mame/src/emu/emumem.cpp

5092 lines
200 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles,Olivier Galibert
/***************************************************************************
emumem.c
Functions which handle device memory access.
****************************************************************************
Basic theory of memory handling:
An address with up to 32 bits is passed to a memory handler. First,
an address mask is applied to the address, removing unused bits.
Next, the address is broken into two halves, an upper half and a
lower half. The number of bits in each half can be controlled via
the macros in LEVEL1_BITS and LEVEL2_BITS, but they default to the
upper 18 bits and the lower 14 bits.
The upper half is then used as an index into a lookup table of bytes.
If the value pulled from the table is between SUBTABLE_BASE and 255,
then the lower half of the address is needed to resolve the final
handler. In this case, the value from the table is combined with the
lower address bits to form an index into a subtable.
The final result of the lookup is a value from 0 to SUBTABLE_BASE - 1.
These values correspond to memory handlers. The lower numbered
handlers (from 0 through STATIC_COUNT - 1) are fixed handlers and refer
to either memory banks or other special cases. The remaining handlers
(from STATIC_COUNT through SUBTABLE_BASE - 1) are dynamically
allocated to driver-specified handlers.
Thus, table entries fall into these categories:
0 .. STATIC_COUNT - 1 = fixed handlers
STATIC_COUNT .. SUBTABLE_BASE - 1 = driver-specific handlers
SUBTABLE_BASE .. TOTAL_MEMORY_BANKS - 1 = need to look up lower bits in subtable
Caveats:
* If your driver executes an opcode which crosses a bank-switched
boundary, it will pull the wrong data out of memory. Although not
a common case, you may need to revert to memcpy to work around this.
See machine/tnzs.c for an example.
To do:
- Add local banks for RAM/ROM to reduce pressure on banking
- Always mirror everything out to 32 bits so we don't have to mask the address?
- Add the ability to start with another memory map and modify it
- Add fourth memory space for encrypted opcodes
- Automatically mirror program space into data space if no data space
- Get rid of opcode/data separation by using address spaces?
- Add support for internal addressing (maybe just accessors - see TMS3202x)
****************************************************************************
Address map fields and restrictions:
AM_RANGE(start, end)
Specifies a range of consecutive addresses beginning with 'start' and
ending with 'end' inclusive. An address hits in this bucket if the
'address' >= 'start' and 'address' <= 'end'.
AM_MASK(mask)
Specifies a mask for the addresses in the current bucket. This mask
is applied after a positive hit in the bucket specified by AM_RANGE
or AM_SPACE, and is computed before accessing the RAM or calling
through to the read/write handler. If you use AM_MIRROR, below, there
should not be any bits in common between mask and mirror. Same for
select.
AM_MIRROR(mirror)
Specifies mirror addresses for the given bucket. The current bucket
is mapped repeatedly according to the mirror mask, once where each
mirror bit is 0, and once where it is 1. For example, a 'mirror'
value of 0x14000 would map the bucket at 0x00000, 0x04000, 0x10000,
and 0x14000.
AM_SELECT(select)
Mirrors the addresses for the given bucket and pass the corresponding
address bits to the handler. Very useful for devices with multiple
slots/channels/etc were each slot is on a series of consecutive
addresses regrouping all its registers.
AM_ROM
Specifies that this bucket contains ROM data by attaching an
internal read handler. If this address space describes the first
address space for a device, and if there is a region whose name
matches the device's name, and if the bucket start/end range is
within the bounds of that region, then this bucket will automatically
map to the memory contained in that region.
AM_RAM
AM_READONLY
AM_WRITEONLY
Specifies that this bucket contains RAM data by attaching internal
read and/or write handlers. Memory is automatically allocated to back
this area. AM_RAM maps both reads and writes, while AM_READONLY only
maps reads and AM_WRITEONLY only maps writes.
AM_NOP
AM_READNOP
AM_WRITENOP
Specifies that reads and/or writes in this bucket are unmapped, but
that accesses to them should not be logged. AM_NOP unmaps both reads
and writes, while AM_READNOP only unmaps reads, and AM_WRITENOP only
unmaps writes.
AM_UNMAP
Specifies that both reads and writes in thus bucket are unmapeed,
and that accesses to them should be logged. There is rarely a need
for this, as the entire address space is initialized to behave this
way by default.
AM_READ_BANK(tag)
AM_WRITE_BANK(tag)
AM_READWRITE_BANK(tag)
Specifies that reads and/or writes in this bucket map to a memory
bank with the provided 'tag'. The actual memory this bank points to
can be later controlled via the same tag.
AM_READ(read)
AM_WRITE(write)
AM_READWRITE(read, write)
Specifies read and/or write handler callbacks for this bucket. All
reads and writes in this bucket will trigger a call to the provided
functions.
AM_DEVREAD(tag, read)
AM_DEVWRITE(tag, read)
AM_DEVREADWRITE(tag, read)
Specifies a device-specific read and/or write handler for this
bucket, automatically bound to the device specified by the provided
'tag'.
AM_READ_PORT(tag)
AM_WRITE_PORT(tag)
AM_READWRITE_PORT(tag)
Specifies that read and/or write accesses in this bucket will map
to the I/O port with the provided 'tag'. An internal read/write
handler is set up to handle this mapping.
AM_REGION(class, tag, offs)
Only useful if used in conjunction with AM_ROM, AM_RAM, or
AM_READ/WRITE_BANK. By default, memory is allocated to back each
bucket. By specifying AM_REGION, you can tell the memory system to
point the base of the memory backing this bucket to a given memory
'region' at the specified 'offs' instead of allocating it.
AM_SHARE(tag)
Similar to AM_REGION, this specifies that the memory backing the
current bucket is shared with other buckets. The first bucket to
specify the share 'tag' will use its memory as backing for all
future buckets that specify AM_SHARE with the same 'tag'.
AM_SETOFFSET(setoffset)
Specifies a handler for a 'set address' operation. The intended use case
for this operation is to emulate a split-phase memory access: The caller
(usually a CPU) sets the address bus lines using set_address. Some
component may then react, for instance, by asserting a control line
like WAIT before delivering the data on the data bus. The data bits are
then sampled on the read operation or delivered on the write operation
that must be called subsequently.
It is not checked whether the address of the set_address operation
matches the address of the subsequent read/write operation.
The address map translates the address to a bucket and an offset,
hence the name of the macro. If no handler is specified for a bucket,
a set_address operation hitting that bucket returns silently.
AM_DEVSETOFFSET(tag, setoffset)
Specifies a handler for a set_address operation, bound to the device
specified by 'tag'.
***************************************************************************/
#include <list>
#include <map>
#include "emu.h"
#include "emuopts.h"
#include "debug/debugcpu.h"
//**************************************************************************
// DEBUGGING
//**************************************************************************
#define MEM_DUMP (0)
#define VERBOSE (0)
#define TEST_HANDLER (0)
#define VPRINTF(x) do { if (VERBOSE) printf x; } while (0)
/*-------------------------------------------------
core_i64_hex_format - i64 format printf helper
-------------------------------------------------*/
static char *core_i64_hex_format(u64 value, u8 mindigits)
{
static char buffer[16][64];
// TODO: this can overflow - e.g. when a lot of unmapped writes are logged
static int index;
char *bufbase = &buffer[index++ % 16][0];
char *bufptr = bufbase;
s8 curdigit;
for (curdigit = 15; curdigit >= 0; curdigit--)
{
int nibble = (value >> (curdigit * 4)) & 0xf;
if (nibble != 0 || curdigit < mindigits)
{
mindigits = curdigit;
*bufptr++ = "0123456789ABCDEF"[nibble];
}
}
if (bufptr == bufbase)
*bufptr++ = '0';
*bufptr = 0;
return bufbase;
}
//**************************************************************************
// CONSTANTS
//**************************************************************************
// banking constants
const int BANK_ENTRY_UNSPECIFIED = -1;
// other address map constants
const int MEMORY_BLOCK_CHUNK = 65536; // minimum chunk size of allocated memory blocks
// static data access handler constants
enum
{
STATIC_INVALID = 0, // invalid - should never be used
STATIC_BANK1 = 1, // first memory bank
STATIC_BANKMAX = 0xfb, // last memory bank
STATIC_NOP, // NOP - reads = unmapped value; writes = no-op
STATIC_UNMAP, // unmapped - same as NOP except we log errors
STATIC_WATCHPOINT, // watchpoint - used internally
STATIC_COUNT // total number of static handlers
};
//**************************************************************************
// TYPE DEFINITIONS
//**************************************************************************
// ======================> handler_entry
// a handler entry contains information about a memory handler
class handler_entry
{
DISABLE_COPYING(handler_entry);
protected:
// construction/destruction
handler_entry(u8 width, endianness_t endianness, u8 **rambaseptr);
virtual ~handler_entry();
public:
// getters
bool populated() const { return m_populated; }
offs_t bytestart() const { return m_bytestart; }
offs_t byteend() const { return m_byteend; }
offs_t bytemask() const { return m_bytemask; }
virtual const char *name() const = 0;
virtual const char *subunit_name(int entry) const = 0;
void description(char *buffer) const;
virtual void copy(handler_entry *entry);
// return offset within the range referenced by this handler
offs_t byteoffset(offs_t byteaddress) const { return (byteaddress - m_bytestart) & m_bytemask; }
// return a pointer to the backing RAM at the given offset
u8 *ramptr(offs_t offset = 0) const { return *m_rambaseptr + offset; }
// see if we are an exact match to the given parameters
bool matches_exactly(offs_t bytestart, offs_t byteend, offs_t bytemask) const
{
return (m_populated && m_bytestart == bytestart && m_byteend == byteend && m_bytemask == bytemask);
}
// get the start/end address with the given mirror
void mirrored_start_end(offs_t byteaddress, offs_t &start, offs_t &end) const
{
offs_t mirrorbits = (byteaddress - m_bytestart) & ~m_bytemask;
start = m_bytestart | mirrorbits;
end = m_byteend | mirrorbits;
}
// configure the handler addresses, and mark as populated
void configure(offs_t bytestart, offs_t byteend, offs_t bytemask)
{
if (m_populated && m_subunits)
reconfigure_subunits(bytestart);
m_populated = true;
m_bytestart = bytestart;
m_byteend = byteend;
m_bytemask = bytemask;
}
// Re-expand the bytemask after subunit fun
void expand_bytemask(offs_t previous_mask)
{
m_bytemask |= previous_mask;
}
// reconfigure the subunits on a base address change
void reconfigure_subunits(offs_t bytestart);
// depopulate an handler
void deconfigure()
{
m_populated = false;
m_subunits = 0;
}
// apply a global mask
void apply_mask(offs_t bytemask) { m_bytemask &= bytemask; }
void clear_conflicting_subunits(u64 handlermask);
bool overriden_by_mask(u64 handlermask);
protected:
// Subunit description information
struct subunit_info
{
offs_t m_bytemask; // bytemask for this subunit
u32 m_mask; // mask (ff, ffff or ffffffff)
s32 m_offset; // offset to add to the address
u32 m_multiplier; // multiplier to the pre-split address
u8 m_size; // size (8, 16 or 32)
u8 m_shift; // shift of the subunit
};
// internal helpers
void configure_subunits(u64 handlermask, int handlerbits, int &start_slot, int &end_slot);
virtual void remove_subunit(int entry) = 0;
// internal state
bool m_populated; // populated?
