r[033]).formatstr("%06O");
state_add( A2_R34, "R34", m_r[034]).formatstr("%06O");
state_add( A2_R35, "R35", m_r[035]).formatstr("%06O");
state_add( A2_R36, "R36", m_r[036]).formatstr("%06O");
state_add( A2_R37, "R37", m_r[037]).formatstr("%06O");
state_add_divider(-1);
state_add( A2_S00, "R40", m_s[0][000]).formatstr("%06O");
state_add( A2_S01, "R41", m_s[0][001]).formatstr("%06O");
state_add( A2_S02, "R42", m_s[0][002]).formatstr("%06O");
state_add( A2_S03, "R43", m_s[0][003]).formatstr("%06O");
state_add( A2_S04, "R44", m_s[0][004]).formatstr("%06O");
state_add( A2_S05, "R45", m_s[0][005]).formatstr("%06O");
state_add( A2_S06, "R46", m_s[0][006]).formatstr("%06O");
state_add( A2_S07, "R47", m_s[0][007]).formatstr("%06O");
state_add( A2_S10, "R50", m_s[0][010]).formatstr("%06O");
state_add( A2_S11, "R51", m_s[0][011]).formatstr("%06O");
state_add( A2_S12, "R52", m_s[0][012]).formatstr("%06O");
state_add( A2_S13, "R53", m_s[0][013]).formatstr("%06O");
state_add( A2_S14, "R54", m_s[0][014]).formatstr("%06O");
state_add( A2_S15, "R55", m_s[0][015]).formatstr("%06O");
state_add( A2_S16, "R56", m_s[0][016]).formatstr("%06O");
state_add( A2_S17, "R57", m_s[0][017]).formatstr("%06O");
state_add( A2_S20, "R60", m_s[0][020]).formatstr("%06O");
state_add( A2_S21, "R61", m_s[0][021]).formatstr("%06O");
state_add( A2_S22, "R62", m_s[0][022]).formatstr("%06O");
state_add( A2_S23, "R63", m_s[0][023]).formatstr("%06O");
state_add( A2_S24, "R64", m_s[0][024]).formatstr("%06O");
state_add( A2_S25, "R65", m_s[0][025]).formatstr("%06O");
state_add( A2_S26, "R66", m_s[0][026]).formatstr("%06O");
state_add( A2_S27, "R67", m_s[0][027]).formatstr("%06O");
state_add( A2_S30, "R70", m_s[0][030]).formatstr("%06O");
state_add( A2_S31, "R71", m_s[0][031]).formatstr("%06O");
state_add( A2_S32, "R72", m_s[0][032]).formatstr("%06O");
state_add( A2_S33, "R73", m_s[0][033]).formatstr("%06O");
state_add( A2_S34, "R74", m_s[0][034]).formatstr("%06O");
state_add( A2_S35, "R75", m_s[0][035]).formatstr("%06O");
state_add( A2_S36, "R76", m_s[0][036]).formatstr("%06O");
state_add( A2_S37, "R77", m_s[0][037]).formatstr("%06O");
state_add_divider(-1);
state_add( A2_DRIVE, "DRIVE", m_dsk.drive).formatstr("%1u");
state_add( A2_KADDR, "KADDR", m_dsk.kaddr).formatstr("%06O");
state_add( A2_KADR, "KADR", m_dsk.kadr).formatstr("%06O");
state_add( A2_KSTAT, "KSTAT", m_dsk.kstat).formatstr("%06O");
state_add( A2_KCOM, "KCOM", m_dsk.kcom).formatstr("%06O");
state_add( A2_KRECNO, "KRECNO", m_dsk.krecno).formatstr("%02O");
state_add( A2_SHIFTIN, "SHIFTIN", m_dsk.shiftin).formatstr("%06O");
state_add( A2_SHIFTOUT,"SHIFTOUT",m_dsk.shiftout).formatstr("%06O");
state_add( A2_DATAIN, "DATAIN", m_dsk.datain).formatstr("%06O");
state_add( A2_DATAOUT, "DATAOUT", m_dsk.dataout).formatstr("%06O");
state_add( A2_KRWC, "KRWC", m_dsk.krwc).formatstr("%1u");
state_add( A2_KFER, "KFER", m_dsk.kfer).formatstr("%1u");
state_add( A2_WDTSKENA,"WDTSKENA",m_dsk.wdtskena).formatstr("%1u");
state_add( A2_WDINIT0, "WDINIT0", m_dsk.wdinit0).formatstr("%1u");
state_add( A2_WDINIT, "WDINIT", m_dsk.wdinit).formatstr("%1u");
state_add( A2_STROBE, "STROBE", m_dsk.strobe).formatstr("%1u");
state_add( A2_BITCLK, "BITCLK", m_dsk.bitclk).formatstr("%1u");
state_add( A2_DATIN, "DATIN", m_dsk.datin).formatstr("%06O");
state_add( A2_BITCNT, "BITCNT", m_dsk.bitcount).formatstr("%02O");
state_add( A2_CARRY, "CARRY", m_dsk.carry).formatstr("%1u");
state_add( A2_SECLATE, "SECLATE", m_dsk.seclate).formatstr("%1u");
state_add( A2_SEEKOK, "SEEKOK", m_dsk.seekok).formatstr("%1u");
state_add( A2_OKTORUN, "OKTORUN", m_dsk.ok_to_run).formatstr("%1u");
state_add( A2_READY, "READY", m_dsk.kstat).formatstr("%1u");
state_add(STATE_GENPC, "curpc", m_mpc).formatstr("%03X").noshow();
state_add(STATE_GENFLAGS, "GENFLAGS", m_aluc0).formatstr("%5s").noshow();
m_icountptr = &m_icount;
}
//-------------------------------------------------
// state_string_export - export state as a string
// for the debugger
//-------------------------------------------------
void alto2_cpu_device::state_string_export(const device_state_entry &entry, std::string &str) const
{
switch (entry.index())
{
case A2_TASK:
str = string_format("%s", task_name(m_task));
break;
case STATE_GENFLAGS:
str = string_format(
"%c%c%c%c",
m_aluc0 ? 'C' : '-',
m_laluc0 ? 'c' : '-',
(m_shifter == 0) ? '0' : '-',
(INT16(m_shifter) < 0) ? '<' : '-');
break;
}
}
//! read microcode CROM or CRAM
READ32_MEMBER ( alto2_cpu_device::crom_cram_r )
{
if (offset < m_ucode_ram_base)
return *reinterpret_cast<UINT32 *>(m_ucode_crom + offset * 4);
return *reinterpret_cast<UINT32 *>(m_ucode_cram.get() + (offset - m_ucode_ram_base) * 4);
}
//! write microcode CROM or CRAM (CROM of course can't be written)
WRITE32_MEMBER( alto2_cpu_device::crom_cram_w )
{
if (offset < m_ucode_ram_base)
return;
*reinterpret_cast<UINT32 *>(m_ucode_cram.get() + (offset - m_ucode_ram_base) * 4) = data;
}
//! read constants PROM
READ16_MEMBER ( alto2_cpu_device::const_r )
{
return *reinterpret_cast<UINT16 *>(m_const_data + offset * 2);
}
//! direct read access to the microcode CROM or CRAM
#define RD_UCODE(addr) (addr < m_ucode_ram_base ? \
*reinterpret_cast<UINT32 *>(m_ucode_crom + addr * 4) : \
*reinterpret_cast<UINT32 *>(m_ucode_cram.get() + (addr - m_ucode_ram_base) * 4))
//-------------------------------------------------
// device_reset - device-specific reset
//-------------------------------------------------
void alto2_cpu_device::device_reset()
{
soft_reset();
// get the configured ethernet id
ioport_port* etherid = ioport(":ETHERID");
if (etherid)
m_ether_id = etherid->read() & 0377;
// call all sub-devices' reset_...
reset_memory();
reset_disp();
reset_disk();
reset_hw();
reset_kbd();
reset_mouse();
reset_emu();
reset_ksec();
reset_ether();
reset_mrt();
reset_dwt();
reset_curt();
reset_dht();
reset_dvt();
reset_part();
reset_kwd();}
/**
* @brief callback is called by the drive timer whenever a new sector starts
*
* @param unit the unit number
*/
static void disk_sector_start(void* cookie, int unit)
{
alto2_cpu_device* cpu = reinterpret_cast<alto2_cpu_device *>(cookie);
cpu->next_sector(unit);
}
void alto2_cpu_device::interface_post_reset()
{
// set the disk unit sector callbacks
for (int unit = 0; unit < diablo_hd_device::DIABLO_UNIT_MAX; unit++) {
diablo_hd_device* dhd = m_drive[unit];
dhd->set_sector_callback(this, &disk_sector_start);
}
}
//-------------------------------------------------
// execute_set_input - act on a changed input/
// interrupt line
//-------------------------------------------------
// FIXME
void alto2_cpu_device::execute_set_input(int inputnum, int state)
{
}
void alto2_cpu_device::fatal(int exitcode, const char *format, ...)
{
va_list ap;
va_start(ap, format);
emu_fatalerror error(exitcode, format, ap);
va_end(ap);
}
/** @brief task names */
const char* alto2_cpu_device::task_name(int task)
{
switch (task) {
case 000: return "emu";
case 001: return "task01";
case 002: return "task02";
case 003: return "task03";
case 004: return "ksec";
case 005: return "task05";
case 006: return "task06";
case 007: return "ether";
case 010: return "mrt";
case 011: return "dwt";
case 012: return "curt";
case 013: return "dht";
case 014: return "dvt";
case 015: return "part";
case 016: return "kwd";
case 017: return "task17";
}
return "???";
}
/** @brief register names (as used by the microcode) */
const char* alto2_cpu_device::r_name(UINT8 reg)
{
switch (reg) {
case 000: return "ac(3)";
case 001: return "ac(2)";
case 002: return "ac(1)";
case 003: return "ac(0)";
case 004: return "nww";
case 005: return "r05";
case 006: return "pc";
case 007: return "r07";
case 010: return "xh";
case 011: return "r11";
case 012: return "ecntr";
case 013: return "epntr";
case 014: return "r14";
case 015: return "r15";
case 016: return "r16";
case 017: return "r17";
case 020: return "curx";
case 021: return "curdata";
case 022: return "cba";
case 023: return "aecl";
case 024: return "slc";
case 025: return "mtemp";
case 026: return "htab";
case 027: return "ypos";
case 030: return "dwa";
case 031: return "kwdctw";
case 032: return "cksumrw";
case 033: return "knmarw";
case 034: return "dcbr";
case 035: return "dwax";
case 036: return "mask";
case 037: return "r37";
}
return "???";
}
/** @brief ALU function names */
const char* alto2_cpu_device::aluf_name(UINT8 aluf)
{
switch (aluf) {
case 000: return "bus";
case 001: return "t";
case 002: return "bus or t";
case 003: return "bus and t";
case 004: return "bus xor t";
case 005: return "bus + 1";
case 006: return "bus - 1";
case 007: return "bus + t";
case 010: return "bus - t";
case 011: return "bus - t - 1";
case 012: return "bus + t + 1";
case 013: return "bus + skip";
case 014: return "bus, t";
case 015: return "bus and not t";
case 016: return "0 (undef)";
case 017: return "0 (undef)";
}
return "???";
}
/** @brief BUS source names */
const char* alto2_cpu_device::bs_name(UINT8 bs)
{
switch (bs) {
case 000: return "read_r";
case 001: return "load_r";
case 002: return "no_source";
case 003: return "task_3";
case 004: return "task_4";
case 005: return "read_md";
case 006: return "mouse";
case 007: return "disp";
}
return "???";
}
/** @brief F1 function names */
const char* alto2_cpu_device::f1_name(UINT8 f1)
{
switch (f1) {
case 000: return "nop";
case 001: return "load_mar";
case 002: return "task";
case 003: return "block";
case 004: return "l_lsh_1";
case 005: return "l_rsh_1";
case 006: return "l_lcy_8";
case 007: return "const";
case 010: return "task_10";
case 011: return "task_11";
case 012: return "task_12";
case 013: return "task_13";
case 014: return "task_14";
case 015: return "task_15";
case 016: return "task_16";
case 017: return "task_17";
}
return "???";
}
/** @brief F2 function names */
const char* alto2_cpu_device::f2_name(UINT8 f2)
{
switch (f2) {
case 000: return "nop";
case 001: return "bus=0";
case 002: return "shifter<0";
case 003: return "shifter=0";
case 004: return "bus";
case 005: return "alucy";
case 006: return "load_md";
case 007: return "const";
case 010: return "task_10";
case 011: return "task_11";
case 012: return "task_12";
case 013: return "task_13";
case 014: return "task_14";
case 015: return "task_15";
case 016: return "task_16";
case 017: return "task_17";
}
return "???";
}
#if ALTO2_DEBUG
void alto2_cpu_device::watch_read(UINT32 addr, UINT32 data)
{
LOG((this,LOG_MEM,0,"mem: rd[%06o] = %06o\n", addr, data));
}
void alto2_cpu_device::watch_write(UINT32 addr, UINT32 data)
{
LOG((this,LOG_MEM,0,"mem: wr[%06o] = %06o\n", addr, data));
}
#endif
/** @brief fatal exit on unitialized dynamic phase BUS source */
void alto2_cpu_device::bs_early_bad()
{
fatal(9,"fatal: bad early bus source pointer for task %s, mpc:%05o bs:%s\n",
task_name(m_task), m_mpc, bs_name(bs()));
}
/** @brief fatal exit on unitialized latching phase BUS source */
void alto2_cpu_device::bs_late_bad()
{
fatal(9,"fatal: bad late bus source pointer for task %s, mpc:%05o bs: %s\n",
task_name(m_task), m_mpc, bs_name(bs()));
}
/** @brief fatal exit on unitialized dynamic phase F1 function */
void alto2_cpu_device::f1_early_bad()
{
fatal(9,"fatal: bad early f1 function pointer for task %s, mpc:%05o f1: %s\n",
task_name(m_task), m_mpc, f1_name(f1()));
}
/** @brief fatal exit on unitialized latching phase F1 function */
void alto2_cpu_device::f1_late_bad()
{
fatal(9,"fatal: bad late f1 function pointer for task %s, mpc:%05o f1: %s\n",
task_name(m_task), m_mpc, f1_name(f1()));
}
/** @brief fatal exit on unitialized dynamic phase F2 function */
void alto2_cpu_device::f2_early_bad()
{
fatal(9,"fatal: bad early f2 function pointer for task %s, mpc:%05o f2: %s\n",
task_name(m_task), m_mpc, f2_name(f2()));
}
/** @brief fatal exit on unitialized latching phase F2 function */
void alto2_cpu_device::f2_late_bad()
{
fatal(9,"fatal: bad late f2 function pointer for task %s, mpc:%05o f2: %s\n",
task_name(m_task), m_mpc, f2_name(f2()));
}
#if ALTO2_DEBUG
typedef struct {
UINT16 first, last;
const char* name;
} memory_range_name_t;
memory_range_name_t memory_range_name_table[] = {
{0177016, 0177017, "UTILOUT Printer output (Std. Hardware)"},
{0177020, 0177023, "XBUS Utility input bus (Alto II Std. Hardware)"},
{0177024, 0177024, "MEAR Memory Error Address Register (Alto II Std. Hardware)"},
{0177025, 0177025, "MESR Memory error status register (Alto II Std. Hardware)"},
{0177026, 0177026, "MECR Memory error control register (Alto II Std. Hardware)"},
{0177030, 0177033, "UTILIN Printer status, mouse, keyset (all 4 locations return same thing)"},
{0177034, 0177037, "KBDAD Undecoded keyboard (Std. Hardware)"},
{0177740, 0177757, "BANKREGS Extended memory option bank registers"},
{0177100, 0177100, "- Sumagraphics tablet X"},
{0177101, 0177101, "- Sumagraphics tablet Y"},
{0177140, 0177157, "- Organ keyboard"},
{0177200, 0177204, "- PROM programmer"},
{0177234, 0177237, "- Experimental ursor control"},
{0177240, 0177257, "- Alto II debugger"},
{0177244, 0177247, "- Graphics keyboard"},
{0177400, 0177405, "- Maxc2 maintenance interface"},
{0177400, 0177400, "- Alto DLS input (0)"},
{0177420, 0177420, "- Alto DLS input (1)"},
{0177440, 0177440, "- Alto DLS input (2)"},
{0177460, 0177460, "- Alto DLS input (3)"},
{0177600, 0177677, "- Alto DLS output"},
{0177700, 0177700, "- EIA interface output bit"},
{0177701, 0177701, "EIALOC EIA interface input bit"},
{0177720, 0177737, "- TV Camera Interface"},
{0177764, 0177773, "- Redactron tape drive"},
{0177776, 0177776, "- Digital-Analog Converter, Joystick"},
{0177777, 0177777, "- Digital-Analog Converter, Joystick"}
};
static const char* memory_range_name(offs_t offset)
{
int _min = 0;
int _max = sizeof(memory_range_name_table) / sizeof(memory_range_name_table[0]);
int _mid;
offset %= ALTO2_IO_PAGE_SIZE;
offset += ALTO2_IO_PAGE_BASE;
/* binary search in table of memory ranges */
while (_max >= _min)
{
_mid = (_min + _max) / 2;
if (memory_range_name_table[_mid].last < offset)
_min = _mid + 1;
else if (memory_range_name_table[_mid].first > offset)
_max = _mid - 1;
else if (memory_range_name_table[_mid].first <= offset &&
memory_range_name_table[_mid].last >= offset)
return memory_range_name_table[_mid].name;
}
return "- UNUSED";
}
#endif
/**
* @brief read the open bus for unused MMIO range
*/
READ16_MEMBER( alto2_cpu_device::noop_r )
{
LOG((this,LOG_CPU,0," MMIO rd %s\n", memory_range_name(offset)));
return 0177777;
}
/**
* @brief write nowhere for unused MMIO range
*/
WRITE16_MEMBER( alto2_cpu_device::noop_w )
{
LOG((this,LOG_CPU,0," MMIO wr %s\n", memory_range_name(offset)));
}
/**
* @brief read bank register in memory mapped I/O range
*
* The bank registers are stored in a 16x4-bit RAM 74S189.