u8 m_datawidth;
endianness_t m_endianness;
offs_t m_bytestart; // byte-adjusted start address for handler
offs_t m_byteend; // byte-adjusted end address for handler
offs_t m_bytemask; // byte-adjusted mask against the final address
u8 ** m_rambaseptr; // pointer to the bank base
u8 m_subunits; // for width stubs, the number of subunits
subunit_info m_subunit_infos[8]; // for width stubs, the associated subunit info
u64 m_invsubmask; // inverted mask of the populated subunits
};
// ======================> handler_entry_read
// a read-access-specific extension of handler_entry
class handler_entry_read : public handler_entry
{
public:
struct access_handler
{
// Constructors mean you can't union them
read8_delegate r8;
read16_delegate r16;
read32_delegate r32;
read64_delegate r64;
};
// construction/destruction
handler_entry_read(u8 width, endianness_t endianness, u8 **rambaseptr)
: handler_entry(width, endianness, rambaseptr),
m_ioport(nullptr)
{
}
virtual void copy(handler_entry *entry) override;
// getters
virtual const char *name() const override;
virtual const char *subunit_name(int entry) const override;
// configure delegate callbacks
void set_delegate(read8_delegate delegate, u64 mask = 0);
void set_delegate(read16_delegate delegate, u64 mask = 0);
void set_delegate(read32_delegate delegate, u64 mask = 0);
void set_delegate(read64_delegate delegate, u64 mask = 0);
// configure I/O port access
void set_ioport(ioport_port &ioport);
// read via the underlying delegates
u8 read8(address_space &space, offs_t offset, u8 mask) const { return m_read.r8(space, offset, mask); }
u16 read16(address_space &space, offs_t offset, u16 mask) const { return m_read.r16(space, offset, mask); }
u32 read32(address_space &space, offs_t offset, u32 mask) const { return m_read.r32(space, offset, mask); }
u64 read64(address_space &space, offs_t offset, u64 mask) const { return m_read.r64(space, offset, mask); }
private:
// stubs for converting between address sizes
u16 read_stub_16(address_space &space, offs_t offset, u16 mask);
u32 read_stub_32(address_space &space, offs_t offset, u32 mask);
u64 read_stub_64(address_space &space, offs_t offset, u64 mask);
// stubs for reading I/O ports
template<typename _UintType>
_UintType read_stub_ioport(address_space &space, offs_t offset, _UintType mask) { return m_ioport->read(); }
// internal helper
virtual void remove_subunit(int entry) override;
// internal state
access_handler m_read;
access_handler m_subread[8];
ioport_port * m_ioport;
};
// ======================> handler_entry_write
// a write-access-specific extension of handler_entry
class handler_entry_write : public handler_entry
{
public:
struct access_handler
{
// Constructors mean you can't union them
write8_delegate w8;
write16_delegate w16;
write32_delegate w32;
write64_delegate w64;
};
// construction/destruction
handler_entry_write(u8 width, endianness_t endianness, u8 **rambaseptr)
: handler_entry(width, endianness, rambaseptr),
m_ioport(nullptr)
{
}
virtual void copy(handler_entry *entry) override;
// getters
virtual const char *name() const override;
virtual const char *subunit_name(int entry) const override;
// configure delegate callbacks
void set_delegate(write8_delegate delegate, u64 mask = 0);
void set_delegate(write16_delegate delegate, u64 mask = 0);
void set_delegate(write32_delegate delegate, u64 mask = 0);
void set_delegate(write64_delegate delegate, u64 mask = 0);
// configure I/O port access
void set_ioport(ioport_port &ioport);
// write via the underlying delegates
void write8(address_space &space, offs_t offset, u8 data, u8 mask) const { m_write.w8(space, offset, data, mask); }
void write16(address_space &space, offs_t offset, u16 data, u16 mask) const { m_write.w16(space, offset, data, mask); }
void write32(address_space &space, offs_t offset, u32 data, u32 mask) const { m_write.w32(space, offset, data, mask); }
void write64(address_space &space, offs_t offset, u64 data, u64 mask) const { m_write.w64(space, offset, data, mask); }
private:
// stubs for converting between address sizes
void write_stub_16(address_space &space, offs_t offset, u16 data, u16 mask);
void write_stub_32(address_space &space, offs_t offset, u32 data, u32 mask);
void write_stub_64(address_space &space, offs_t offset, u64 data, u64 mask);
// stubs for writing I/O ports
template<typename _UintType>
void write_stub_ioport(address_space &space, offs_t offset, _UintType data, _UintType mask) { m_ioport->write(data, mask); }
// internal helper
virtual void remove_subunit(int entry) override;
// internal state
access_handler m_write;
access_handler m_subwrite[8];
ioport_port * m_ioport;
};
// ======================> handler_entry_setoffset
// a setoffset-access-specific extension of handler_entry
class handler_entry_setoffset : public handler_entry
{
public:
// construction/destruction
handler_entry_setoffset()
: handler_entry(0, ENDIANNESS_LITTLE, nullptr)
{
}
const char *name() const override { return m_setoffset.name(); }
const char *subunit_name(int entry) const override { return "no subunit"; }
// Call through only if the setoffset handler has been late-bound before
// (i.e. if it was declared in the address map)
void setoffset(address_space &space, offs_t offset) const { if (m_setoffset.has_object()) m_setoffset(space, offset); }
// configure delegate callbacks
void set_delegate(setoffset_delegate delegate, u64 mask = 0) { m_setoffset = delegate; }
private:
setoffset_delegate m_setoffset;
// We do not have subunits for setoffset
// Accordingly, we need not implement unused functions.
void remove_subunit(int entry) override { }
};
// ======================> handler_entry_proxy
// A proxy class that contains an handler_entry_read or _write and forwards the setter calls
template<typename _HandlerEntry>
class handler_entry_proxy
{
public:
handler_entry_proxy(std::list<_HandlerEntry *> _handlers, u64 _mask) : handlers(std::move(_handlers)), mask(_mask) {}
handler_entry_proxy(const handler_entry_proxy<_HandlerEntry> &hep) : handlers(hep.handlers), mask(hep.mask) {}
// forward delegate callbacks configuration
template<typename _delegate> void set_delegate(_delegate delegate) const {
for (const auto & elem : handlers)
(elem)->set_delegate(delegate, mask);
}
// forward I/O port access configuration
void set_ioport(ioport_port &ioport) const {
for (const auto & elem : handlers)
(elem)->set_ioport(ioport);
}
private:
std::list<_HandlerEntry *> handlers;
u64 mask;
};
// ======================> address_table
// address_table contains information about read/write accesses within an address space
class address_table
{
// address map lookup table definitions
static const int LEVEL1_BITS = 18; // number of address bits in the level 1 table
static const int LEVEL2_BITS = 32 - LEVEL1_BITS; // number of address bits in the level 2 table
static const int SUBTABLE_COUNT = 64; // number of slots reserved for subtables
static const int SUBTABLE_BASE = TOTAL_MEMORY_BANKS - SUBTABLE_COUNT; // first index of a subtable
static const int ENTRY_COUNT = SUBTABLE_BASE; // number of legitimate (non-subtable) entries
static const int SUBTABLE_ALLOC = 8; // number of subtables to allocate at a time
inline int level2_bits() const { return m_large ? LEVEL2_BITS : 0; }
public:
// construction/destruction
address_table(address_space &space, bool large);
virtual ~address_table();
// getters
virtual handler_entry &handler(u32 index) const = 0;
bool watchpoints_enabled() const { return (m_live_lookup == s_watchpoint_table); }
// address lookups
u32 lookup_live(offs_t byteaddress) const { return m_large ? lookup_live_large(byteaddress) : lookup_live_small(byteaddress); }
u32 lookup_live_small(offs_t byteaddress) const { return m_live_lookup[byteaddress]; }
u32 lookup_live_large(offs_t byteaddress) const
{
u32 entry = m_live_lookup[level1_index_large(byteaddress)];
if (entry >= SUBTABLE_BASE)
entry = m_live_lookup[level2_index_large(entry, byteaddress)];
return entry;
}
u32 lookup_live_nowp(offs_t byteaddress) const { return m_large ? lookup_live_large_nowp(byteaddress) : lookup_live_small_nowp(byteaddress); }
u32 lookup_live_small_nowp(offs_t byteaddress) const { return m_table[byteaddress]; }
u32 lookup_live_large_nowp(offs_t byteaddress) const
{
u32 entry = m_table[level1_index_large(byteaddress)];
if (entry >= SUBTABLE_BASE)
entry = m_table[level2_index_large(entry, byteaddress)];
return entry;
}
u32 lookup(offs_t byteaddress) const
{
u32 entry = m_live_lookup[level1_index(byteaddress)];
if (entry >= SUBTABLE_BASE)
entry = m_live_lookup[level2_index(entry, byteaddress)];
return entry;
}
// enable watchpoints by swapping in the watchpoint table
void enable_watchpoints(bool enable = true) { m_live_lookup = enable ? s_watchpoint_table : &m_table[0]; }
// table mapping helpers
void map_range(offs_t bytestart, offs_t byteend, offs_t bytemask, offs_t bytemirror, u16 staticentry);
void setup_range(offs_t bytestart, offs_t byteend, offs_t bytemask, offs_t bytemirror, u64 mask, std::list<u32> &entries);
u16 derive_range(offs_t byteaddress, offs_t &bytestart, offs_t &byteend) const;
// misc helpers
void mask_all_handlers(offs_t mask);
const char *handler_name(u16 entry) const;
protected:
// determine table indexes based on the address
u32 level1_index_large(offs_t address) const { return address >> LEVEL2_BITS; }
u32 level2_index_large(u16 l1entry, offs_t address) const { return (1 << LEVEL1_BITS) + ((l1entry - SUBTABLE_BASE) << LEVEL2_BITS) + (address & ((1 << LEVEL2_BITS) - 1)); }
u32 level1_index(offs_t address) const { return m_large ? level1_index_large(address) : address; }
u32 level2_index(u16 l1entry, offs_t address) const { return m_large ? level2_index_large(l1entry, address) : 0; }
// table population/depopulation
void populate_range_mirrored(offs_t bytestart, offs_t byteend, offs_t bytemirror, u16 handler);
void populate_range(offs_t bytestart, offs_t byteend, u16 handler);
// subtable management
u16 subtable_alloc();
void subtable_realloc(u16 subentry);
int subtable_merge();
void subtable_release(u16 subentry);
u16 *subtable_open(offs_t l1index);
void subtable_close(offs_t l1index);
u16 *subtable_ptr(u16 entry) { return &m_table[level2_index(entry, 0)]; }
// internal state
std::vector<u16> m_table; // pointer to base of table
u16 * m_live_lookup; // current lookup
address_space & m_space; // pointer back to the space
bool m_large; // large memory model?
// subtable_data is an internal class with information about each subtable
class subtable_data
{
public:
subtable_data()
: m_checksum_valid(false),
m_checksum(0),
m_usecount(0) { }
bool m_checksum_valid; // is the checksum valid
u32 m_checksum; // checksum over all the bytes
u32 m_usecount; // number of times this has been used
};
std::vector<subtable_data> m_subtable; // info about each subtable
u16 m_subtable_alloc; // number of subtables allocated
// static global read-only watchpoint table
static u16 s_watchpoint_table[1 << LEVEL1_BITS];
private:
int handler_refcount[SUBTABLE_BASE-STATIC_COUNT];
u16 handler_next_free[SUBTABLE_BASE-STATIC_COUNT];
u16 handler_free;
u16 get_free_handler();
void verify_reference_counts();
void setup_range_solid(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, std::list<u32> &entries);
void setup_range_masked(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, u64 mask, std::list<u32> &entries);
void handler_ref(u16 entry, int count)
{
assert(entry < SUBTABLE_BASE);
if (entry >= STATIC_COUNT)
handler_refcount[entry - STATIC_COUNT] += count;
}
void handler_unref(u16 entry)
{
assert(entry < SUBTABLE_BASE);
if (entry >= STATIC_COUNT)
if (! --handler_refcount[entry - STATIC_COUNT])
{
handler(entry).deconfigure();
handler_next_free[entry - STATIC_COUNT] = handler_free;
handler_free = entry;
}
}
};
// ======================> address_table_read
// read access-specific version of an address table
class address_table_read : public address_table
{
public:
// construction/destruction
address_table_read(address_space &space, bool large);
virtual ~address_table_read();
// getters
virtual handler_entry &handler(u32 index) const override;
handler_entry_read &handler_read(u32 index) const { assert(index < ARRAY_LENGTH(m_handlers)); return *m_handlers[index]; }
// range getter
handler_entry_proxy<handler_entry_read> handler_map_range(offs_t bytestart, offs_t byteend, offs_t bytemask, offs_t bytemirror, u64 mask = 0) {
std::list<u32> entries;
setup_range(bytestart, byteend, bytemask, bytemirror, mask, entries);
std::list<handler_entry_read *> handlers;
for (std::list<u32>::const_iterator i = entries.begin(); i != entries.end(); ++i)
handlers.push_back(&handler_read(*i));
return handler_entry_proxy<handler_entry_read>(handlers, mask);
}
private:
// internal unmapped handler
template<typename _UintType>
_UintType unmap_r(address_space &space, offs_t offset, _UintType mask)
{
if (m_space.log_unmap() && !m_space.debugger_access())
{
m_space.device().logerror(
m_space.is_octal()
? "%s: unmapped %s memory read from %0*o & %0*o\n"
: "%s: unmapped %s memory read from %0*X & %0*X\n",
m_space.machine().describe_context(), m_space.name(),
m_space.addrchars(), m_space.byte_to_address(offset * sizeof(_UintType)),
2 * sizeof(_UintType), mask);
}
return m_space.unmap();
}
// internal no-op handler