*/
READ16_MEMBER( alto2_cpu_device::bank_reg_r )
{
int task = offset & 017;
int bank = m_bank_reg[task] | 0177760;
return bank;
}
/**
* @brief write bank register in memory mapped I/O range
*
* The bank registers are stored in a 16x4-bit RAM 74S189.
*/
WRITE16_MEMBER( alto2_cpu_device::bank_reg_w )
{
int task = offset & 017;
m_bank_reg[task] = data & 017;
LOG((this,LOG_CPU,0," write bank[%02o]=%#o normal:%o extended:%o (%s)\n",
task, data,
GET_BANK_NORMAL(data),
GET_BANK_EXTENDED(data),
task_name(task)));
}
/**
* @brief bs_read_r early: drive bus by R register
*/
void alto2_cpu_device::bs_early_read_r()
{
UINT16 r = m_r[m_rsel];
LOG((this,LOG_CPU,2," <-R%02o; %s (%#o)\n", m_rsel, r_name(m_rsel), r));
m_bus &= r;
}
/**
* @brief bs_load_r early: load R places 0 on the BUS
*/
void alto2_cpu_device::bs_early_load_r()
{
UINT16 r = 0;
LOG((this,LOG_CPU,2," R%02o<-; %s (BUS&=0)\n", m_rsel, r_name(m_rsel)));
m_bus &= r;
}
/**
* @brief bs_load_r late: load R from SHIFTER
*/
void alto2_cpu_device::bs_late_load_r()
{
if (f2() != f2_emu_load_dns) {
m_r[m_rsel] = m_shifter;
if (m_rsel == 037)
m_r[m_rsel] &= ~3;
LOG((this,LOG_CPU,2," R%02o<-; %s = SHIFTER (%#o)\n", m_rsel, r_name(m_rsel), m_shifter));
}
}
/**
* @brief bs_read_md early: drive BUS from read memory data
*/
void alto2_cpu_device::bs_early_read_md()
{
#if ALTO2_DEBUG
UINT32 mar = m_mem.mar;
#endif
UINT16 md = read_mem();
LOG((this,LOG_CPU,2," <-MD; BUS&=MD (%#o=[%#o])\n", md, mar));
m_bus &= md;
}
/**
* @brief bs_mouse early: drive bus by mouse
*/
void alto2_cpu_device::bs_early_mouse()
{
UINT16 r = mouse_read();
LOG((this,LOG_CPU,2," <-MOUSE; BUS&=MOUSE (%#o)\n", r));
m_bus &= r;
}
/**
* @brief bs_disp early: drive bus by displacement (which?)
*/
void alto2_cpu_device::bs_early_disp()
{
UINT16 r = 0177777;
LOG((this,LOG_CPU,0,"BS <-DISP not handled by task %s mpc:%04x\n", task_name(m_task), m_mpc));
LOG((this,LOG_CPU,2," <-DISP; BUS&=DISP ?? (%#o)\n", r));
m_bus &= r;
}
/**
* @brief f1_load_mar late: load memory address register
*
* Load memory address register from the ALU output;
* start main memory reference (see section 2.3).
*/
void alto2_cpu_device::f1_late_load_mar()
{
UINT8 bank = m_bank_reg[m_task];
UINT32 msb;
if (f2() == f2_load_md) {
msb = GET_BANK_EXTENDED(bank) << 16;
LOG((this,LOG_CPU,7, " XMAR %#o\n", msb | m_alu));
} else {
msb = GET_BANK_NORMAL(bank) << 16;
}
load_mar(m_rsel, msb | m_alu);
}
#if USE_PRIO_F9318
/** @brief F9318 input lines */
typedef enum {
PRIO_IN_EI = (1<<8),
PRIO_IN_I7 = (1<<7),
PRIO_IN_I6 = (1<<6),
PRIO_IN_I5 = (1<<5),
PRIO_IN_I4 = (1<<4),
PRIO_IN_I3 = (1<<3),
PRIO_IN_I2 = (1<<2),
PRIO_IN_I1 = (1<<1),
PRIO_IN_I0 = (1<<0),
/* masks */
PRIO_I7 = PRIO_IN_I7,
PRIO_I6_I7 = (PRIO_IN_I6 | PRIO_IN_I7),
PRIO_I5_I7 = (PRIO_IN_I5 | PRIO_I6_I7),
PRIO_I4_I7 = (PRIO_IN_I4 | PRIO_I5_I7),
PRIO_I3_I7 = (PRIO_IN_I3 | PRIO_I4_I7),
PRIO_I2_I7 = (PRIO_IN_I2 | PRIO_I3_I7),
PRIO_I1_I7 = (PRIO_IN_I1 | PRIO_I2_I7),
PRIO_I0_I7 = (PRIO_IN_I0 | PRIO_I1_I7),
} f9318_in_t;
/** @brief F9318 output lines */
typedef enum {
PRIO_OUT_Q0 = (1<<0),
PRIO_OUT_Q1 = (1<<1),
PRIO_OUT_Q2 = (1<<2),
PRIO_OUT_EO = (1<<3),
PRIO_OUT_GS = (1<<4),
/* masks */
PRIO_OUT_QZ = (PRIO_OUT_Q0 | PRIO_OUT_Q1 | PRIO_OUT_Q2)
} f9318_out_t;
/**
* @brief F9318 priority encoder 8 to 3-bit
*
* Emulation of the F9318 chip (pin compatible with 74348).
*
* <PRE>
* F9318
* +---+-+---+
* | +-+ | +---------------------------------+----------------+
* I4' -|1 16|- Vcc | input | output |
* | | +---------------------------------+----------------+
* I5' -|2 15|- EO' | EI I0 I1 I2 I3 I4 I5 I6 I7 | GS Q0 Q1 Q2 EO |
* | | +---------------------------------+----------------+
* I6' -|3 14|- GS' | (a) H x x x x x x x x | H H H H H |
* | | | (b) L H H H H H H H H | H H H H L |
* I7' -|4 13|- I3' +---------------------------------+----------------+
* | | | (c) L x x x x x x x L | L L L L H |
* EI' -|5 12|- I2' | (d) L x x x x x x L H | L H L L H |
* | | | (e) L x x x x x L H H | L L H L H |
* Q2' -|6 11|- I1' | (f) L x x x x L H H H | L H H L H |
* | | | (g) L x x x L H H H H | L L L H H |
* Q1' -|7 10|- I0' | (h) L x x L H H H H H | L H L H H |
* | | | (i) L x L H H H H H H | L L H H H |
* GND -|8 9|- Q0' | (j) L L H H H H H H H | L H H H H |
* | | +---------------------------------+----------------+
* +---------+
* </PRE>
*/
static __inline f9318_out_t f9318(f9318_in_t in)
{
int out;
if (in & PRIO_IN_EI) {
out = PRIO_OUT_EO | PRIO_OUT_GS | PRIO_OUT_QZ;
return static_cast<f9318_out_t>(out);
}
if (0 == (in & PRIO_I7)) {
out = PRIO_OUT_EO;
return static_cast<f9318_out_t>(out);
}
if (PRIO_I7 == (in & PRIO_I6_I7)) {
out = PRIO_OUT_EO | PRIO_OUT_Q0;
return static_cast<f9318_out_t>(out);
}
if (PRIO_I6_I7 == (in & PRIO_I5_I7)) {
out = PRIO_OUT_EO | PRIO_OUT_Q1;
return static_cast<f9318_out_t>(out);
}
if (PRIO_I5_I7 == (in & PRIO_I4_I7)) {
out = PRIO_OUT_EO | PRIO_OUT_Q0 | PRIO_OUT_Q1;
return static_cast<f9318_out_t>(out);
}
if (PRIO_I4_I7 == (in & PRIO_I3_I7)) {
out = PRIO_OUT_EO | PRIO_OUT_Q2;
return static_cast<f9318_out_t>(out);
}
if (PRIO_I3_I7 == (in & PRIO_I2_I7)) {
out = PRIO_OUT_EO | PRIO_OUT_Q0 | PRIO_OUT_Q2;
return static_cast<f9318_out_t>(out);
}
if (PRIO_I2_I7 == (in & PRIO_I1_I7)) {
out = PRIO_OUT_EO | PRIO_OUT_Q1 | PRIO_OUT_Q2;
return static_cast<f9318_out_t>(out);
}
if (PRIO_I1_I7 == (in & PRIO_I0_I7)) {
out = PRIO_OUT_EO | PRIO_OUT_Q0 | PRIO_OUT_Q1 | PRIO_OUT_Q2;
return static_cast<f9318_out_t>(out);
}
out = PRIO_OUT_QZ | PRIO_OUT_GS;
return static_cast<f9318_out_t>(out);
}
#endif
/**
* @brief f1_task early: task switch
*
* The priority encoder finds the highest task requesting service
* and switches the task number after the next cycle.