template<typename _UintType>
_UintType nop_r(address_space &space, offs_t offset, _UintType mask)
{
return m_space.unmap();
}
// internal watchpoint handler
template<typename _UintType>
_UintType watchpoint_r(address_space &space, offs_t offset, _UintType mask)
{
m_space.device().debug()->memory_read_hook(m_space, offset * sizeof(_UintType), mask);
u16 *oldtable = m_live_lookup;
m_live_lookup = &m_table[0];
_UintType result;
if (sizeof(_UintType) == 1) result = m_space.read_byte(offset);
if (sizeof(_UintType) == 2) result = m_space.read_word(offset << 1, mask);
if (sizeof(_UintType) == 4) result = m_space.read_dword(offset << 2, mask);
if (sizeof(_UintType) == 8) result = m_space.read_qword(offset << 3, mask);
m_live_lookup = oldtable;
return result;
}
// internal state
std::unique_ptr<handler_entry_read> m_handlers[TOTAL_MEMORY_BANKS]; // array of user-installed handlers
};
// ======================> address_table_write
// write access-specific version of an address table
class address_table_write : public address_table
{
public:
// construction/destruction
address_table_write(address_space &space, bool large);
virtual ~address_table_write();
// getters
virtual handler_entry &handler(u32 index) const override;
handler_entry_write &handler_write(u32 index) const { assert(index < ARRAY_LENGTH(m_handlers)); return *m_handlers[index]; }
// range getter
handler_entry_proxy<handler_entry_write> handler_map_range(offs_t bytestart, offs_t byteend, offs_t bytemask, offs_t bytemirror, u64 mask = 0) {
std::list<u32> entries;
setup_range(bytestart, byteend, bytemask, bytemirror, mask, entries);
std::list<handler_entry_write *> handlers;
for (std::list<u32>::const_iterator i = entries.begin(); i != entries.end(); ++i)
handlers.push_back(&handler_write(*i));
return handler_entry_proxy<handler_entry_write>(handlers, mask);
}
private:
// internal handlers
template<typename _UintType>
void unmap_w(address_space &space, offs_t offset, _UintType data, _UintType mask)
{
if (m_space.log_unmap() && !m_space.debugger_access())
{
m_space.device().logerror(
m_space.is_octal()
? "%s: unmapped %s memory write to %0*o = %0*o & %0*o\n"
: "%s: unmapped %s memory write to %0*X = %0*X & %0*X\n",
m_space.machine().describe_context(), m_space.name(),
m_space.addrchars(), m_space.byte_to_address(offset * sizeof(_UintType)),
2 * sizeof(_UintType), data,
2 * sizeof(_UintType), mask);
}
}
template<typename _UintType>
void nop_w(address_space &space, offs_t offset, _UintType data, _UintType mask)
{
}
template<typename _UintType>
void watchpoint_w(address_space &space, offs_t offset, _UintType data, _UintType mask)
{
m_space.device().debug()->memory_write_hook(m_space, offset * sizeof(_UintType), data, mask);
u16 *oldtable = m_live_lookup;
m_live_lookup = &m_table[0];
if (sizeof(_UintType) == 1) m_space.write_byte(offset, data);
if (sizeof(_UintType) == 2) m_space.write_word(offset << 1, data, mask);
if (sizeof(_UintType) == 4) m_space.write_dword(offset << 2, data, mask);
if (sizeof(_UintType) == 8) m_space.write_qword(offset << 3, data, mask);
m_live_lookup = oldtable;
}
// internal state
std::unique_ptr<handler_entry_write> m_handlers[TOTAL_MEMORY_BANKS]; // array of user-installed handlers
};
// ======================> address_table_setoffset
// setoffset access-specific version of an address table
class address_table_setoffset : public address_table
{
public:
// construction/destruction
address_table_setoffset(address_space &space, bool large)
: address_table(space, large)
{
// allocate handlers for each entry, prepopulating the bankptrs for banks
for (auto & elem : m_handlers)
elem = std::make_unique<handler_entry_setoffset>();
// Watchpoints and unmap states do not make sense for setoffset
m_handlers[STATIC_NOP]->set_delegate(setoffset_delegate(FUNC(address_table_setoffset::nop_so), this));
m_handlers[STATIC_NOP]->configure(0, space.bytemask(), ~0);
}
~address_table_setoffset()
{
}
handler_entry &handler(u32 index) const override { assert(index < ARRAY_LENGTH(m_handlers)); return *m_handlers[index]; }
handler_entry_setoffset &handler_setoffset(u32 index) const { assert(index < ARRAY_LENGTH(m_handlers)); return *m_handlers[index]; }
// range getter
handler_entry_proxy<handler_entry_setoffset> handler_map_range(offs_t bytestart, offs_t byteend, offs_t bytemask, offs_t bytemirror, u64 mask = 0) {
std::list<u32> entries;
setup_range(bytestart, byteend, bytemask, bytemirror, mask, entries);
std::list<handler_entry_setoffset *> handlers;
for (std::list<u32>::const_iterator i = entries.begin(); i != entries.end(); ++i)
handlers.push_back(&handler_setoffset(*i));
return handler_entry_proxy<handler_entry_setoffset>(handlers, mask);
}
private:
// internal handlers
// Setoffset does not allow for watchpoints, since we assume that a
// corresponding read/write operation will follow, and the watchpoint will
// apply for that operation
// For the same reason it does not make sense to put a warning into the log
// for unmapped locations, as this will be done by the read/write operation
void nop_so(address_space &space, offs_t offset)
{
}
// internal state
std::unique_ptr<handler_entry_setoffset> m_handlers[TOTAL_MEMORY_BANKS]; // array of user-installed handlers
};
// ======================> address_space_specific
// this is a derived class of address_space with specific width, endianness, and table size
template<typename _NativeType, endianness_t _Endian, bool _Large>
class address_space_specific : public address_space
{
typedef address_space_specific<_NativeType, _Endian, _Large> this_type;
// constants describing the native size
static const u32 NATIVE_BYTES = sizeof(_NativeType);
static const u32 NATIVE_MASK = NATIVE_BYTES - 1;
static const u32 NATIVE_BITS = 8 * NATIVE_BYTES;
// helpers to simplify core code
u32 read_lookup(offs_t byteaddress) const { return _Large ? m_read.lookup_live_large(byteaddress) : m_read.lookup_live_small(byteaddress); }
u32 write_lookup(offs_t byteaddress) const { return _Large ? m_write.lookup_live_large(byteaddress) : m_write.lookup_live_small(byteaddress); }
u32 setoffset_lookup(offs_t byteaddress) const { return _Large ? m_setoffset.lookup_live_large(byteaddress) : m_setoffset.lookup_live_small(byteaddress); }
public:
// construction/destruction
address_space_specific(memory_manager &manager, device_memory_interface &memory, address_spacenum spacenum)
: address_space(manager, memory, spacenum, _Large),
m_read(*this, _Large),
m_write(*this, _Large),
m_setoffset(*this, _Large)
{
#if (TEST_HANDLER)
// test code to verify the read/write handlers are touching the correct bits
// and returning the correct results
// install some dummy RAM for the first 16 bytes with well-known values
u8 buffer[16];
for (int index = 0; index < 16; index++)
buffer[index ^ ((_Endian == ENDIANNESS_NATIVE) ? 0 : (data_width()/8 - 1))] = index * 0x11;
install_ram_generic(0x00, 0x0f, 0x0f, 0, ROW_READWRITE, buffer);
printf("\n\naddress_space(%d, %s, %s)\n", NATIVE_BITS, (_Endian == ENDIANNESS_LITTLE) ? "little" : "big", _Large ? "large" : "small");
// walk through the first 8 addresses
for (int address = 0; address < 8; address++)
{
// determine expected values
u64 expected64 = (u64((address + ((_Endian == ENDIANNESS_LITTLE) ? 7 : 0)) * 0x11) << 56) |
(u64((address + ((_Endian == ENDIANNESS_LITTLE) ? 6 : 1)) * 0x11) << 48) |
(u64((address + ((_Endian == ENDIANNESS_LITTLE) ? 5 : 2)) * 0x11) << 40) |
(u64((address + ((_Endian == ENDIANNESS_LITTLE) ? 4 : 3)) * 0x11) << 32) |
(u64((address + ((_Endian == ENDIANNESS_LITTLE) ? 3 : 4)) * 0x11) << 24) |
(u64((address + ((_Endian == ENDIANNESS_LITTLE) ? 2 : 5)) * 0x11) << 16) |
(u64((address + ((_Endian == ENDIANNESS_LITTLE) ? 1 : 6)) * 0x11) << 8) |
(u64((address + ((_Endian == ENDIANNESS_LITTLE) ? 0 : 7)) * 0x11) << 0);
u32 expected32 = (_Endian == ENDIANNESS_LITTLE) ? expected64 : (expected64 >> 32);
u16 expected16 = (_Endian == ENDIANNESS_LITTLE) ? expected32 : (expected32 >> 16);
u8 expected8 = (_Endian == ENDIANNESS_LITTLE) ? expected16 : (expected16 >> 8);
u64 result64;
u32 result32;
u16 result16;
u8 result8;
// validate byte accesses
printf("\nAddress %d\n", address);
printf(" read_byte = "); printf("%02X\n", result8 = read_byte(address)); assert(result8 == expected8);
// validate word accesses (if aligned)
if (WORD_ALIGNED(address)) { printf(" read_word = "); printf("%04X\n", result16 = read_word(address)); assert(result16 == expected16); }
if (WORD_ALIGNED(address)) { printf(" read_word (0xff00) = "); printf("%04X\n", result16 = read_word(address, 0xff00)); assert((result16 & 0xff00) == (expected16 & 0xff00)); }
if (WORD_ALIGNED(address)) { printf(" (0x00ff) = "); printf("%04X\n", result16 = read_word(address, 0x00ff)); assert((result16 & 0x00ff) == (expected16 & 0x00ff)); }
// validate unaligned word accesses
printf(" read_word_unaligned = "); printf("%04X\n", result16 = read_word_unaligned(address)); assert(result16 == expected16);
printf(" read_word_unaligned (0xff00) = "); printf("%04X\n", result16 = read_word_unaligned(address, 0xff00)); assert((result16 & 0xff00) == (expected16 & 0xff00));
printf(" (0x00ff) = "); printf("%04X\n", result16 = read_word_unaligned(address, 0x00ff)); assert((result16 & 0x00ff) == (expected16 & 0x00ff));
// validate dword acceses (if aligned)
if (DWORD_ALIGNED(address)) { printf(" read_dword = "); printf("%08X\n", result32 = read_dword(address)); assert(result32 == expected32); }
if (DWORD_ALIGNED(address)) { printf(" read_dword (0xff000000) = "); printf("%08X\n", result32 = read_dword(address, 0xff000000)); assert((result32 & 0xff000000) == (expected32 & 0xff000000)); }
if (DWORD_ALIGNED(address)) { printf(" (0x00ff0000) = "); printf("%08X\n", result32 = read_dword(address, 0x00ff0000)); assert((result32 & 0x00ff0000) == (expected32 & 0x00ff0000)); }
if (DWORD_ALIGNED(address)) { printf(" (0x0000ff00) = "); printf("%08X\n", result32 = read_dword(address, 0x0000ff00)); assert((result32 & 0x0000ff00) == (expected32 & 0x0000ff00)); }
if (DWORD_ALIGNED(address)) { printf(" (0x000000ff) = "); printf("%08X\n", result32 = read_dword(address, 0x000000ff)); assert((result32 & 0x000000ff) == (expected32 & 0x000000ff)); }
if (DWORD_ALIGNED(address)) { printf(" (0xffff0000) = "); printf("%08X\n", result32 = read_dword(address, 0xffff0000)); assert((result32 & 0xffff0000) == (expected32 & 0xffff0000)); }
if (DWORD_ALIGNED(address)) { printf(" (0x0000ffff) = "); printf("%08X\n", result32 = read_dword(address, 0x0000ffff)); assert((result32 & 0x0000ffff) == (expected32 & 0x0000ffff)); }
if (DWORD_ALIGNED(address)) { printf(" (0xffffff00) = "); printf("%08X\n", result32 = read_dword(address, 0xffffff00)); assert((result32 & 0xffffff00) == (expected32 & 0xffffff00)); }
if (DWORD_ALIGNED(address)) { printf(" (0x00ffffff) = "); printf("%08X\n", result32 = read_dword(address, 0x00ffffff)); assert((result32 & 0x00ffffff) == (expected32 & 0x00ffffff)); }
// validate unaligned dword accesses
printf(" read_dword_unaligned = "); printf("%08X\n", result32 = read_dword_unaligned(address)); assert(result32 == expected32);
printf(" read_dword_unaligned (0xff000000) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0xff000000)); assert((result32 & 0xff000000) == (expected32 & 0xff000000));
printf(" (0x00ff0000) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x00ff0000)); assert((result32 & 0x00ff0000) == (expected32 & 0x00ff0000));
printf(" (0x0000ff00) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x0000ff00)); assert((result32 & 0x0000ff00) == (expected32 & 0x0000ff00));
printf(" (0x000000ff) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x000000ff)); assert((result32 & 0x000000ff) == (expected32 & 0x000000ff));
printf(" (0xffff0000) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0xffff0000)); assert((result32 & 0xffff0000) == (expected32 & 0xffff0000));
printf(" (0x0000ffff) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x0000ffff)); assert((result32 & 0x0000ffff) == (expected32 & 0x0000ffff));
printf(" (0xffffff00) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0xffffff00)); assert((result32 & 0xffffff00) == (expected32 & 0xffffff00));
printf(" (0x00ffffff) = "); printf("%08X\n", result32 = read_dword_unaligned(address, 0x00ffffff)); assert((result32 & 0x00ffffff) == (expected32 & 0x00ffffff));
// validate qword acceses (if aligned)
if (QWORD_ALIGNED(address)) { printf(" read_qword = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address), 16)); assert(result64 == expected64); }