*
* <PRE>
* CT PROM NEXT' RDCT'
* 1 2 4 8 DATA 6 7 8 9 1 2 4 8
* ---------------------------------
* 0 0 0 0 0367 1 1 1 1 0 1 1 1
* 1 0 0 0 0353 1 1 1 0 1 0 1 1
* 0 1 0 0 0323 1 1 0 1 0 0 1 1
* 1 1 0 0 0315 1 1 0 0 1 1 0 1
* 0 0 1 0 0265 1 0 1 1 0 1 0 1
* 1 0 1 0 0251 1 0 1 0 1 0 0 1
* 0 1 1 0 0221 1 0 0 1 0 0 0 1
* 1 1 1 0 0216 1 0 0 0 1 1 1 0
* 0 0 0 1 0166 0 1 1 1 0 1 1 0
* 1 0 0 1 0152 0 1 1 0 1 0 1 0
* 0 1 0 1 0122 0 1 0 1 0 0 1 0
* 1 1 0 1 0114 0 1 0 0 1 1 0 0
* 0 0 1 1 0064 0 0 1 1 0 1 0 0
* 1 0 1 1 0050 0 0 1 0 1 0 0 0
* 0 1 1 1 0020 0 0 0 1 0 0 0 0
* 1 1 1 1 0017 0 0 0 0 1 1 1 1
*
* The various task wakeups are encoded using two 8:3-bit priority encoders F9318,
* which are pin-compatible to the 74348 (inverted inputs and outputs).
* Their part numbers are U1 and U2.
* The two encoders are chained (EO of U1 goes to EI of U2):
*
* The outputs are fed into some NAND gates (74H10 and 74H00) to decode
* the task number to latch (CT1-CT4) after a F1 TASK. The case where all
* of RDCT1' to RDCT8' are high (1) is decoded as RESET'.
*
* signal function
* --------------------------------------------------
* CT1 (U1.Q0' & U2.Q0' & RDCT1')'
* CT2 (U1.Q1' & U2.Q1' & RDCT2')'
* CT4 (U1.Q2' & U2.Q2' & RDCT4')'
* CT8 (U1.GS' & RDCT8')'
* RESET' RDCT1' & RDCT2' & RDCT4' & RDCT8'
*
* In the tables below "x" is RDCTx' of current task
*
* signal input output, if first 0 CT1 CT2 CT4 CT8
* ----------------------------------------------------------------------------------------
* WAKE17' (T19?) 4 I7 Q2:0 Q1:0 Q0:0 GS:0 EO:1 1 1 1 1
* WAKEKWDT' 3 I6 Q2:0 Q1:0 Q0:1 GS:0 EO:1 x 1 1 1
* WAKEPART' 2 I5 Q2:0 Q1:1 Q0:0 GS:0 EO:1 1 x 1 1
* WAKEDVT' 1 I4 Q2:0 Q1:1 Q0:1 GS:0 EO:1 x x 1 1
* WAKEDHT' 13 I3 Q2:1 Q1:0 Q0:0 GS:0 EO:1 1 1 x 1
* WAKECURT' 12 I2 Q2:1 Q1:0 Q0:1 GS:0 EO:1 x 1 x 1
* WAKEDWT' 11 I1 Q2:1 Q1:1 Q0:0 GS:0 EO:1 1 x x 1
* WAKEMRT' 10 I0 Q2:1 Q1:1 Q0:1 GS:0 EO:1 x x x 1
* otherwise Q2:1 Q1:1 Q0:1 GS:1 EO:0 x x x x
*
* signal input output, if first 0
* ----------------------------------------------------------------------------------------
* WAKEET' 4 I7 Q2:0 Q1:0 Q0:0 GS:0 EO:1 1 1 1 x
* WAKE6' 3 I6 Q2:0 Q1:0 Q0:1 GS:0 EO:1 x 1 1 x
* WAKE5' 2 I5 Q2:0 Q1:1 Q0:0 GS:0 EO:1 1 x 1 x
* WAKEKST' 1 I4 Q2:0 Q1:1 Q0:1 GS:0 EO:1 x x 1 x
* WAKE3' (T23?) 13 I3 Q2:1 Q1:0 Q0:0 GS:0 EO:1 1 1 x x
* WAKE2' 12 I2 Q2:1 Q1:0 Q0:1 GS:0 EO:1 x 1 x x
* WAKE1' 11 I1 Q2:1 Q1:1 Q0:0 GS:0 EO:1 1 x x x
* 0 (GND) 10 I0 Q2:1 Q1:1 Q0:1 GS:0 EO:1 x x x x
* </PRE>
*/
void alto2_cpu_device::f1_early_task()
{
#if USE_PRIO_F9318
/* Doesn't work yet */
f9318_in_t wakeup_hi;
f9318_out_t u1;
f9318_in_t wakeup_lo;
f9318_out_t u2;
int addr = 017;
int rdct1, rdct2, rdct4, rdct8;
int ct1, ct2, ct4, ct8;
int wakeup, ct;
LOG((this,LOG_CPU,2, " TASK %02o:%s\n", m_task, task_name(m_task)));
if (m_task > task_emu && (m_task_wakeup & (1 << m_task)))
addr = m_task;
LOG((this,LOG_CPU,2," ctl2k_u38[%02o] = %04o\n", addr, m_ctl2k_u38[addr] & 017));
rdct1 = (m_ctl2k_u38[addr] >> U38_RDCT1) & 1;
rdct2 = (m_ctl2k_u38[addr] >> U38_RDCT2) & 1;
rdct4 = (m_ctl2k_u38[addr] >> U38_RDCT4) & 1;
rdct8 = (m_ctl2k_u38[addr] >> U38_RDCT8) & 1;
/* wakeup signals are active low */
wakeup = ~m_task_wakeup;
/* U1
* task wakeups 017 to 010 on I7 to I0
* EI is 0 (would be 1 at reset)
*/
wakeup_hi = static_cast<f9318_in_t>((wakeup >> 8) & PRIO_I0_I7);
u1 = f9318(wakeup_hi);
/* U2
* task wakeups 007 to 001 on I7 to I1, I0 is 0
* EO of U1 chained to EI
*/
wakeup_lo = static_cast<f9318_in_t>(wakeup & PRIO_I1_I7);
if (u1 & PRIO_OUT_EO)
wakeup_lo = static_cast<f9318_in_t>(wakeup_lo | PRIO_IN_EI);
u2 = f9318(wakeup_lo);
/* CT1 = (U1.Q0' & U2.Q0' & RDCT1')' */
ct1 = !(u1 & PRIO_OUT_Q0) && !(u2 & PRIO_OUT_Q0) && !rdct1;
LOG((this,LOG_CPU,2," CT1:%o U1.Q0':%o U2.Q0':%o RDCT1':%o\n",
ct1, (u1 & PRIO_OUT_Q0) ? 1 : 0, (u2 & PRIO_OUT_Q0) ? 1 : 0, rdct1));
/* CT2 = (U1.Q1' & U2.Q1' & RDCT2')' */
ct2 = !(u1 & PRIO_OUT_Q1) && !(u2 & PRIO_OUT_Q1) && !rdct2;
LOG((this,LOG_CPU,2," CT2:%o U1.Q1':%o U2.Q1':%o RDCT2':%o\n",
ct2, (u1 & PRIO_OUT_Q1) ? 1 : 0, (u2 & PRIO_OUT_Q1) ? 1 : 0, rdct2));
/* CT4 = (U1.Q2' & U2.Q2' & RDCT4')' */
ct4 = !(u1 & PRIO_OUT_Q2) && !(u2 & PRIO_OUT_Q2) && !rdct4;
LOG((this,LOG_CPU,2," CT4:%o U1.Q2':%o U2.Q2':%o RDCT4':%o\n",
ct4, (u1 & PRIO_OUT_Q2) ? 1 : 0, (u2 & PRIO_OUT_Q2) ? 1 : 0, rdct4));
/* CT8 */
ct8 = !(u1 & PRIO_OUT_GS) && !rdct8;
LOG((this,LOG_CPU,2," CT8:%o U1.GS':%o RDCT8':%o\n",
ct8, (u1 & PRIO_OUT_GS) ? 1 : 0, rdct8));
ct = 8*ct8 + 4*ct4 + 2*ct2 + ct1;
if (ct != m_next_task) {
LOG((this,LOG_CPU,2, " switch to %02o\n", ct));
m_next2_task = ct;
} else {
LOG((this,LOG_CPU,2, " no switch\n"));
}
#else /* USE_PRIO_F9318 */
LOG((this,LOG_CPU,2, " TASK %02o:%s", m_task, task_name(m_task)));
for (int i = 15; i >= 0; i--) {
if (m_task_wakeup & (1 << i)) {
m_next2_task = i;
if (m_next2_task != m_next_task) {
LOG((this,LOG_CPU,2, " switch to %02o:%s\n", m_next2_task, task_name(m_next2_task)));
} else {
LOG((this,LOG_CPU,2, " no switch\n"));
}
return;
}
}
fatal(3, "no tasks requesting service\n");
#endif /* !USE_PRIO_F9318 */
}
/**
* @brief block task
*
* The task wakeup for the active task is cleared
*/
void alto2_cpu_device::f1_early_block()
{
m_task_wakeup &= ~(1 << m_task);
LOG((this,LOG_CPU,2, " BLOCK %02o:%s\n", m_task, task_name(m_task)));
}
/**
* @brief SHIFTER = L shifted left once
*/
void alto2_cpu_device::f1_late_l_lsh_1()
{
m_shifter = m_l << 1;
LOG((this,LOG_CPU,2," SHIFTER <-L LSH 1 (%#o := %#o<<1)\n", m_shifter, m_l));
}
/**
* @brief SHIFTER = L shifted right once
*/
void alto2_cpu_device::f1_late_l_rsh_1()
{
m_shifter = m_l >> 1;
LOG((this,LOG_CPU,2," SHIFTER <-L RSH 1 (%#o := %#o>>1)\n", m_shifter, m_l));
}
/**
* @brief SHIFTER = L cycled 8 times (byte swap)
*/
void alto2_cpu_device::f1_late_l_lcy_8()
{
m_shifter = (m_l >> 8) | (m_l << 8);
LOG((this,LOG_CPU,2," SHIFTER <-L LCY 8 (%#o := bswap %#o)\n", m_shifter, m_l));
}
/**
* @brief f2_bus_eq_zero late: branch on bus equals zero
*/
void alto2_cpu_device::f2_late_bus_eq_zero()
{
UINT16 r = m_bus == 0 ? 1 : 0;
LOG((this,LOG_CPU,2, " BUS=0; %sbranch (%#o|%#o)\n", r ? "" : "no ", m_next2, r));
m_next2 |= r;
}
/**
* @brief branch on shifter less than zero
*/
void alto2_cpu_device::f2_late_shifter_lt_zero()
{
UINT16 r = (m_shifter & 0100000) ? 1 : 0;
LOG((this,LOG_CPU,2, " SH<0; %sbranch (%#o|%#o)\n", r ? "" : "no ", m_next2, r));
m_next2 |= r;
}
/**
* @brief branch on shifter equals zero
*/
void alto2_cpu_device::f2_late_shifter_eq_zero()
{
UINT16 r = m_shifter == 0 ? 1 : 0;
LOG((this,LOG_CPU,2, " SH=0; %sbranch (%#o|%#o)\n", r ? "" : "no ", m_next2, r));
m_next2 |= r;
}
/**
* @brief f2_bus late: branch on bus bits BUS[6-15]
*/
void alto2_cpu_device::f2_late_bus()
{
UINT16 r = X_RDBITS(m_bus,16,6,15);
LOG((this,LOG_CPU,2, " BUS; %sbranch (%#o|%#o)\n", r ? "" : "no ", m_next2, r));
m_next2 |= r;
}
/**
* @brief f2_alucy late: branch on latched ALU carry
*/
void alto2_cpu_device::f2_late_alucy()
{
UINT16 r = m_laluc0;
LOG((this,LOG_CPU,2, " ALUCY; %sbranch (%#o|%#o)\n", r ? "" : "no ", m_next2, r));
m_next2 |= r;
}
/**
* @brief f2_load_md late: load memory data
*
* Deliver BUS data to memory.
*/
void alto2_cpu_device::f2_late_load_md()
{
#if ALTO2_DEBUG
UINT16 mar = m_mem.mar;
#endif
if (f1() == f1_load_mar) {
/* part of an XMAR */
LOG((this,LOG_CPU,2, " XMAR %#o (%#o)\n", mar, m_bus));
} else {
write_mem(m_bus);
LOG((this,LOG_CPU,2, " MD<- BUS ([%#o]=%#o)\n", mar, m_bus));
}
}
/**
* Functional description of the 4-bit ALU 74181
*
* The 74181 is a 4-bit high speed parallel Arithmetic Logic Unit (ALU).
* Controlled by four Function Select inputs (S0-S3) and the Mode Control
* input (M), it can perform all the 16 possible logic operations or 16
* different arithmetic operations on active HIGH or active LOW operands.
* The Function Table lists these operations.
*
* When the Mode Control input (M) is HIGH, all internal carries are
* inhibited and the device performs logic operations on the individual
* bits as listed. When the Mode Control input is LOW, the carries are
* enabled and the device performs arithmetic operations on the two 4-bit
* words. The device incorporates full internal carry lookahead and
* provides for either ripple carry between devices using the Cn+4 output,
* or for carry lookahead between packages using the signals P' (Carry
* Propagate) and G' (Carry Generate). In the ADD mode, P' indicates that
* F' is 15 or more, while G' indicates that F' is 16 or more. In the
* SUBTRACT mode, P' indicates that F' is zero or less, while G' indicates
* that F' is less than zero. P' and G' are not affected by carry in.
* When speed requirements are not stringent, it can be used in a simple
* ripple carry mode by connecting the Carry output (Cn+4) signal to the
* Carry input (Cn) of the next unit. For high speed operation the device
* is used in conjunction with the 74182 carry lookahead circuit. One
* carry lookahead package is required for each group of four 74181 devices.
* Carry lookahead can be provided at various levels and offers high speed
* capability over extremely long word lengths.
*
* The A=B output from the device goes HIGH when all four F' outputs are
* HIGH and can be used to indicate logic equivalence over four bits when
* the unit is in the subtract mode. The A=B output is open collector and
* can be wired-AND with other A=B outputs to give a comparison for more
* than four bits. The A=B signal can also be used with the Cn+4 signal
* to indicated A>B and A<B.
*
* The Function Table lists the arithmetic operations that are performed
* without a carry in. An incoming carry adds a one to each operation.
* Thus, select code 0110 generates A minus B minus 1 (2's complement
* notation) without a carry in and generates A minus B when a carry is
* applied. Because subtraction is actually performed by the complementary
* addition (1's complement), a carry out means borrow; thus a carry is
* generated when there is no underflow and no carry is generated when
* there is underflow. As indicated, this device can be used with either
* active LOW inputs producing active LOW outputs or with active HIGH
* inputs producing active HIGH outputs. For either case the table lists
* the operations that are performed to the operands labeled inside the
* logic symbol.
*
* The AltoI/II use four 74181s and a 74182 carry lookahead circuit,
* and the inputs and outputs are all active HIGH.
*
* Active HIGH operands:
* <PRE>
* +-------------------+-------------+------------------------+------------------------+
* | Mode Select | Logic | Arithmetic w/o carry | Arithmetic w/ carry |
* | Inputs | | | |
* | S3 S2 S1 S0 | (M=1) | (M=0) (Cn=1) | (M=0) (Cn=0) |
* +-------------------+-------------+------------------------+------------------------+
* | 0 0 0 0 | A' | A | A + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 0 0 0 1 | A' | B' | A | B | (A | B) + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 0 0 1 0 | A' & B | A | B' | (A | B') + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 0 0 1 1 | logic 0 | - 1 | -1 + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 0 1 0 0 | (A & B)' | A + (A & B') | A + (A & B') + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 0 1 0 1 | B' | (A | B) + (A & B') | (A | B) + (A & B') + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 0 1 1 0 | A ^ B | A - B - 1 | A - B - 1 + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 0 1 1 1 | A & B' | (A & B) - 1 | (A & B) - 1 + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 1 0 0 0 | A' | B | A + (A & B) | A + (A & B) + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 1 0 0 1 | A' ^ B' | A + B | A + B + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 1 0 1 0 | B | (A | B') + (A & B) | (A | B') + (A & B) + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 1 0 1 1 | A & B | (A & B) - 1 | (A & B) - 1 + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 1 1 0 0 | logic 1 | A + A | A + A + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 1 1 0 1 | A | B' | (A | B) + A | (A | B) + A + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 1 1 1 0 | A | B | (A | B') + A | (A | B') + A + 1 |
* +-------------------+-------------+------------------------+------------------------+
* | 1 1 1 1 | A | A - 1 | A - 1 + 1 |
* +-------------------+-------------+------------------------+------------------------+
* </PRE>
*/
//! S function, M flag and C carry in
#define SMC(s3,s2,s1,s0,m,ci) (s3*A10_ALUS3 + s2*A10_ALUS2 + s1*A10_ALUS1 + s0*A10_ALUS0 + m*A10_ALUM + ci*A10_ALUCI)
/**
* @brief Compute the 74181 ALU operation smc for inputs a and b
*
* The function, arithmetic / logic flag and carry in define the
* ALU operation. The carry in is irrelevant for the logic operations.
* The result is 17 bit, where bit #16 is the carry out.