if (QWORD_ALIGNED(address)) { printf(" read_qword (0xff00000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0xff00000000000000U), 16)); assert((result64 & 0xff00000000000000U) == (expected64 & 0xff00000000000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x00ff000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x00ff000000000000U), 16)); assert((result64 & 0x00ff000000000000U) == (expected64 & 0x00ff000000000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x0000ff0000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x0000ff0000000000U), 16)); assert((result64 & 0x0000ff0000000000U) == (expected64 & 0x0000ff0000000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x000000ff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x000000ff00000000U), 16)); assert((result64 & 0x000000ff00000000U) == (expected64 & 0x000000ff00000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x00000000ff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x00000000ff000000U), 16)); assert((result64 & 0x00000000ff000000U) == (expected64 & 0x00000000ff000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x0000000000ff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x0000000000ff0000U), 16)); assert((result64 & 0x0000000000ff0000U) == (expected64 & 0x0000000000ff0000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x000000000000ff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x000000000000ff00U), 16)); assert((result64 & 0x000000000000ff00U) == (expected64 & 0x000000000000ff00U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x00000000000000ff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x00000000000000ffU), 16)); assert((result64 & 0x00000000000000ffU) == (expected64 & 0x00000000000000ffU)); }
if (QWORD_ALIGNED(address)) { printf(" (0xffff000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0xffff000000000000U), 16)); assert((result64 & 0xffff000000000000U) == (expected64 & 0xffff000000000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x0000ffff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x0000ffff00000000U), 16)); assert((result64 & 0x0000ffff00000000U) == (expected64 & 0x0000ffff00000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x00000000ffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x00000000ffff0000U), 16)); assert((result64 & 0x00000000ffff0000U) == (expected64 & 0x00000000ffff0000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x000000000000ffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x000000000000ffffU), 16)); assert((result64 & 0x000000000000ffffU) == (expected64 & 0x000000000000ffffU)); }
if (QWORD_ALIGNED(address)) { printf(" (0xffffff0000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0xffffff0000000000U), 16)); assert((result64 & 0xffffff0000000000U) == (expected64 & 0xffffff0000000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x0000ffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x0000ffffff000000U), 16)); assert((result64 & 0x0000ffffff000000U) == (expected64 & 0x0000ffffff000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x000000ffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x000000ffffff0000U), 16)); assert((result64 & 0x000000ffffff0000U) == (expected64 & 0x000000ffffff0000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x0000000000ffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x0000000000ffffffU), 16)); assert((result64 & 0x0000000000ffffffU) == (expected64 & 0x0000000000ffffffU)); }
if (QWORD_ALIGNED(address)) { printf(" (0xffffffff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0xffffffff00000000U), 16)); assert((result64 & 0xffffffff00000000U) == (expected64 & 0xffffffff00000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x00ffffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x00ffffffff000000U), 16)); assert((result64 & 0x00ffffffff000000U) == (expected64 & 0x00ffffffff000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x0000ffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x0000ffffffff0000U), 16)); assert((result64 & 0x0000ffffffff0000U) == (expected64 & 0x0000ffffffff0000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x000000ffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x000000ffffffff00U), 16)); assert((result64 & 0x000000ffffffff00U) == (expected64 & 0x000000ffffffff00U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x00000000ffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x00000000ffffffffU), 16)); assert((result64 & 0x00000000ffffffffU) == (expected64 & 0x00000000ffffffffU)); }
if (QWORD_ALIGNED(address)) { printf(" (0xffffffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0xffffffffff000000U), 16)); assert((result64 & 0xffffffffff000000U) == (expected64 & 0xffffffffff000000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x00ffffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x00ffffffffff0000U), 16)); assert((result64 & 0x00ffffffffff0000U) == (expected64 & 0x00ffffffffff0000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x0000ffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x0000ffffffffff00U), 16)); assert((result64 & 0x0000ffffffffff00U) == (expected64 & 0x0000ffffffffff00U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x000000ffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x000000ffffffffffU), 16)); assert((result64 & 0x000000ffffffffffU) == (expected64 & 0x000000ffffffffffU)); }
if (QWORD_ALIGNED(address)) { printf(" (0xffffffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0xffffffffffff0000U), 16)); assert((result64 & 0xffffffffffff0000U) == (expected64 & 0xffffffffffff0000U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x00ffffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x00ffffffffffff00U), 16)); assert((result64 & 0x00ffffffffffff00U) == (expected64 & 0x00ffffffffffff00U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x0000ffffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x0000ffffffffffffU), 16)); assert((result64 & 0x0000ffffffffffffU) == (expected64 & 0x0000ffffffffffffU)); }
if (QWORD_ALIGNED(address)) { printf(" (0xffffffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0xffffffffffffff00U), 16)); assert((result64 & 0xffffffffffffff00U) == (expected64 & 0xffffffffffffff00U)); }
if (QWORD_ALIGNED(address)) { printf(" (0x00ffffffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword(address, 0x00ffffffffffffffU), 16)); assert((result64 & 0x00ffffffffffffffU) == (expected64 & 0x00ffffffffffffffU)); }
// validate unaligned qword accesses
printf(" read_qword_unaligned = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address), 16)); assert(result64 == expected64);
printf(" read_qword_unaligned (0xff00000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0xff00000000000000U), 16)); assert((result64 & 0xff00000000000000U) == (expected64 & 0xff00000000000000U));
printf(" (0x00ff000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x00ff000000000000U), 16)); assert((result64 & 0x00ff000000000000U) == (expected64 & 0x00ff000000000000U));
printf(" (0x0000ff0000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x0000ff0000000000U), 16)); assert((result64 & 0x0000ff0000000000U) == (expected64 & 0x0000ff0000000000U));
printf(" (0x000000ff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x000000ff00000000U), 16)); assert((result64 & 0x000000ff00000000U) == (expected64 & 0x000000ff00000000U));
printf(" (0x00000000ff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x00000000ff000000U), 16)); assert((result64 & 0x00000000ff000000U) == (expected64 & 0x00000000ff000000U));
printf(" (0x0000000000ff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x0000000000ff0000U), 16)); assert((result64 & 0x0000000000ff0000U) == (expected64 & 0x0000000000ff0000U));
printf(" (0x000000000000ff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x000000000000ff00U), 16)); assert((result64 & 0x000000000000ff00U) == (expected64 & 0x000000000000ff00U));
printf(" (0x00000000000000ff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x00000000000000ffU), 16)); assert((result64 & 0x00000000000000ffU) == (expected64 & 0x00000000000000ffU));
printf(" (0xffff000000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0xffff000000000000U), 16)); assert((result64 & 0xffff000000000000U) == (expected64 & 0xffff000000000000U));
printf(" (0x0000ffff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x0000ffff00000000U), 16)); assert((result64 & 0x0000ffff00000000U) == (expected64 & 0x0000ffff00000000U));
printf(" (0x00000000ffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x00000000ffff0000U), 16)); assert((result64 & 0x00000000ffff0000U) == (expected64 & 0x00000000ffff0000U));
printf(" (0x000000000000ffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x000000000000ffffU), 16)); assert((result64 & 0x000000000000ffffU) == (expected64 & 0x000000000000ffffU));
printf(" (0xffffff0000000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0xffffff0000000000U), 16)); assert((result64 & 0xffffff0000000000U) == (expected64 & 0xffffff0000000000U));
printf(" (0x0000ffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x0000ffffff000000U), 16)); assert((result64 & 0x0000ffffff000000U) == (expected64 & 0x0000ffffff000000U));
printf(" (0x000000ffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x000000ffffff0000U), 16)); assert((result64 & 0x000000ffffff0000U) == (expected64 & 0x000000ffffff0000U));
printf(" (0x0000000000ffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x0000000000ffffffU), 16)); assert((result64 & 0x0000000000ffffffU) == (expected64 & 0x0000000000ffffffU));
printf(" (0xffffffff00000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0xffffffff00000000U), 16)); assert((result64 & 0xffffffff00000000U) == (expected64 & 0xffffffff00000000U));
printf(" (0x00ffffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x00ffffffff000000U), 16)); assert((result64 & 0x00ffffffff000000U) == (expected64 & 0x00ffffffff000000U));
printf(" (0x0000ffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x0000ffffffff0000U), 16)); assert((result64 & 0x0000ffffffff0000U) == (expected64 & 0x0000ffffffff0000U));
printf(" (0x000000ffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x000000ffffffff00U), 16)); assert((result64 & 0x000000ffffffff00U) == (expected64 & 0x000000ffffffff00U));
printf(" (0x00000000ffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x00000000ffffffffU), 16)); assert((result64 & 0x00000000ffffffffU) == (expected64 & 0x00000000ffffffffU));
printf(" (0xffffffffff000000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0xffffffffff000000U), 16)); assert((result64 & 0xffffffffff000000U) == (expected64 & 0xffffffffff000000U));
printf(" (0x00ffffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x00ffffffffff0000U), 16)); assert((result64 & 0x00ffffffffff0000U) == (expected64 & 0x00ffffffffff0000U));
printf(" (0x0000ffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x0000ffffffffff00U), 16)); assert((result64 & 0x0000ffffffffff00U) == (expected64 & 0x0000ffffffffff00U));
printf(" (0x000000ffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x000000ffffffffffU), 16)); assert((result64 & 0x000000ffffffffffU) == (expected64 & 0x000000ffffffffffU));
printf(" (0xffffffffffff0000) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0xffffffffffff0000U), 16)); assert((result64 & 0xffffffffffff0000U) == (expected64 & 0xffffffffffff0000U));
printf(" (0x00ffffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x00ffffffffffff00U), 16)); assert((result64 & 0x00ffffffffffff00U) == (expected64 & 0x00ffffffffffff00U));
printf(" (0x0000ffffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x0000ffffffffffffU), 16)); assert((result64 & 0x0000ffffffffffffU) == (expected64 & 0x0000ffffffffffffU));
printf(" (0xffffffffffffff00) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0xffffffffffffff00U), 16)); assert((result64 & 0xffffffffffffff00U) == (expected64 & 0xffffffffffffff00U));
printf(" (0x00ffffffffffffff) = "); printf("%s\n", core_i64_hex_format(result64 = read_qword_unaligned(address, 0x00ffffffffffffffU), 16)); assert((result64 & 0x00ffffffffffffffU) == (expected64 & 0x00ffffffffffffffU));
}
#endif
}
// accessors
virtual address_table_read &read() override { return m_read; }
virtual address_table_write &write() override { return m_write; }
virtual address_table_setoffset &setoffset() override { return m_setoffset; }
// watchpoint control
virtual void enable_read_watchpoints(bool enable = true) override { m_read.enable_watchpoints(enable); }
virtual void enable_write_watchpoints(bool enable = true) override { m_write.enable_watchpoints(enable); }
// generate accessor table
virtual void accessors(data_accessors &accessors) const override
{
accessors.read_byte = reinterpret_cast<u8 (*)(address_space &, offs_t)>(&read_byte_static);
accessors.read_word = reinterpret_cast<u16 (*)(address_space &, offs_t)>(&read_word_static);
accessors.read_word_masked = reinterpret_cast<u16 (*)(address_space &, offs_t, u16)>(&read_word_masked_static);
accessors.read_dword = reinterpret_cast<u32 (*)(address_space &, offs_t)>(&read_dword_static);
accessors.read_dword_masked = reinterpret_cast<u32 (*)(address_space &, offs_t, u32)>(&read_dword_masked_static);
accessors.read_qword = reinterpret_cast<u64 (*)(address_space &, offs_t)>(&read_qword_static);
accessors.read_qword_masked = reinterpret_cast<u64 (*)(address_space &, offs_t, u64)>(&read_qword_masked_static);
accessors.write_byte = reinterpret_cast<void (*)(address_space &, offs_t, u8)>(&write_byte_static);
accessors.write_word = reinterpret_cast<void (*)(address_space &, offs_t, u16)>(&write_word_static);
accessors.write_word_masked = reinterpret_cast<void (*)(address_space &, offs_t, u16, u16)>(&write_word_masked_static);
accessors.write_dword = reinterpret_cast<void (*)(address_space &, offs_t, u32)>(&write_dword_static);
accessors.write_dword_masked = reinterpret_cast<void (*)(address_space &, offs_t, u32, u32)>(&write_dword_masked_static);