*
* @param smc S function [0-15], M arithmetic/logic flag, C carry
* @return resulting ALU output
*/
#if 1
UINT32 alto2_cpu_device::alu_74181(UINT32 a, UINT32 b, UINT8 smc)
{
UINT32 f;
const UINT32 cout = 1 << 16;
switch (smc & A10_ALUIN) {
case SMC(0,0,0,0, 0, 0): // 0000: A + 1
f = a + 1;
break;
case SMC(0,0,0,0, 0, 1): // 0000: A
f = a;
break;
case SMC(0,0,0,0, 1, 0): // 0000: A'
case SMC(0,0,0,0, 1, 1):
f = (~a) | cout;
break;
case SMC(0,0,0,1, 0, 0): // 0001: (A | B) + 1
f = (a | b) + 1;
break;
case SMC(0,0,0,1, 0, 1): // 0001: A | B
f = a | b;
break;
case SMC(0,0,0,1, 1, 0): // 0001: A' | B'
case SMC(0,0,0,1, 1, 1):
f = (~a | ~b) | cout;
break;
case SMC(0,0,1,0, 0, 0): // 0010: (A | B') + 1
f = (a | ~b) + 1;
break;
case SMC(0,0,1,0, 0, 1): // 0010: A | B'
f = a | ~b;
break;
case SMC(0,0,1,0, 1, 0): // 0010: A' & B
case SMC(0,0,1,0, 1, 1):
f = (~a & b) | cout;
break;
case SMC(0,0,1,1, 0, 0): // 0011: -1 + 1
f = (-1 + 1) | cout;
break;
case SMC(0,0,1,1, 0, 1): // 0011: -1
f = (-1) | cout;
break;
case SMC(0,0,1,1, 1, 0): // 0011: logic 0
case SMC(0,0,1,1, 1, 1):
f = cout;
break;
case SMC(0,1,0,0, 0, 0): // 0100: A + (A & B') + 1
f = a + (a & ~b) + 1;
break;
case SMC(0,1,0,0, 0, 1): // 0100: A + (A & B')
f = a + (a & ~b);
break;
case SMC(0,1,0,0, 1, 0): // 0100: (A & B)'
case SMC(0,1,0,0, 1, 1):
f = ~(a & b) | cout;
break;
case SMC(0,1,0,1, 0, 0): // 0101: (A | B) + (A & B') + 1
f = (a | b) + (a & ~b) + 1;
break;
case SMC(0,1,0,1, 0, 1): // 0101: (A | B) + (A & B')
f = (a | b) + (a & ~b);
break;
case SMC(0,1,0,1, 1, 0): // 0101: B'
case SMC(0,1,0,1, 1, 1):
f = (~b) | cout;
break;
case SMC(0,1,1,0, 0, 0): // 0110: A - B - 1 + 1
f = (a - b - 1 + 1) ^ cout;
break;
case SMC(0,1,1,0, 0, 1): // 0110: A - B - 1
f = (a - b - 1) ^ cout;
break;
case SMC(0,1,1,0, 1, 0): // 0110: A ^ B
case SMC(0,1,1,0, 1, 1):
f = (a ^ b) | cout;
break;
case SMC(0,1,1,1, 0, 0): // 0111: (A & B) - 1 + 1
f = ((a & b) - 1 + 1) ^ cout;
break;
case SMC(0,1,1,1, 0, 1): // 0111: (A & B) - 1
f = ((a & b) - 1) ^ cout;
break;
case SMC(0,1,1,1, 1, 0): // 0111: A & B'
case SMC(0,1,1,1, 1, 1):
f = (a & ~b) | cout;
break;
case SMC(1,0,0,0, 0, 0): // 1000: A + (A & B) + 1
f = a + (a & b) + 1;
break;
case SMC(1,0,0,0, 0, 1): // 1000: A + (A & B)
f = a + (a & b);
break;
case SMC(1,0,0,0, 1, 0): // 1000: A' | B
case SMC(1,0,0,0, 1, 1):
f = (~a | b) | cout;
break;
case SMC(1,0,0,1, 0, 0): // 1001: A + B + 1
f = a + b + 1;
break;
case SMC(1,0,0,1, 0, 1): // 1001: A + B
f = a + b;
break;
case SMC(1,0,0,1, 1, 0): // 1001: A' ^ B'
case SMC(1,0,0,1, 1, 1):
f = (~a ^ ~b) | cout;
break;
case SMC(1,0,1,0, 0, 0): // 1010: (A | B') + (A & B) + 1
f = (a | ~b) + (a & b) + 1;
break;
case SMC(1,0,1,0, 0, 1): // 1010: (A | B') + (A & B)
f = (a | ~b) + (a & b);
break;
case SMC(1,0,1,0, 1, 0): // 1010: B
case SMC(1,0,1,0, 1, 1):
f = (b) | cout;
break;
case SMC(1,0,1,1, 0, 0): // 1011: (A & B) - 1 + 1
f = ((a & b) - 1 + 1) ^ cout;
break;
case SMC(1,0,1,1, 0, 1): // 1011: (A & B) - 1
f = ((a & b) - 1) ^ cout;
break;
case SMC(1,0,1,1, 1, 0): // 1011: A & B
case SMC(1,0,1,1, 1, 1):
f = (a & b) | cout;
break;
case SMC(1,1,0,0, 0, 0): // 1100: A + A + 1
f = a + a + 1;
break;
case SMC(1,1,0,0, 0, 1): // 1100: A + A
f = a + a;
break;
case SMC(1,1,0,0, 1, 0): // 1100: logic 1
case SMC(1,1,0,0, 1, 1):
f = (~0) | cout;
break;
case SMC(1,1,0,1, 0, 0): // 1101: (A | B) + A + 1
f = (a | b) + a + 1;
break;
case SMC(1,1,0,1, 0, 1): // 1101: (A | B) + A
f = (a | b) + a;
break;
case SMC(1,1,0,1, 1, 0): // 1101: A | B'
case SMC(1,1,0,1, 1, 1):
f = (a | ~b) | cout;
break;
case SMC(1,1,1,0, 0, 0): // 1110: (A | B') + A + 1
f = (a | ~b) + a + 1;
break;
case SMC(1,1,1,0, 0, 1): // 1110: (A | B') + A
f = (a | ~b) + a;
break;
case SMC(1,1,1,0, 1, 0): // 1110: A | B
case SMC(1,1,1,0, 1, 1):
f = (a | b) | cout;
break;
case SMC(1,1,1,1, 0, 0): // 1111: A - 1 + 1
f = (a - 1 + 1) ^ cout;
break;
case SMC(1,1,1,1, 0, 1): // 1111: A - 1
f = (a - 1) ^ cout;
break;
case SMC(1,1,1,1, 1, 0): // 1111: A
case SMC(1,1,1,1, 1, 1):
f = (a) | cout;
break;
default:
f = 0;
break;
}
return f;
}
#else
#define DO_74181(ci,mp,s0,s1,s2,s3,a,b,_b0,_b1,_b2,_b3,f,co) do { \
int a0 = BIT(a,_b0), a1 = BIT(a,_b1), a2 = BIT(a,_b2), a3 = BIT(a,_b3); \
int b0 = BIT(b,_b0), b1 = BIT(b,_b1), b2 = BIT(b,_b2), b3 = BIT(b,_b3); \
int ap0 = !(a0 | (b0 & s0) | (s1 & !b0)); \
int bp0 = !(((!b0) & s2 & a0) | (a0 & b0 & s3)); \
int ap1 = !(a1 | (b1 & s0) | (s1 & !b1)); \
int bp1 = !(((!b1) & s2 & a1) | (a1 & b1 & s3)); \
int ap2 = !(a2 | (b2 & s0) | (s1 & !b2)); \
int bp2 = !(((!b2) & s2 & a2) | (a2 & b2 & s3)); \
int ap3 = !(a3 | (b3 & s0) | (s1 & !b3)); \
int bp3 = !(((!b3) & s2 & a3) | (a3 & b3 & s3)); \
int fp0 = !(ci & mp) ^ ((!ap0) & bp0); \
int fp1 = (!((mp & ap0) | (mp & bp0 & ci))) ^ ((!ap1) & bp1); \
int fp2 = (!((mp & ap1) | (mp & ap0 & bp1) | (mp & ci & bp0 & bp1))) ^ ((!ap2) & bp2); \
int fp3 = (!((mp & ap2) | (mp & ap1 & bp2) | (mp & ap0 & bp1 & bp2) | (mp & ci & bp0 & bp1 & bp2))) ^ ((!ap3) & bp3); \
f |= (fp0 << _b0) | (fp1 << _b1) | (fp2 << _b2) | (fp3 << _b3); \
int g = !((ap0 & bp1 & bp2 & bp3) | (ap1 & bp2 & bp3) | (ap2 & bp3) | ap3); \
co = (!(ci & bp0 & bp1 & bp2 & bp3)) | g; \
} while (0)
UINT32 alto2_cpu_device::alu_74181(UINT32 a, UINT32 b, UINT8 smc)
{
// inputs
int ci = !BIT(smc, 2);
int mp = !BIT(smc, 3);
int s0 = !BIT(smc, 4), s1 = !BIT(smc, 5), s2 = !BIT(smc, 6), s3 = !BIT(smc, 7);
// outputs
UINT32 f = 0;
int cn_x;
DO_74181(ci, mp,s0,s1,s2,s3,a,b, 0, 1, 2, 3,f,cn_x); // 74181 #1
int cn_y;
DO_74181(cn_x,mp,s0,s1,s2,s3,a,b, 4, 5, 6, 7,f,cn_y); // 74181 #2
int cn_z;
DO_74181(cn_y,mp,s0,s1,s2,s3,a,b, 8, 9,10,11,f,cn_z); // 74181 #3
int co;
DO_74181(cn_z,mp,s0,s1,s2,s3,a,b,12,13,14,15,f,co); // 74181 #4
f |= co << 16;
return f;
}
#endif // 0
/** @brief flag that tells whether to load the T register from BUS or ALU */
#define TSELECT A10_TSELECT
/** @brief flag that tells wheter operation was 0: arithmetic (M=0) or 1: logic (M=1) */
#define ALUM A10_ALUM
/** @brief execute the CPU for the number of cycles in m_icount */
void alto2_cpu_device::execute_run()
{
m_next = m_task_mpc[m_task]; // get current task's next mpc and address modifier
m_next2 = m_task_next2[m_task];
attoseconds_t ucycle = DOUBLE_TO_ATTOSECONDS(1.0/m_clock);
do {
if (m_display_time >= 0) {
/**
* Subtract the microcycle time from the display time accu.
* If it underflows, call the display state machine which
* adds the time for 32 pixel clocks to the accu.