accessors.write_qword = reinterpret_cast<void (*)(address_space &, offs_t, u64)>(&write_qword_static);
accessors.write_qword_masked = reinterpret_cast<void (*)(address_space &, offs_t, u64, u64)>(&write_qword_masked_static);
}
// return a pointer to the read bank, or nullptr if none
virtual void *get_read_ptr(offs_t byteaddress) override
{
// perform the lookup
byteaddress &= m_bytemask;
u32 entry = read_lookup(byteaddress);
const handler_entry_read &handler = m_read.handler_read(entry);
// 8-bit case: RAM/ROM
if (entry > STATIC_BANKMAX)
return nullptr;
return handler.ramptr(handler.byteoffset(byteaddress));
}
// return a pointer to the write bank, or nullptr if none
virtual void *get_write_ptr(offs_t byteaddress) override
{
// perform the lookup
byteaddress &= m_bytemask;
u32 entry = write_lookup(byteaddress);
const handler_entry_write &handler = m_write.handler_write(entry);
// 8-bit case: RAM/ROM
if (entry > STATIC_BANKMAX)
return nullptr;
return handler.ramptr(handler.byteoffset(byteaddress));
}
// native read
_NativeType read_native(offs_t offset, _NativeType mask)
{
g_profiler.start(PROFILER_MEMREAD);
if (TEST_HANDLER) printf("[r%X,%s]", offset, core_i64_hex_format(mask, sizeof(_NativeType) * 2));
// look up the handler
offs_t byteaddress = offset & m_bytemask;
u32 entry = read_lookup(byteaddress);
const handler_entry_read &handler = m_read.handler_read(entry);
// either read directly from RAM, or call the delegate
offset = handler.byteoffset(byteaddress);
_NativeType result;
if (entry <= STATIC_BANKMAX) result = *reinterpret_cast<_NativeType *>(handler.ramptr(offset));
else if (sizeof(_NativeType) == 1) result = handler.read8(*this, offset, mask);
else if (sizeof(_NativeType) == 2) result = handler.read16(*this, offset >> 1, mask);
else if (sizeof(_NativeType) == 4) result = handler.read32(*this, offset >> 2, mask);
else if (sizeof(_NativeType) == 8) result = handler.read64(*this, offset >> 3, mask);
g_profiler.stop();
return result;
}
// mask-less native read
_NativeType read_native(offs_t offset)
{
g_profiler.start(PROFILER_MEMREAD);
if (TEST_HANDLER) printf("[r%X]", offset);
// look up the handler
offs_t byteaddress = offset & m_bytemask;
u32 entry = read_lookup(byteaddress);
const handler_entry_read &handler = m_read.handler_read(entry);
// either read directly from RAM, or call the delegate
offset = handler.byteoffset(byteaddress);
_NativeType result;
if (entry <= STATIC_BANKMAX) result = *reinterpret_cast<_NativeType *>(handler.ramptr(offset));
else if (sizeof(_NativeType) == 1) result = handler.read8(*this, offset, 0xff);
else if (sizeof(_NativeType) == 2) result = handler.read16(*this, offset >> 1, 0xffff);
else if (sizeof(_NativeType) == 4) result = handler.read32(*this, offset >> 2, 0xffffffff);
else if (sizeof(_NativeType) == 8) result = handler.read64(*this, offset >> 3, 0xffffffffffffffffU);
g_profiler.stop();
return result;
}
// native write
void write_native(offs_t offset, _NativeType data, _NativeType mask)
{
g_profiler.start(PROFILER_MEMWRITE);
// look up the handler
offs_t byteaddress = offset & m_bytemask;
u32 entry = write_lookup(byteaddress);
const handler_entry_write &handler = m_write.handler_write(entry);
// either write directly to RAM, or call the delegate
offset = handler.byteoffset(byteaddress);
if (entry <= STATIC_BANKMAX)
{
_NativeType *dest = reinterpret_cast<_NativeType *>(handler.ramptr(offset));
*dest = (*dest & ~mask) | (data & mask);
}
else if (sizeof(_NativeType) == 1) handler.write8(*this, offset, data, mask);
else if (sizeof(_NativeType) == 2) handler.write16(*this, offset >> 1, data, mask);
else if (sizeof(_NativeType) == 4) handler.write32(*this, offset >> 2, data, mask);
else if (sizeof(_NativeType) == 8) handler.write64(*this, offset >> 3, data, mask);
g_profiler.stop();
}
// mask-less native write
void write_native(offs_t offset, _NativeType data)
{
g_profiler.start(PROFILER_MEMWRITE);
// look up the handler
offs_t byteaddress = offset & m_bytemask;
u32 entry = write_lookup(byteaddress);
const handler_entry_write &handler = m_write.handler_write(entry);
// either write directly to RAM, or call the delegate
offset = handler.byteoffset(byteaddress);
if (entry <= STATIC_BANKMAX) *reinterpret_cast<_NativeType *>(handler.ramptr(offset)) = data;
else if (sizeof(_NativeType) == 1) handler.write8(*this, offset, data, 0xff);
else if (sizeof(_NativeType) == 2) handler.write16(*this, offset >> 1, data, 0xffff);
else if (sizeof(_NativeType) == 4) handler.write32(*this, offset >> 2, data, 0xffffffff);
else if (sizeof(_NativeType) == 8) handler.write64(*this, offset >> 3, data, 0xffffffffffffffffU);
g_profiler.stop();
}
// generic direct read
template<typename _TargetType, bool _Aligned>
_TargetType read_direct(offs_t address, _TargetType mask)
{
const u32 TARGET_BYTES = sizeof(_TargetType);
const u32 TARGET_BITS = 8 * TARGET_BYTES;
// equal to native size and aligned; simple pass-through to the native reader
if (NATIVE_BYTES == TARGET_BYTES && (_Aligned || (address & NATIVE_MASK) == 0))
return read_native(address & ~NATIVE_MASK, mask);
// if native size is larger, see if we can do a single masked read (guaranteed if we're aligned)
if (NATIVE_BYTES > TARGET_BYTES)
{
u32 offsbits = 8 * (address & (NATIVE_BYTES - (_Aligned ? TARGET_BYTES : 1)));
if (_Aligned || (offsbits + TARGET_BITS <= NATIVE_BITS))
{
if (_Endian != ENDIANNESS_LITTLE) offsbits = NATIVE_BITS - TARGET_BITS - offsbits;
return read_native(address & ~NATIVE_MASK, (_NativeType)mask << offsbits) >> offsbits;
}
}
// determine our alignment against the native boundaries, and mask the address
u32 offsbits = 8 * (address & (NATIVE_BYTES - 1));
address &= ~NATIVE_MASK;
// if we're here, and native size is larger or equal to the target, we need exactly 2 reads
if (NATIVE_BYTES >= TARGET_BYTES)
{
// little-endian case
if (_Endian == ENDIANNESS_LITTLE)
{
// read lower bits from lower address
_TargetType result = 0;
_NativeType curmask = (_NativeType)mask << offsbits;
if (curmask != 0) result = read_native(address, curmask) >> offsbits;
// read upper bits from upper address
offsbits = NATIVE_BITS - offsbits;
curmask = mask >> offsbits;
if (curmask != 0) result |= read_native(address + NATIVE_BYTES, curmask) << offsbits;
return result;
}
// big-endian case
else
{
// left-justify the mask to the target type
const u32 LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT = ((NATIVE_BITS >= TARGET_BITS) ? (NATIVE_BITS - TARGET_BITS) : 0);
_NativeType result = 0;
_NativeType ljmask = (_NativeType)mask << LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT;
_NativeType curmask = ljmask >> offsbits;
// read upper bits from lower address
if (curmask != 0) result = read_native(address, curmask) << offsbits;
offsbits = NATIVE_BITS - offsbits;
// read lower bits from upper address
curmask = ljmask << offsbits;
if (curmask != 0) result |= read_native(address + NATIVE_BYTES, curmask) >> offsbits;
// return the un-justified result
return result >> LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT;
}
}
// if we're here, then we have 2 or more reads needed to get our final result
else
{
// compute the maximum number of loops; we do it this way so that there are
// a fixed number of loops for the compiler to unroll if it desires
const u32 MAX_SPLITS_MINUS_ONE = TARGET_BYTES / NATIVE_BYTES - 1;
_TargetType result = 0;
// little-endian case
if (_Endian == ENDIANNESS_LITTLE)
{
// read lowest bits from first address
_NativeType curmask = mask << offsbits;
if (curmask != 0) result = read_native(address, curmask) >> offsbits;
// read middle bits from subsequent addresses
offsbits = NATIVE_BITS - offsbits;
for (u32 index = 0; index < MAX_SPLITS_MINUS_ONE; index++)
{
address += NATIVE_BYTES;
curmask = mask >> offsbits;
if (curmask != 0) result |= (_TargetType)read_native(address, curmask) << offsbits;
offsbits += NATIVE_BITS;
}
// if we're not aligned and we still have bits left, read uppermost bits from last address
if (!_Aligned && offsbits < TARGET_BITS)
{
curmask = mask >> offsbits;
if (curmask != 0) result |= (_TargetType)read_native(address + NATIVE_BYTES, curmask) << offsbits;
}
}
// big-endian case
else
{
// read highest bits from first address
offsbits = TARGET_BITS - (NATIVE_BITS - offsbits);
_NativeType curmask = mask >> offsbits;
if (curmask != 0) result = (_TargetType)read_native(address, curmask) << offsbits;
// read middle bits from subsequent addresses
for (u32 index = 0; index < MAX_SPLITS_MINUS_ONE; index++)
{
offsbits -= NATIVE_BITS;
address += NATIVE_BYTES;
curmask = mask >> offsbits;
if (curmask != 0) result |= (_TargetType)read_native(address, curmask) << offsbits;
}
// if we're not aligned and we still have bits left, read lowermost bits from the last address
if (!_Aligned && offsbits != 0)
{
offsbits = NATIVE_BITS - offsbits;
curmask = mask << offsbits;
if (curmask != 0) result |= read_native(address + NATIVE_BYTES, curmask) >> offsbits;
}
}
return result;
}
}
// generic direct write
template<typename _TargetType, bool _Aligned>
void write_direct(offs_t address, _TargetType data, _TargetType mask)
{
const u32 TARGET_BYTES = sizeof(_TargetType);
const u32 TARGET_BITS = 8 * TARGET_BYTES;
// equal to native size and aligned; simple pass-through to the native writer
if (NATIVE_BYTES == TARGET_BYTES && (_Aligned || (address & NATIVE_MASK) == 0))
return write_native(address & ~NATIVE_MASK, data, mask);
// if native size is larger, see if we can do a single masked write (guaranteed if we're aligned)
if (NATIVE_BYTES > TARGET_BYTES)
{
u32 offsbits = 8 * (address & (NATIVE_BYTES - (_Aligned ? TARGET_BYTES : 1)));
if (_Aligned || (offsbits + TARGET_BITS <= NATIVE_BITS))
{
if (_Endian != ENDIANNESS_LITTLE) offsbits = NATIVE_BITS - TARGET_BITS - offsbits;
return write_native(address & ~NATIVE_MASK, (_NativeType)data << offsbits, (_NativeType)mask << offsbits);
}
}
// determine our alignment against the native boundaries, and mask the address
u32 offsbits = 8 * (address & (NATIVE_BYTES - 1));
address &= ~NATIVE_MASK;
// if we're here, and native size is larger or equal to the target, we need exactly 2 writes
if (NATIVE_BYTES >= TARGET_BYTES)
{
// little-endian case
if (_Endian == ENDIANNESS_LITTLE)
{
// write lower bits to lower address
_NativeType curmask = (_NativeType)mask << offsbits;
if (curmask != 0) write_native(address, (_NativeType)data << offsbits, curmask);
// write upper bits to upper address
offsbits = NATIVE_BITS - offsbits;
curmask = mask >> offsbits;
if (curmask != 0) write_native(address + NATIVE_BYTES, data >> offsbits, curmask);
}
// big-endian case
else
{
// left-justify the mask and data to the target type
const u32 LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT = ((NATIVE_BITS >= TARGET_BITS) ? (NATIVE_BITS - TARGET_BITS) : 0);
_NativeType ljdata = (_NativeType)data << LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT;
_NativeType ljmask = (_NativeType)mask << LEFT_JUSTIFY_TARGET_TO_NATIVE_SHIFT;
// write upper bits to lower address
_NativeType curmask = ljmask >> offsbits;
if (curmask != 0) write_native(address, ljdata >> offsbits, curmask);
// write lower bits to upper address
offsbits = NATIVE_BITS - offsbits;
curmask = ljmask << offsbits;
if (curmask != 0) write_native(address + NATIVE_BYTES, ljdata << offsbits, curmask);
}
}
// if we're here, then we have 2 or more writes needed to get our final result
else
{
// compute the maximum number of loops; we do it this way so that there are
// a fixed number of loops for the compiler to unroll if it desires
const u32 MAX_SPLITS_MINUS_ONE = TARGET_BYTES / NATIVE_BYTES - 1;
// little-endian case
if (_Endian == ENDIANNESS_LITTLE)
{
// write lowest bits to first address
_NativeType curmask = mask << offsbits;
if (curmask != 0) write_native(address, data << offsbits, curmask);
// write middle bits to subsequent addresses
offsbits = NATIVE_BITS - offsbits;
for (u32 index = 0; index < MAX_SPLITS_MINUS_ONE; index++)
{
address += NATIVE_BYTES;
curmask = mask >> offsbits;
if (curmask != 0) write_native(address, data >> offsbits, curmask);
offsbits += NATIVE_BITS;
}
// if we're not aligned and we still have bits left, write uppermost bits to last address
if (!_Aligned && offsbits < TARGET_BITS)
{
curmask = mask >> offsbits;
if (curmask != 0) write_native(address + NATIVE_BYTES, data >> offsbits, curmask);
}
}
// big-endian case
else
{
// write highest bits to first address
offsbits = TARGET_BITS - (NATIVE_BITS - offsbits);
_NativeType curmask = mask >> offsbits;
if (curmask != 0) write_native(address, data >> offsbits, curmask);
// write middle bits to subsequent addresses
for (u32 index = 0; index < MAX_SPLITS_MINUS_ONE; index++)
{
offsbits -= NATIVE_BITS;
address += NATIVE_BYTES;
curmask = mask >> offsbits;
if (curmask != 0) write_native(address, data >> offsbits, curmask);
}
// if we're not aligned and we still have bits left, write lowermost bits to the last address
if (!_Aligned && offsbits != 0)
{
offsbits = NATIVE_BITS - offsbits;
curmask = mask << offsbits;
if (curmask != 0) write_native(address + NATIVE_BYTES, data << offsbits, curmask);
}
}
}
}
// Allows to announce a pending read or write operation on this address.
// The user of the address_space calls a set_address operation which leads
// to some particular set_offset operation for an entry in the address map.