* This is very close to every seventh CPU cycle
*/
m_display_time -= ucycle;
if (m_display_time < 0)
display_state_machine();
}
if (m_unload_time >= 0) {
/**
* Subtract the microcycle time from the unload time accu.
* If it underflows, call the unload word function which adds
* the time for 16 or 32 pixel clocks to the accu, or ends
* the FIFO unloading by leaving m_unload_time at -1.
*/
m_unload_time -= ucycle;
if (m_unload_time < 0)
unload_word();
}
if (m_bitclk_time >= 0) {
/**
* Subtract the microcycle time from the bitclk time accu.
* If it underflows, call the disk bitclk function which adds
* the time for one bit as clock cycles to the accu, or ends
* the bitclk sequence by leaving m_bitclk_time at -1.
*/
m_bitclk_time -= ucycle;
disk_bitclk(nullptr, m_bitclk_index);
}
m_mpc = m_next; // next instruction's micro program counter
m_mir = RD_UCODE(m_mpc); // fetch the micro code
m_rsel = rsel();
debugger_instruction_hook(this, m_mpc);
m_cycle++;
if (f1() == f1_load_mar && check_mem_load_mar_stall(m_rsel)) {
LOG((this,LOG_CPU,3, " MAR<- stall\n"));
continue;
}
if (f2() == f2_load_md && check_mem_write_stall()) {
LOG((this,LOG_CPU,3, " MD<- stall\n"));
continue;
}
/*
* Bus source decoding is not performed if f1 == f1_const
* or f2 == f2_const. These functions use the MIR BS field to
* provide a part of the address to the constant ROM instead.
*/
bool do_bs = f1() != f1_const && f2() != f2_const;
if (do_bs && bs() == bs_read_md && check_mem_read_stall()) {
LOG((this,LOG_CPU,3, " <-MD stall\n"));
continue;
}
// now read the next instruction field from the MIR and modify it
m_next = next() | m_next2;
// prefetch the next instruction's next field as next2
m_next2 = X_RDBITS(RD_UCODE(m_next), 32, NEXT0, NEXT9) | (m_next2 & ~ALTO2_UCODE_PAGE_MASK);
LOG((this,LOG_CPU,2,"%s-%04o: %011o r:%02o aluf:%02o bs:%02o f1:%02o f2:%02o t:%o l:%o next:%05o next2:%05o\n",
task_name(m_task), m_mpc, m_mir, m_rsel, aluf(), bs(), f1(), f2(), loadt(), loadl(), m_next, m_next2));
// BUS is all ones at the start of each cycle
m_bus = 0177777;
if (m_rdram_flag)
rdram();
// The constant memory is gated to the bus by F1 == f1_const, F2 == f2_const, or BS >= 4
if (!do_bs || bs() >= bs_task_4) {
const UINT32 addr = 8 * m_rsel + bs();
const UINT16 data = m_const_data[2*addr] | (m_const_data[2*addr+1] << 8);
m_bus &= data;
LOG((this,LOG_CPU,2," %#o; BUS &= %#o CONST[%03o]\n", m_bus, data, addr));
}
/*
* Early F2 function has to be called before early BS,
* because the emulator task F2 acsource or acdest may
* change the value of m_rsel
*/
switch (f2()) {
case f2_task_12: // f2 12 task specific
switch (m_task) {
case task_emu: // emulator task
f2_early_load_dns();
break;
}
break;
case f2_task_13: // f2 13 task specific
switch (m_task) {
case task_emu: // emulator task
f2_early_acdest();
break;
}
break;
case f2_task_16: // f2 16 task specific
switch (m_task) {
case task_emu: // emulator task
f2_early_acsource();
break;
}
break;
}
// early BS function can be done now
if (do_bs) {
switch (bs()) {
case bs_read_r: // BUS source is R register
bs_early_read_r();
break;
case bs_load_r: // load R register from BUS
bs_early_load_r();
break;
case bs_task_3: // BUS source is task specific
switch (m_task) {
case task_emu: // emulator task
bs_early_read_sreg();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
bs_early_read_kstat();
break;
case task_ether: // ethernet task
bs_early_eidfct();
break;
case task_mrt: // memory refresh task
case task_dwt: // display word task
case task_curt: // cursor task
case task_dht: // display horizontal task
case task_dvt: // display vertical task
case task_part: // parity task
break;
default:
bs_early_bad();
}
break;
case bs_task_4: // BUS source is task specific
switch (m_task) {
case task_emu: // emulator task
bs_early_load_sreg();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
bs_early_read_kdata();
break;
case task_ether: // ethernet task
case task_mrt: // memory refresh task
case task_dwt: // display word task
case task_curt: // cursor task
case task_dht: // display horizontal task
case task_dvt: // display vertical task
case task_part: // parity task
break;
default:
bs_early_bad();
}
break;
case bs_read_md: // BUS source is memory data
bs_early_read_md();
break;
case bs_mouse: // BUS source is mouse data
bs_early_mouse();
break;
case bs_disp: // BUS source displacement (emulator task)
switch (m_task) {
case task_emu: // emulator task
bs_early_emu_disp();
break;
default:
bs_early_disp();
}
break;
}
}
// early F1 function
switch (f1()) {
case f1_task: // f1 02 task switch
f1_early_task();
break;
case f1_block: // f1 03 task block
switch (m_task) {
case task_emu: // emulator task
f1_early_emu_block();
break;
case task_ksec: // disk sector task
f1_early_ksec_block();
break;
case task_ether: // ethernet task
f1_early_eth_block();
break;
case task_mrt: // memory refresh task
f1_early_mrt_block();
break;
case task_dwt: // display word task
f1_early_dwt_block();
break;
case task_curt: // cursor task
f1_early_curt_block();
break;
case task_dht: // display horizontal task
f1_early_dht_block();
break;
case task_dvt: // display vertical task
f1_early_dvt_block();
break;
case task_part: // parity task
f1_early_block();
break;
case task_kwd: // disk word task
f1_early_kwd_block();
break;
}
break;
case f1_task_13: // f1 13 task specific
switch (m_task) {
case task_ether: // ethernet task
f1_early_eilfct();
break;
}
break;
case f1_task_14: // f1 14 task specific
switch (m_task) {
case task_ether: // ethernet task
f1_early_epfct();
break;
}
break;
case f1_task_16: // f1 16 task specific
switch (m_task) {
case task_emu: // emulator task
f1_early_rsnf();
break;
}
break;
case f1_task_17: // f1 17 task specific
switch (m_task) {
case task_emu: // emulator task
f1_early_startf();
break;
}
break;
}
/**
* The ALU a10 PROM address lines are
* A4:SKIP A3:ALUF0 A2:ALUF1 A1:ALUF2 A0:ALUF3
* The PROM output lines are
* B0: unused B1: TSELECT B2: ALUCI' B3: ALUM'
* B4: ALUS0' B5: ALUS1' B6: ALUS2' B7: ALUS3'
*
* B1 and B3-B7 are inverted on loading the PROM
*/
const UINT8 a10 = m_alu_a10[(m_emu.skip << 4) | aluf()];
const UINT32 alu = alu_74181(m_bus, m_t, a10);
const int flags = a10 & (TSELECT | ALUM);
m_aluc0 = (alu >> 16) & 1;
m_alu = static_cast<UINT16>(alu);
// WRTRAM must happen now before L is changed
if (m_wrtram_flag)
wrtram();
// shifter passes L, if F1 is not one of L LSH 1, L RSH 1 or L LCY 8
m_shifter = m_l;
// late F1 function call now
switch (f1()) {
case f1_load_mar: // f1 01 load memory address register
f1_late_load_mar();
break;
case f1_l_lsh_1: // f1 04 left shift L once
f1_late_l_lsh_1();
break;
case f1_l_rsh_1: // f1 05 right shift L once
f1_late_l_rsh_1();
break;
case f1_l_lcy_8: // f1 06 cycle L 8 times
f1_late_l_lcy_8();
break;
case f1_task_10: // f1 10 task specific
switch (m_task) {
case task_emu: // emulator task
f1_late_swmode();
break;
}
break;
case f1_task_11: // f1 11 task specific
switch (m_task) {
case task_emu: // emulator task
f1_late_wrtram();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f1_late_strobe();
break;
}
break;
case f1_task_12: // f1 12 task specific
switch (m_task) {
case task_emu: // emulator task
f1_late_rdram();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f1_late_load_kstat();
break;
}
break;
case f1_task_13: // f1 13 task specific
switch (m_task) {
case task_emu: // emulator task
if (m_cram_config == 3) // 3K CRAM available?