void set_address(offs_t address) override
{
offs_t byteaddress = address & m_bytemask;
u32 entry = setoffset_lookup(byteaddress);
const handler_entry_setoffset &handler = m_setoffset.handler_setoffset(entry);
offs_t offset = handler.byteoffset(byteaddress);
handler.setoffset(*this, offset / sizeof(_NativeType));
}
// virtual access to these functions
u8 read_byte(offs_t address) override { return (NATIVE_BITS == 8) ? read_native(address & ~NATIVE_MASK) : read_direct<u8, true>(address, 0xff); }
u16 read_word(offs_t address) override { return (NATIVE_BITS == 16) ? read_native(address & ~NATIVE_MASK) : read_direct<u16, true>(address, 0xffff); }
u16 read_word(offs_t address, u16 mask) override { return read_direct<u16, true>(address, mask); }
u16 read_word_unaligned(offs_t address) override { return read_direct<u16, false>(address, 0xffff); }
u16 read_word_unaligned(offs_t address, u16 mask) override { return read_direct<u16, false>(address, mask); }
u32 read_dword(offs_t address) override { return (NATIVE_BITS == 32) ? read_native(address & ~NATIVE_MASK) : read_direct<u32, true>(address, 0xffffffff); }
u32 read_dword(offs_t address, u32 mask) override { return read_direct<u32, true>(address, mask); }
u32 read_dword_unaligned(offs_t address) override { return read_direct<u32, false>(address, 0xffffffff); }
u32 read_dword_unaligned(offs_t address, u32 mask) override { return read_direct<u32, false>(address, mask); }
u64 read_qword(offs_t address) override { return (NATIVE_BITS == 64) ? read_native(address & ~NATIVE_MASK) : read_direct<u64, true>(address, 0xffffffffffffffffU); }
u64 read_qword(offs_t address, u64 mask) override { return read_direct<u64, true>(address, mask); }
u64 read_qword_unaligned(offs_t address) override { return read_direct<u64, false>(address, 0xffffffffffffffffU); }
u64 read_qword_unaligned(offs_t address, u64 mask) override { return read_direct<u64, false>(address, mask); }
void write_byte(offs_t address, u8 data) override { if (NATIVE_BITS == 8) write_native(address & ~NATIVE_MASK, data); else write_direct<u8, true>(address, data, 0xff); }
void write_word(offs_t address, u16 data) override { if (NATIVE_BITS == 16) write_native(address & ~NATIVE_MASK, data); else write_direct<u16, true>(address, data, 0xffff); }
void write_word(offs_t address, u16 data, u16 mask) override { write_direct<u16, true>(address, data, mask); }
void write_word_unaligned(offs_t address, u16 data) override { write_direct<u16, false>(address, data, 0xffff); }
void write_word_unaligned(offs_t address, u16 data, u16 mask) override { write_direct<u16, false>(address, data, mask); }
void write_dword(offs_t address, u32 data) override { if (NATIVE_BITS == 32) write_native(address & ~NATIVE_MASK, data); else write_direct<u32, true>(address, data, 0xffffffff); }
void write_dword(offs_t address, u32 data, u32 mask) override { write_direct<u32, true>(address, data, mask); }
void write_dword_unaligned(offs_t address, u32 data) override { write_direct<u32, false>(address, data, 0xffffffff); }
void write_dword_unaligned(offs_t address, u32 data, u32 mask) override { write_direct<u32, false>(address, data, mask); }
void write_qword(offs_t address, u64 data) override { if (NATIVE_BITS == 64) write_native(address & ~NATIVE_MASK, data); else write_direct<u64, true>(address, data, 0xffffffffffffffffU); }
void write_qword(offs_t address, u64 data, u64 mask) override { write_direct<u64, true>(address, data, mask); }
void write_qword_unaligned(offs_t address, u64 data) override { write_direct<u64, false>(address, data, 0xffffffffffffffffU); }
void write_qword_unaligned(offs_t address, u64 data, u64 mask) override { write_direct<u64, false>(address, data, mask); }
// static access to these functions
static u8 read_byte_static(this_type &space, offs_t address) { return (NATIVE_BITS == 8) ? space.read_native(address & ~NATIVE_MASK) : space.read_direct<u8, true>(address, 0xff); }
static u16 read_word_static(this_type &space, offs_t address) { return (NATIVE_BITS == 16) ? space.read_native(address & ~NATIVE_MASK) : space.read_direct<u16, true>(address, 0xffff); }
static u16 read_word_masked_static(this_type &space, offs_t address, u16 mask) { return space.read_direct<u16, true>(address, mask); }
static u32 read_dword_static(this_type &space, offs_t address) { return (NATIVE_BITS == 32) ? space.read_native(address & ~NATIVE_MASK) : space.read_direct<u32, true>(address, 0xffffffff); }
static u32 read_dword_masked_static(this_type &space, offs_t address, u32 mask) { return space.read_direct<u32, true>(address, mask); }
static u64 read_qword_static(this_type &space, offs_t address) { return (NATIVE_BITS == 64) ? space.read_native(address & ~NATIVE_MASK) : space.read_direct<u64, true>(address, 0xffffffffffffffffU); }
static u64 read_qword_masked_static(this_type &space, offs_t address, u64 mask) { return space.read_direct<u64, true>(address, mask); }
static void write_byte_static(this_type &space, offs_t address, u8 data) { if (NATIVE_BITS == 8) space.write_native(address & ~NATIVE_MASK, data); else space.write_direct<u8, true>(address, data, 0xff); }
static void write_word_static(this_type &space, offs_t address, u16 data) { if (NATIVE_BITS == 16) space.write_native(address & ~NATIVE_MASK, data); else space.write_direct<u16, true>(address, data, 0xffff); }
static void write_word_masked_static(this_type &space, offs_t address, u16 data, u16 mask) { space.write_direct<u16, true>(address, data, mask); }
static void write_dword_static(this_type &space, offs_t address, u32 data) { if (NATIVE_BITS == 32) space.write_native(address & ~NATIVE_MASK, data); else space.write_direct<u32, true>(address, data, 0xffffffff); }
static void write_dword_masked_static(this_type &space, offs_t address, u32 data, u32 mask) { space.write_direct<u32, true>(address, data, mask); }
static void write_qword_static(this_type &space, offs_t address, u64 data) { if (NATIVE_BITS == 64) space.write_native(address & ~NATIVE_MASK, data); else space.write_direct<u64, true>(address, data, 0xffffffffffffffffU); }
static void write_qword_masked_static(this_type &space, offs_t address, u64 data, u64 mask) { space.write_direct<u64, true>(address, data, mask); }
address_table_read m_read; // memory read lookup table
address_table_write m_write; // memory write lookup table
address_table_setoffset m_setoffset; // memory setoffset lookup table
};
typedef address_space_specific<u8, ENDIANNESS_LITTLE, false> address_space_8le_small;
typedef address_space_specific<u8, ENDIANNESS_BIG, false> address_space_8be_small;
typedef address_space_specific<u16, ENDIANNESS_LITTLE, false> address_space_16le_small;
typedef address_space_specific<u16, ENDIANNESS_BIG, false> address_space_16be_small;
typedef address_space_specific<u32, ENDIANNESS_LITTLE, false> address_space_32le_small;
typedef address_space_specific<u32, ENDIANNESS_BIG, false> address_space_32be_small;
typedef address_space_specific<u64, ENDIANNESS_LITTLE, false> address_space_64le_small;
typedef address_space_specific<u64, ENDIANNESS_BIG, false> address_space_64be_small;
typedef address_space_specific<u8, ENDIANNESS_LITTLE, true> address_space_8le_large;
typedef address_space_specific<u8, ENDIANNESS_BIG, true> address_space_8be_large;
typedef address_space_specific<u16, ENDIANNESS_LITTLE, true> address_space_16le_large;
typedef address_space_specific<u16, ENDIANNESS_BIG, true> address_space_16be_large;
typedef address_space_specific<u32, ENDIANNESS_LITTLE, true> address_space_32le_large;
typedef address_space_specific<u32, ENDIANNESS_BIG, true> address_space_32be_large;
typedef address_space_specific<u64, ENDIANNESS_LITTLE, true> address_space_64le_large;
typedef address_space_specific<u64, ENDIANNESS_BIG, true> address_space_64be_large;
//**************************************************************************
// GLOBAL VARIABLES
//**************************************************************************
// global watchpoint table
u16 address_table::s_watchpoint_table[1 << LEVEL1_BITS];
//**************************************************************************
// FUNCTION PROTOTYPES
//**************************************************************************
// debugging
static void generate_memdump(running_machine &machine);
//**************************************************************************
// MEMORY MANAGER
//**************************************************************************
//-------------------------------------------------
// memory_manager - constructor
//-------------------------------------------------
memory_manager::memory_manager(running_machine &machine)
: m_machine(machine),
m_initialized(false),
m_banknext(STATIC_BANK1)
{
memset(m_bank_ptr, 0, sizeof(m_bank_ptr));
}
//-------------------------------------------------
// allocate - allocate memory spaces
//-------------------------------------------------
void memory_manager::allocate(device_memory_interface &memory)
{
for (address_spacenum spacenum = AS_0; spacenum < ADDRESS_SPACES; ++spacenum)
{
// if there is a configuration for this space, we need an address space
const address_space_config *spaceconfig = memory.space_config(spacenum);
if (spaceconfig != nullptr)
address_space::allocate(m_spacelist, *this, *spaceconfig, memory, spacenum);
}
}
//-------------------------------------------------
// initialize - initialize the memory system
//-------------------------------------------------
void memory_manager::initialize()
{
// loop over devices and spaces within each device
memory_interface_iterator iter(machine().root_device());
for (device_memory_interface &memory : iter)
allocate(memory);
allocate(m_machine.m_dummy_space);
// construct and preprocess the address_map for each space
for (auto &space : m_spacelist)
space->prepare_map();
// create the handlers from the resulting address maps
for (auto &space : m_spacelist)
space->populate_from_map();
// allocate memory needed to back each address space
for (auto &space : m_spacelist)
space->allocate_memory();
// find all the allocated pointers
for (auto &space : m_spacelist)
space->locate_memory();
// disable logging of unmapped access when no one receives it
for (auto &space : m_spacelist)
{
if (!machine().options().log() && !machine().options().oslog() && !(machine().debug_flags & DEBUG_FLAG_ENABLED))
space->set_log_unmap(false);
}
// register a callback to reset banks when reloading state
machine().save().register_postload(save_prepost_delegate(FUNC(memory_manager::bank_reattach), this));
// dump the final memory configuration
generate_memdump(machine());
// we are now initialized
m_initialized = true;
}
//-------------------------------------------------
// dump - dump the internal memory tables to the
// given file
//-------------------------------------------------
void memory_manager::dump(FILE *file)
{
// skip if we can't open the file
if (file == nullptr)
return;
// loop over address spaces
for (auto &space : m_spacelist)
{
fprintf(file, "\n\n"
"====================================================\n"
"Device '%s' %s address space read handler dump\n"
"====================================================\n", space->device().tag(), space->name());
space->dump_map(file, ROW_READ);
fprintf(file, "\n\n"
"====================================================\n"
"Device '%s' %s address space write handler dump\n"
"====================================================\n", space->device().tag(), space->name());
space->dump_map(file, ROW_WRITE);
}
}
//-------------------------------------------------
// region_alloc - allocates memory for a region
//-------------------------------------------------
memory_region *memory_manager::region_alloc(const char *name, u32 length, u8 width, endianness_t endian)
{
osd_printf_verbose("Region '%s' created\n", name);
// make sure we don't have a region of the same name; also find the end of the list
if (m_regionlist.find(name) != m_regionlist.end())
fatalerror("region_alloc called with duplicate region name \"%s\"\n", name);
// allocate the region
m_regionlist.emplace(name, std::make_unique<memory_region>(machine(), name, length, width, endian));
return m_regionlist.find(name)->second.get();
}
//-------------------------------------------------
// region_free - releases memory for a region
//-------------------------------------------------
void memory_manager::region_free(const char *name)
{
m_regionlist.erase(name);
}
//-------------------------------------------------
// region_containing - helper to determine if
// a block of memory is part of a region
//-------------------------------------------------
memory_region *memory_manager::region_containing(const void *memory, offs_t bytes) const
{
const u8 *data = reinterpret_cast<const u8 *>(memory);
// look through the region list and return the first match
for (auto &region : m_regionlist)
if (data >= region.second->base() && (data + bytes) < region.second->end())
return region.second.get();
// didn't find one
return nullptr;
}
//-------------------------------------------------
// generate_memdump - internal memory dump
//-------------------------------------------------
static void generate_memdump(running_machine &machine)
{
if (MEM_DUMP)
{
FILE *file = fopen("memdump.log", "w");
if (file)
{
machine.memory().dump(file);
fclose(file);
}
}
}
//-------------------------------------------------
// bank_reattach - reconnect banks after a load
//-------------------------------------------------
void memory_manager::bank_reattach()
{
// for each non-anonymous bank, explicitly reset its entry
for (auto &bank : m_banklist)
if (!bank.second->anonymous() && bank.second->entry() != BANK_ENTRY_UNSPECIFIED)
bank.second->set_entry(bank.second->entry());
}
//**************************************************************************
// ADDRESS SPACE
//**************************************************************************
//-------------------------------------------------
// address_space - constructor
//-------------------------------------------------
address_space::address_space(memory_manager &manager, device_memory_interface &memory, address_spacenum spacenum, bool large)
: m_config(*memory.space_config(spacenum)),
m_device(memory.device()),
m_addrmask(0xffffffffUL >> (32 - m_config.m_addrbus_width)),
m_bytemask(address_to_byte_end(m_addrmask)),
m_logaddrmask(0xffffffffUL >> (32 - m_config.m_logaddr_width)),
m_logbytemask(address_to_byte_end(m_logaddrmask)),
m_unmap(0),
m_spacenum(spacenum),
m_debugger_access(false),
m_log_unmap(true),
m_direct(std::make_unique<direct_read_data>(*this)),
m_name(memory.space_config(spacenum)->name()),
m_addrchars((m_config.m_addrbus_width + 3) / 4),
m_logaddrchars((m_config.m_logaddr_width + 3) / 4),
m_manager(manager),
m_machine(memory.device().machine())
{
// notify the device
memory.set_address_space(spacenum, *this);
}
//-------------------------------------------------
// ~address_space - destructor
//-------------------------------------------------
address_space::~address_space()
{
}
//-------------------------------------------------
// allocate - static smart allocator of subtypes
//-------------------------------------------------
void address_space::allocate(std::vector<std::unique_ptr<address_space>> &space_list,memory_manager &manager, const address_space_config &config, device_memory_interface &memory, address_spacenum spacenum)
{
// allocate one of the appropriate type
bool large = (config.addr2byte_end(0xffffffffUL >> (32 - config.m_addrbus_width)) >= (1 << 18));
switch (config.data_width())
{
case 8:
if (config.endianness() == ENDIANNESS_LITTLE)
{
if (large)
space_list.push_back(std::make_unique<address_space_8le_large>(manager, memory, spacenum));
else
space_list.push_back(std::make_unique<address_space_8le_small>(manager, memory, spacenum));
}
else
{
if (large)
space_list.push_back(std::make_unique<address_space_8be_large>(manager, memory, spacenum));
else
space_list.push_back(std::make_unique<address_space_8be_small>(manager, memory, spacenum));
}
break;
case 16:
if (config.endianness() == ENDIANNESS_LITTLE)
{
if (large)
space_list.push_back(std::make_unique<address_space_16le_large>(manager, memory, spacenum));
else
space_list.push_back(std::make_unique<address_space_16le_small>(manager, memory, spacenum));
}
else
{
if (large)
space_list.push_back(std::make_unique<address_space_16be_large>(manager, memory, spacenum));
else
space_list.push_back(std::make_unique<address_space_16be_small>(manager, memory, spacenum));
}
break;
case 32:
if (config.endianness() == ENDIANNESS_LITTLE)
{
if (large)
space_list.push_back(std::make_unique<address_space_32le_large>(manager, memory, spacenum));
else
space_list.push_back(std::make_unique<address_space_32le_small>(manager, memory, spacenum));
}
else
{
if (large)
space_list.push_back(std::make_unique<address_space_32be_large>(manager, memory, spacenum));
else
space_list.push_back(std::make_unique<address_space_32be_small>(manager, memory, spacenum));
}
break;
case 64:
if (config.endianness() == ENDIANNESS_LITTLE)
{
if (large)
space_list.push_back(std::make_unique<address_space_64le_large>(manager, memory, spacenum));
else
space_list.push_back(std::make_unique<address_space_64le_small>(manager, memory, spacenum));
}
else
{
if (large)
space_list.push_back(std::make_unique<address_space_64be_large>(manager, memory, spacenum));
else
space_list.push_back(std::make_unique<address_space_64be_small>(manager, memory, spacenum));
}
break;
default:
throw emu_fatalerror("Invalid width %d specified for address_space::allocate", config.data_width());
}
}
//-------------------------------------------------
// adjust_addresses - adjust addresses for a
// given address space in a standard fashion
//-------------------------------------------------
inline void address_space::adjust_addresses(offs_t &start, offs_t &end, offs_t &mask, offs_t &mirror)
{
// adjust start/end/mask values
if (mask == 0)
mask = m_addrmask & ~mirror;
else
mask &= m_addrmask;
start &= ~mirror & m_addrmask;
end &= ~mirror & m_addrmask;
// adjust to byte values
start = address_to_byte(start);
end = address_to_byte_end(end);
mask = address_to_byte_end(mask);
mirror = address_to_byte(mirror);
}
void address_space::check_optimize_all(const char *function, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, offs_t &nstart, offs_t &nend, offs_t &nmask, offs_t &nmirror)
{
if (addrstart > addrend)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, start address is after the end address.\n", function, addrstart, addrend, addrmask, addrmirror, addrselect);
if (addrstart & ~m_addrmask)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, start address is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, m_addrmask, addrstart & m_addrmask);
if (addrend & ~m_addrmask)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, end address is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, m_addrmask, addrend & m_addrmask);
offs_t lowbits_mask = (m_config.data_width() >> (3 - m_config.m_addrbus_shift)) - 1;
if (addrstart & lowbits_mask)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, start address has low bits set, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, addrstart & ~lowbits_mask);
if ((~addrend) & lowbits_mask)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, end address has low bits unset, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, addrend | lowbits_mask);
offs_t set_bits = addrstart | addrend;
offs_t changing_bits = addrstart ^ addrend;
// Round up to the nearest power-of-two-minus-one
changing_bits |= changing_bits >> 1;
changing_bits |= changing_bits >> 2;
changing_bits |= changing_bits >> 4;
changing_bits |= changing_bits >> 8;
changing_bits |= changing_bits >> 16;
if (addrmask & ~m_addrmask)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, mask is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, m_addrmask, addrmask & m_addrmask);
if (addrmirror & ~m_addrmask)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, mirror is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, m_addrmask, addrmirror & m_addrmask);
if (addrselect & ~m_addrmask)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, select is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, m_addrmask, addrselect & m_addrmask);
if (addrmask & ~changing_bits)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, mask is trying to unmask an unchanging address bit, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, addrmask & changing_bits);
if (addrmirror & changing_bits)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, mirror touches a changing address bit, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, addrmirror & ~changing_bits);
if (addrselect & changing_bits)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, select touches a changing address bit, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, addrselect & ~changing_bits);
if (addrmirror & set_bits)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, mirror touches a set address bit, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, addrmirror & ~set_bits);
if (addrselect & set_bits)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, select touches a set address bit, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, addrselect & ~set_bits);
if (addrmirror & addrselect)
fatalerror("%s: In range %x-%x mask %x mirror %x select %x, mirror touches a select bit, did you mean %x ?\n", function, addrstart, addrend, addrmask, addrmirror, addrselect, addrmirror & ~addrselect);
nstart = addrstart;
nend = addrend;
nmask = (addrmask ? addrmask : changing_bits) | addrselect;
nmirror = addrmirror | addrselect;
if(nmirror && !(nstart & changing_bits) && !((~nend) & changing_bits)) {
// If the range covers the a complete power-of-two zone, it is
// possible to remove 1 bits from the mirror, pushing the end
// address. The mask will clamp, and installing the range
// will be faster.