f1_late_load_rmr();
else
f1_late_load_srb();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f1_late_increcno();
break;
}
break;
case f1_task_14: // f1 14 task specific
switch (m_task) {
case task_ksec: // disk sector task
case task_kwd: // disk word task
f1_late_clrstat();
break;
}
break;
case f1_task_15: // f1 15 task specific
switch (m_task) {
case task_emu: // emulator task
f1_late_emu_load_esrb();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f1_late_load_kcom();
break;
case task_ether: // ethernet task
f1_late_ewfct();
break;
}
break;
case f1_task_16: // f1 16 task specific
switch (m_task) {
case task_ksec: // disk sector task
case task_kwd: // disk word task
f1_late_load_kadr();
break;
}
break;
case f1_task_17: // f1 17 task specific
switch (m_task) {
case task_ksec: // disk sector task
case task_kwd: // disk word task
f1_late_load_kdata();
break;
}
break;
}
// late F2 function call now
switch (f2()) {
case f2_bus_eq_zero: // f2 01 branch on bus equals 0
f2_late_bus_eq_zero();
break;
case f2_shifter_lt_zero: // f2 02 branch on shifter less than 0
f2_late_shifter_lt_zero();
break;
case f2_shifter_eq_zero: // f2 03 branch on shifter equals 0
f2_late_shifter_eq_zero();
break;
case f2_bus: // f2 04 branch on BUS[6-15]
f2_late_bus();
break;
case f2_alucy: // f2 05 branch on (latched) ALU carry
f2_late_alucy();
break;
case f2_load_md: // f2 06 load memory data
f2_late_load_md();
break;
case f2_task_10: // f2 10 task specific
switch (m_task) {
case task_emu: // emulator task
f2_late_busodd();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f2_late_init();
break;
case task_ether: // ethernet task
f2_late_eodfct();
break;
case task_dwt: // display word task
f2_late_load_ddr();
break;
case task_curt: // cursor task
f2_late_load_xpreg();
break;
case task_dht: // display horizontal task
f2_late_evenfield();
break;
case task_dvt: // display vertical task
f2_late_evenfield();
break;
}
break;
case f2_task_11: // f2 11 task specific
switch (m_task) {
case task_emu: // emulator task
f2_late_magic();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f2_late_rwc();
break;
case task_ether: // ethernet task
f2_late_eosfct();
break;
case task_curt: // cursor task
f2_late_load_csr();
break;
case task_dht: // display horizontal task
f2_late_dht_setmode();
break;
}
break;
case f2_task_12: // f2 12 task specific
switch (m_task) {
case task_emu: // emulator task
f2_late_load_dns();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f2_late_recno();
break;
case task_ether: // ethernet task
f2_late_erbfct();
break;
}
break;
case f2_task_13: // f2 13 task specific
switch (m_task) {
case task_ksec: // disk sector task
case task_kwd: // disk word task
f2_late_xfrdat();
break;
case task_ether: // ethernet task
f2_late_eefct();
break;
}
break;
case f2_task_14: // f2 14 task specific
switch (m_task) {
case task_emu: // emulator task
f2_late_load_ir();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f2_late_swrnrdy();
break;
case task_ether: // ethernet task
f2_late_ebfct();
break;
}
break;
case f2_task_15: // f2 15 task specific
switch (m_task) {
case task_emu: // emulator task
f2_late_idisp();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f2_late_nfer();
break;
case task_ether: // ethernet task
f2_late_ecbfct();
break;
}
break;
case f2_task_16: // f2 16 task specific
switch (m_task) {
case task_emu: // emulator task
f2_late_acsource();
break;
case task_ksec: // disk sector task
case task_kwd: // disk word task
f2_late_strobon();
break;
case task_ether: // ethernet task
f2_late_eisfct();
break;
}
break;
}
// late BS function call now, if no constant was put on the bus
if (do_bs) {
switch (bs()) {
case bs_load_r: // load R register from BUS
bs_late_load_r();
break;
case bs_task_4: // BUS source is task specific
switch (m_task) {
case task_emu: // emulator task
bs_late_load_sreg();
break;
}
break;
}
}
// update T register, if LOADT is set
if (loadt()) {
m_cram_addr = m_alu; // latch CRAM address
if (flags & TSELECT) {
m_t = m_alu; // T source is ALU
LOG((this,LOG_CPU,2, " T<- ALU (%#o)\n", m_alu));
} else {
m_t = m_bus; // T source is BUS
LOG((this,LOG_CPU,2, " T<- BUS (%#o)\n", m_bus));
}
}
// update L register and LALUC0 if LOADL is set
if (loadl()) {
m_l = m_alu; // load L from ALU
if (flags & ALUM) {
m_laluc0 = 0; // logic operation - put 0 into latched carry
LOG((this,LOG_CPU,2, " L<- ALU (%#o); LALUC0<- %o\n", m_alu, 0));
} else {
m_laluc0 = m_aluc0; // arithmethic operation - put ALU carry into latched carry
LOG((this,LOG_CPU,2, " L<- ALU (%#o); LALUC0<- ALUC0 (%o)\n", m_alu, m_aluc0));
}
// update M (MYL) register, if a RAM related task is active
if (m_ram_related[m_task]) {
m_myl = m_alu; // load M from ALU, if 'GOODTASK'
// also writes to S[_task][0], which can't be read
m_s[m_s_reg_bank[m_task]][0] = m_alu;
LOG((this,LOG_CPU,2, " M<- ALU (%#o)\n", m_alu));
}
}
// handle task switching
if (m_task != m_next2_task) {
// switch now?
if (m_task == m_next_task) {
// one more microinstruction
m_next_task = m_next2_task;
} else {
// save this task's next and next2
m_task_mpc[m_task] = m_next;
m_task_next2[m_task] = m_next2;
m_task = m_next_task;
LOG((this,LOG_CPU,1, "task switch to %02o:%s (cycle %lld)\n", m_task, task_name(m_task), cycle()));
// Get the new task's mpc
m_next = m_task_mpc[m_task];
// Get address modifier after task switch.
m_next2 = m_task_next2[m_task];
// Let the task know it becomes active now and
// (most probably) reset the wakeup
switch (m_task) {
case task_emu: // emulator task
// No activate_emu();
break;
case task_ksec: // disk sector task
// No activate_ksec();
break;
case task_ether: // ethernet task
activate_eth();
break;
case task_mrt: // memory refresh task
activate_mrt();
break;
case task_dwt: // display word task
// No activate_dwt();
break;
case task_curt: // cursor task
activate_curt();
break;
case task_dht: // display horizontal task
activate_dht();
break;
case task_dvt: // display vertical task
activate_dvt();
break;
case task_part: // parity task
activate_part();
break;
case task_kwd: // disk word task
// No activate_kwd();
break;
}
}
}
} while (m_icount-- > 0);
// Save this task's mpc and address modifier
m_task_mpc[m_task] = m_next;
m_task_next2[m_task] = m_next2;
}
/** @brief reset the various registers */
void alto2_cpu_device::hard_reset()
{
/* all tasks start in ROM0 */
m_reset_mode = 0xffff;
memset(&m_ram_related, 0, sizeof(m_ram_related));
// install standard handlers in all tasks
for (int task = 0; task < ALTO2_TASKS; task++) {
// every task starts at mpc = task number, in either ROM0 or RAM0
m_task_mpc[task] = (m_ctl2k_u38[task] >> 4) ^ 017;
if (0 == (m_reset_mode & (1 << task)))
m_task_mpc[task] |= m_ucode_ram_base;
}
init_memory();
init_disk();
init_disp();
init_kbd();
init_mouse();
init_hw();
init_emu();
init_ksec();
init_ether();
init_mrt();
init_dwt();
init_curt();
init_dht();
init_dvt();
init_part();
init_kwd();
m_display_time = 0; // reset the display state timing
m_unload_time = 0; // reset the word unload timing accu
m_bitclk_time = 0; // reset the bitclk timing accu
m_task = task_emu; // start with task 0 (emulator)
m_task_wakeup |= 1 << task_emu; // set wakeup flag
}
/** @brief software initiated reset (STARTF) */
void alto2_cpu_device::soft_reset()
{
// Setup the CROM and CRAM configuration
ioport_port* config = ioport(":CONFIG");
if (config)
m_cram_config = (config->read() >> 1) & 3;
switch (m_cram_config) {
case 0: // invalid, default to 1
case 1: // 1K CROM, 1K CRAM, 1 S register bank
m_ucode_rom_pages = 1;
m_ucode_ram_pages = 1;
m_sreg_banks = 1;
break;
case 2: // 2K CROM, 1K CRAM, 1 S register bank
m_ucode_rom_pages = 2;
m_ucode_ram_pages = 1;
m_sreg_banks = 1;
break;
case 3: // 1K CROM, 3K CRAM, 8 S register banks
m_ucode_rom_pages = 1;
m_ucode_ram_pages = 3;
m_sreg_banks = 8;
break;
}
m_ucode_ram_base = m_ucode_rom_pages * ALTO2_UCODE_PAGE_SIZE;
m_ucode_size = (m_ucode_rom_pages + m_ucode_ram_pages) * ALTO2_UCODE_PAGE_SIZE;
for (int task = 0; task < ALTO2_TASKS; task++) {
// every task starts at mpc = task number, in either ROM0 or RAM0
m_task_mpc[task] = (m_ctl2k_u38[task] >> 4) ^ 017;
if (0 == (m_reset_mode & (1 << task)))
m_task_mpc[task] |= m_ucode_ram_base;
}
m_next2_task = task_emu; // switch to task 0 (emulator)
m_reset_mode = 0xffff; // all tasks start in ROM0 again
m_task = task_emu; // set current task to emulator
m_task_wakeup = 1 << task_emu; // set only the emulator task wakeup flag
m_display_time = 0; // reset the display state machine timing accu
m_unload_time = 0; // reset the word unload timing accu
m_bitclk_time = 0; // reset the bitclk timing accu
}