while(nmirror & (changing_bits+1)) {
offs_t bit = nmirror & (changing_bits+1);
nmirror &= ~bit;
nend |= bit;
changing_bits |= bit;
}
}
}
void address_space::check_optimize_mirror(const char *function, offs_t addrstart, offs_t addrend, offs_t addrmirror, offs_t &nstart, offs_t &nend, offs_t &nmask, offs_t &nmirror)
{
if (addrstart > addrend)
fatalerror("%s: In range %x-%x mirror %x, start address is after the end address.\n", function, addrstart, addrend, addrmirror);
if (addrstart & ~m_addrmask)
fatalerror("%s: In range %x-%x mirror %x, start address is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, addrmirror, m_addrmask, addrstart & m_addrmask);
if (addrend & ~m_addrmask)
fatalerror("%s: In range %x-%x mirror %x, end address is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, addrmirror, m_addrmask, addrend & m_addrmask);
offs_t lowbits_mask = (m_config.data_width() >> (3 - m_config.m_addrbus_shift)) - 1;
if (addrstart & lowbits_mask)
fatalerror("%s: In range %x-%x mirror %x, start address has low bits set, did you mean %x ?\n", function, addrstart, addrend, addrmirror, addrstart & ~lowbits_mask);
if ((~addrend) & lowbits_mask)
fatalerror("%s: In range %x-%x mirror %x, end address has low bits unset, did you mean %x ?\n", function, addrstart, addrend, addrmirror, addrend | lowbits_mask);
offs_t set_bits = addrstart | addrend;
offs_t changing_bits = addrstart ^ addrend;
// Round up to the nearest power-of-two-minus-one
changing_bits |= changing_bits >> 1;
changing_bits |= changing_bits >> 2;
changing_bits |= changing_bits >> 4;
changing_bits |= changing_bits >> 8;
changing_bits |= changing_bits >> 16;
if (addrmirror & ~m_addrmask)
fatalerror("%s: In range %x-%x mirror %x, mirror is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, addrmirror, m_addrmask, addrmirror & m_addrmask);
if (addrmirror & changing_bits)
fatalerror("%s: In range %x-%x mirror %x, mirror touches a changing address bit, did you mean %x ?\n", function, addrstart, addrend, addrmirror, addrmirror & ~changing_bits);
if (addrmirror & set_bits)
fatalerror("%s: In range %x-%x mirror %x, mirror touches a set address bit, did you mean %x ?\n", function, addrstart, addrend, addrmirror, addrmirror & ~set_bits);
nstart = addrstart;
nend = addrend;
nmask = changing_bits;
nmirror = addrmirror;
if(nmirror && !(nstart & changing_bits) && !((~nend) & changing_bits)) {
// If the range covers the a complete power-of-two zone, it is
// possible to remove 1 bits from the mirror, pushing the end
// address. The mask will clamp, and installing the range
// will be faster.
while(nmirror & (changing_bits+1)) {
offs_t bit = nmirror & (changing_bits+1);
nmirror &= ~bit;
nend |= bit;
changing_bits |= bit;
}
}
}
void address_space::check_address(const char *function, offs_t addrstart, offs_t addrend)
{
if (addrstart > addrend)
fatalerror("%s: In range %x-%x, start address is after the end address.\n", function, addrstart, addrend);
if (addrstart & ~m_addrmask)
fatalerror("%s: In range %x-%x, start address is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, m_addrmask, addrstart & m_addrmask);
if (addrend & ~m_addrmask)
fatalerror("%s: In range %x-%x, end address is outside of the global address mask %x, did you mean %x ?\n", function, addrstart, addrend, m_addrmask, addrend & m_addrmask);
offs_t lowbits_mask = (m_config.data_width() >> (3 - m_config.m_addrbus_shift)) - 1;
if (addrstart & lowbits_mask)
fatalerror("%s: In range %x-%x, start address has low bits set, did you mean %x ?\n", function, addrstart, addrend, addrstart & ~lowbits_mask);
if ((~addrend) & lowbits_mask)
fatalerror("%s: In range %x-%x, end address has low bits unset, did you mean %x ?\n", function, addrstart, addrend, addrend | lowbits_mask);
}
//-------------------------------------------------
// prepare_map - allocate the address map and
// walk through it to find implicit memory regions
// and identify shared regions
//-------------------------------------------------
void address_space::prepare_map()
{
memory_region *devregion = (m_spacenum == AS_0) ? machine().root_device().memregion(m_device.tag()) : nullptr;
u32 devregionsize = (devregion != nullptr) ? devregion->bytes() : 0;
// allocate the address map
m_map = std::make_unique<address_map>(m_device, m_spacenum);
// merge in the submaps
m_map->uplift_submaps(machine(), m_device.owner() ? *m_device.owner() : m_device, endianness());
// extract global parameters specified by the map
m_unmap = (m_map->m_unmapval == 0) ? 0 : ~0;
if (m_map->m_globalmask != 0)
{
m_addrmask = m_map->m_globalmask;
m_bytemask = address_to_byte_end(m_addrmask);
}
// make a pass over the address map, adjusting for the device and getting memory pointers
for (address_map_entry &entry : m_map->m_entrylist)
{
// computed adjusted addresses first
entry.m_bytestart = entry.m_addrstart;
entry.m_byteend = entry.m_addrend;
entry.m_bytemirror = entry.m_addrmirror;
entry.m_bytemask = entry.m_addrmask;
adjust_addresses(entry.m_bytestart, entry.m_byteend, entry.m_bytemask, entry.m_bytemirror);
// if we have a share entry, add it to our map
if (entry.m_share != nullptr)
{
// if we can't find it, add it to our map
std::string fulltag = entry.m_devbase.subtag(entry.m_share);
if (manager().m_sharelist.find(fulltag.c_str()) == manager().m_sharelist.end())
{
VPRINTF(("Creating share '%s' of length 0x%X\n", fulltag.c_str(), entry.m_byteend + 1 - entry.m_bytestart));
manager().m_sharelist.emplace(fulltag.c_str(), std::make_unique<memory_share>(m_map->m_databits, entry.m_byteend + 1 - entry.m_bytestart, endianness()));
}
}
// if this is a ROM handler without a specified region, attach it to the implicit region
if (m_spacenum == AS_0 && entry.m_read.m_type == AMH_ROM && entry.m_region == nullptr)
{
// make sure it fits within the memory region before doing so, however
if (entry.m_byteend < devregionsize)
{
entry.m_region = m_device.tag();
entry.m_rgnoffs = entry.m_bytestart;
}
}
// validate adjusted addresses against implicit regions
if (entry.m_region != nullptr && entry.m_share == nullptr)
{
// determine full tag
std::string fulltag = entry.m_devbase.subtag(entry.m_region);
// find the region
memory_region *region = machine().root_device().memregion(fulltag.c_str());
if (region == nullptr)
fatalerror("device '%s' %s space memory map entry %X-%X references non-existant region \"%s\"\n", m_device.tag(), m_name, entry.m_addrstart, entry.m_addrend, entry.m_region);
// validate the region
if (entry.m_rgnoffs + (entry.m_byteend - entry.m_bytestart + 1) > region->bytes())
fatalerror("device '%s' %s space memory map entry %X-%X extends beyond region \"%s\" size (%X)\n", m_device.tag(), m_name, entry.m_addrstart, entry.m_addrend, entry.m_region, region->bytes());
}
// convert any region-relative entries to their memory pointers
if (entry.m_region != nullptr)
{
// determine full tag
std::string fulltag = entry.m_devbase.subtag(entry.m_region);
// set the memory address
entry.m_memory = machine().root_device().memregion(fulltag.c_str())->base() + entry.m_rgnoffs;
}
}
// now loop over all the handlers and enforce the address mask
read().mask_all_handlers(m_bytemask);
write().mask_all_handlers(m_bytemask);
}
//-------------------------------------------------
// populate_from_map - walk the map in reverse
// order and install the appropriate handler for
// each case
//-------------------------------------------------
void address_space::populate_from_map(address_map *map)
{
// no map specified, use the space-specific one
if (map == nullptr)
map = m_map.get();
// no map, nothing to do
if (map == nullptr)
return;
// install the handlers, using the original, unadjusted memory map
const address_map_entry *last_entry = nullptr;
while (last_entry != map->m_entrylist.first())
{
// find the entry before the last one we processed
const address_map_entry *entry;
for (entry = map->m_entrylist.first(); entry->next() != last_entry; entry = entry->next()) { };
last_entry = entry;
// map both read and write halves
populate_map_entry(*entry, ROW_READ);
populate_map_entry(*entry, ROW_WRITE);
populate_map_entry_setoffset(*entry);
}
}
//-------------------------------------------------
// populate_map_entry - map a single read or
// write entry based on information from an
// address map entry
//-------------------------------------------------
void address_space::populate_map_entry(const address_map_entry &entry, read_or_write readorwrite)
{
const map_handler_data &data = (readorwrite == ROW_READ) ? entry.m_read : entry.m_write;
// based on the handler type, alter the bits, name, funcptr, and object
switch (data.m_type)
{
case AMH_NONE:
return;
case AMH_ROM:
// writes to ROM are no-ops
if (readorwrite == ROW_WRITE)
return;
// fall through to the RAM case otherwise
case AMH_RAM:
install_ram_generic(entry.m_addrstart, entry.m_addrend, entry.m_addrmirror, readorwrite, nullptr);
break;
case AMH_NOP:
unmap_generic(entry.m_addrstart, entry.m_addrend, entry.m_addrmirror, readorwrite, true);
break;
case AMH_UNMAP:
unmap_generic(entry.m_addrstart, entry.m_addrend, entry.m_addrmirror, readorwrite, false);
break;
case AMH_DEVICE_DELEGATE:
if (readorwrite == ROW_READ)
switch (data.m_bits)
{
case 8: install_read_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_addrselect, read8_delegate(entry.m_rproto8, entry.m_devbase), data.m_mask); break;
case 16: install_read_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_addrselect, read16_delegate(entry.m_rproto16, entry.m_devbase), data.m_mask); break;
case 32: install_read_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_addrselect, read32_delegate(entry.m_rproto32, entry.m_devbase), data.m_mask); break;
case 64: install_read_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_addrselect, read64_delegate(entry.m_rproto64, entry.m_devbase), data.m_mask); break;
}
else
switch (data.m_bits)
{
case 8: install_write_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_addrselect, write8_delegate(entry.m_wproto8, entry.m_devbase), data.m_mask); break;
case 16: install_write_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_addrselect, write16_delegate(entry.m_wproto16, entry.m_devbase), data.m_mask); break;
case 32: install_write_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_addrselect, write32_delegate(entry.m_wproto32, entry.m_devbase), data.m_mask); break;
case 64: install_write_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask, entry.m_addrmirror, entry.m_addrselect, write64_delegate(entry.m_wproto64, entry.m_devbase), data.m_mask); break;
}
break;
case AMH_PORT:
install_readwrite_port(entry.m_addrstart, entry.m_addrend, entry.m_addrmirror,
(readorwrite == ROW_READ) ? data.m_tag : nullptr,
(readorwrite == ROW_WRITE) ? data.m_tag : nullptr);
break;
case AMH_BANK:
install_bank_generic(entry.m_addrstart, entry.m_addrend, entry.m_addrmirror,
(readorwrite == ROW_READ) ? data.m_tag : nullptr,
(readorwrite == ROW_WRITE) ? data.m_tag : nullptr);
break;
case AMH_DEVICE_SUBMAP:
throw emu_fatalerror("Internal mapping error: leftover mapping of '%s'.\n", data.m_tag);
}
}
//-------------------------------------------------
// populate_map_entry_setoffset - special case for setoffset
//-------------------------------------------------
void address_space::populate_map_entry_setoffset(const address_map_entry &entry)
{
install_setoffset_handler(entry.m_addrstart, entry.m_addrend, entry.m_addrmask,
entry.m_addrmirror, entry.m_addrselect, setoffset_delegate(entry.m_soproto, entry.m_devbase), entry.m_setoffsethd.m_mask);
}
//-------------------------------------------------
// allocate_memory - determine all neighboring
// address ranges and allocate memory to back
// them
//-------------------------------------------------
void address_space::allocate_memory()
{
auto &blocklist = manager().m_blocklist;
// make a first pass over the memory map and track blocks with hardcoded pointers
// we do this to make sure they are found by space_find_backing_memory first
int tail = blocklist.size();
for (address_map_entry &entry : m_map->m_entrylist)
if (entry.m_memory != nullptr)
blocklist.push_back(std::make_unique<memory_block>(*this, entry.m_bytestart, entry.m_byteend, entry.m_memory));
// loop over all blocks just allocated and assign pointers from them
address_map_entry *unassigned = nullptr;
for (auto memblock = blocklist.begin() + tail; memblock != blocklist.end(); ++memblock)
unassigned = block_assign_intersecting(memblock->get()->bytestart(), memblock->get()->byteend(), memblock->get()->data());
// if we don't have an unassigned pointer yet, try to find one
if (unassigned == nullptr)
unassigned = block_assign_intersecting(~0, 0, nullptr);
// loop until we've assigned all memory in this space
while (unassigned != nullptr)
{
// work in MEMORY_BLOCK_CHUNK-sized chunks
offs_t curblockstart = unassigned->m_bytestart / MEMORY_BLOCK_CHUNK;
offs_t curblockend = unassigned->m_byteend / MEMORY_BLOCK_CHUNK;
// loop while we keep finding unassigned blocks in neighboring MEMORY_BLOCK_CHUNK chunks
bool changed;
do
{
changed = false;
// scan for unmapped blocks in the adjusted map
for (address_map_entry &entry : m_map->m_entrylist)
if (entry.m_memory == nullptr && &entry != unassigned && needs_backing_store(entry))
{
// get block start/end blocks for this block
offs_t blockstart = entry.m_bytestart / MEMORY_BLOCK_CHUNK;
offs_t blockend = entry.m_byteend / MEMORY_BLOCK_CHUNK;
// if we intersect or are adjacent, adjust the start/end
if (blockstart <= curblockend + 1 && blockend >= curblockstart - 1)
{
if (blockstart < curblockstart)
curblockstart = blockstart, changed = true;
if (blockend > curblockend)
curblockend = blockend, changed = true;
}
}
} while (changed);
// we now have a block to allocate; do it
offs_t curbytestart = curblockstart * MEMORY_BLOCK_CHUNK;
offs_t curbyteend = curblockend * MEMORY_BLOCK_CHUNK + (MEMORY_BLOCK_CHUNK - 1);
auto block = std::make_unique<memory_block>(*this, curbytestart, curbyteend);
// assign memory that intersected the new block
unassigned = block_assign_intersecting(curbytestart, curbyteend, block.get()->data());
blocklist.push_back(std::move(block));
}
}
//-------------------------------------------------
// locate_memory - find all the requested
// pointers into the final allocated memory
//-------------------------------------------------
void address_space::locate_memory()
{
// once this is done, find the starting bases for the banks
for (auto &bank : manager().banks())
if (bank.second->base() == nullptr && bank.second->references_space(*this, ROW_READWRITE))
{
// set the initial bank pointer
for (address_map_entry &entry : m_map->m_entrylist)
if (entry.m_bytestart == bank.second->bytestart() && entry.m_memory != nullptr)
{
bank.second->set_base(entry.m_memory);
VPRINTF(("assigned bank '%s' pointer to memory from range %08X-%08X [%p]\n", bank.second->tag(), entry.m_addrstart, entry.m_addrend, entry.m_memory));
break;
}
// if the entry was set ahead of time, override the automatically found pointer
if (!bank.second->anonymous() && bank.second->entry() != BANK_ENTRY_UNSPECIFIED)
bank.second->set_entry(bank.second->entry());
}
}
//-------------------------------------------------
// block_assign_intersecting - find all
// intersecting blocks and assign their pointers
//-------------------------------------------------
address_map_entry *address_space::block_assign_intersecting(offs_t bytestart, offs_t byteend, u8 *base)
{
address_map_entry *unassigned = nullptr;
// loop over the adjusted map and assign memory to any blocks we can
for (address_map_entry &entry : m_map->m_entrylist)
{
// if we haven't assigned this block yet, see if we have a mapped shared pointer for it
if (entry.m_memory == nullptr && entry.m_share != nullptr)
{
std::string fulltag = entry.m_devbase.subtag(entry.m_share);
auto share = manager().shares().find(fulltag.c_str());
if (share != manager().shares().end() && share->second->ptr() != nullptr)
{
entry.m_memory = share->second->ptr();
VPRINTF(("memory range %08X-%08X -> shared_ptr '%s' [%p]\n", entry.m_addrstart, entry.m_addrend, entry.m_share, entry.m_memory));
}
else
{
VPRINTF(("memory range %08X-%08X -> shared_ptr '%s' but not found\n", entry.m_addrstart, entry.m_addrend, entry.m_share));
}
}
// otherwise, look for a match in this block
if (entry.m_memory == nullptr && entry.m_bytestart >= bytestart && entry.m_byteend <= byteend)
{
entry.m_memory = base + (entry.m_bytestart - bytestart);
VPRINTF(("memory range %08X-%08X -> found in block from %08X-%08X [%p]\n", entry.m_addrstart, entry.m_addrend, bytestart, byteend, entry.m_memory));
}
// if we're the first match on a shared pointer, assign it now
if (entry.m_memory != nullptr && entry.m_share != nullptr)
{
std::string fulltag = entry.m_devbase.subtag(entry.m_share);
auto share = manager().shares().find(fulltag.c_str());
if (share != manager().shares().end() && share->second->ptr() == nullptr)
{
share->second->set_ptr(entry.m_memory);
VPRINTF(("setting shared_ptr '%s' = %p\n", entry.m_share, entry.m_memory));
}
}
// keep track of the first unassigned entry
if (entry.m_memory == nullptr && unassigned == nullptr && needs_backing_store(entry))
unassigned = &entry;
}
return unassigned;
}
//-------------------------------------------------
// get_handler_string - return a string
// describing the handler at a particular offset
//-------------------------------------------------
const char *address_space::get_handler_string(read_or_write readorwrite, offs_t byteaddress)
{
if (readorwrite == ROW_READ)
return read().handler_name(read().lookup(byteaddress));
else
return write().handler_name(write().lookup(byteaddress));
}
//-------------------------------------------------
// dump_map - dump the contents of a single
// address space
//-------------------------------------------------
void address_space::dump_map(FILE *file, read_or_write readorwrite)
{
const address_table &table = (readorwrite == ROW_READ) ? static_cast<address_table &>(read()) : static_cast<address_table &>(write());
// dump generic information
fprintf(file, " Address bits = %d\n", m_config.m_addrbus_width);
fprintf(file, " Data bits = %d\n", m_config.m_databus_width);
fprintf(file, " Address mask = %X\n", m_bytemask);
fprintf(file, "\n");
// iterate over addresses
offs_t bytestart, byteend;
for (offs_t byteaddress = 0; byteaddress <= m_bytemask; byteaddress = byteend)
{
u16 entry = table.derive_range(byteaddress, bytestart, byteend);
fprintf(file, "%08X-%08X = %02X: %s [offset=%08X]\n",
bytestart, byteend, entry, table.handler_name(entry), table.handler(entry).bytestart());
if (++byteend == 0)
break;
}
}
//**************************************************************************
// DYNAMIC ADDRESS SPACE MAPPING
//**************************************************************************
//-------------------------------------------------
// unmap - unmap a section of address space
//-------------------------------------------------
void address_space::unmap_generic(offs_t addrstart, offs_t addrend, offs_t addrmirror, read_or_write readorwrite, bool quiet)
{
VPRINTF(("address_space::unmap(%s-%s mirror=%s, %s, %s)\n",
core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
core_i64_hex_format(addrmirror, m_addrchars),
(readorwrite == ROW_READ) ? "read" : (readorwrite == ROW_WRITE) ? "write" : (readorwrite == ROW_READWRITE) ? "read/write" : "??",
quiet ? "quiet" : "normal"));
offs_t nstart, nend, nmask, nmirror;
check_optimize_mirror("unmap_generic", addrstart, addrend, addrmirror, nstart, nend, nmask, nmirror);
// read space
if (readorwrite == ROW_READ || readorwrite == ROW_READWRITE)
read().map_range(nstart, nend, nmask, nmirror, quiet ? STATIC_NOP : STATIC_UNMAP);
// write space
if (readorwrite == ROW_WRITE || readorwrite == ROW_READWRITE)
write().map_range(nstart, nend, nmask, nmirror, quiet ? STATIC_NOP : STATIC_UNMAP);
}
//-------------------------------------------------
// install_device_delegate - install the memory map
// of a live device into this address space
//-------------------------------------------------
void address_space::install_device_delegate(offs_t addrstart, offs_t addrend, device_t &device, address_map_delegate &delegate, int bits, u64 unitmask)
{
check_address("install_device_delegate", addrstart, addrend);
address_map map(*this, addrstart, addrend, bits, unitmask, m_device, delegate);
map.uplift_submaps(machine(), device, endianness());
populate_from_map(&map);
}
//-------------------------------------------------
// install_readwrite_port - install a new I/O port
// handler into this address space
//-------------------------------------------------
void address_space::install_readwrite_port(offs_t addrstart, offs_t addrend, offs_t addrmirror, const char *rtag, const char *wtag)
{
VPRINTF(("address_space::install_readwrite_port(%s-%s mirror=%s, read=\"%s\" / write=\"%s\")\n",
core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
core_i64_hex_format(addrmirror, m_addrchars),
(rtag != nullptr) ? rtag : "(none)", (wtag != nullptr) ? wtag : "(none)"));
offs_t nstart, nend, nmask, nmirror;
check_optimize_mirror("install_readwrite_port", addrstart, addrend, addrmirror, nstart, nend, nmask, nmirror);
// read handler
if (rtag != nullptr)
{
// find the port
ioport_port *port = machine().root_device().ioport(device().siblingtag(rtag).c_str());
if (port == nullptr)
throw emu_fatalerror("Attempted to map non-existent port '%s' for read in space %s of device '%s'\n", rtag, m_name, m_device.tag());
// map the range and set the ioport
read().handler_map_range(nstart, nend, nmask, nmirror).set_ioport(*port);
}
if (wtag != nullptr)
{
// find the port
ioport_port *port = machine().root_device().ioport(device().siblingtag(wtag).c_str());
if (port == nullptr)
fatalerror("Attempted to map non-existent port '%s' for write in space %s of device '%s'\n", wtag, m_name, m_device.tag());
// map the range and set the ioport
write().handler_map_range(nstart, nend, nmask, nmirror).set_ioport(*port);
}
// update the memory dump
generate_memdump(machine());
}
//-------------------------------------------------
// install_bank_generic - install a range as
// mapping to a particular bank
//-------------------------------------------------
void address_space::install_bank_generic(offs_t addrstart, offs_t addrend, offs_t addrmirror, const char *rtag, const char *wtag)
{
VPRINTF(("address_space::install_readwrite_bank(%s-%s mirror=%s, read=\"%s\" / write=\"%s\")\n",
core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
core_i64_hex_format(addrmirror, m_addrchars),
(rtag != nullptr) ? rtag : "(none)", (wtag != nullptr) ? wtag : "(none)"));
offs_t nstart, nend, nmask, nmirror;
check_optimize_mirror("install_bank_generic", addrstart, addrend, addrmirror, nstart, nend, nmask, nmirror);
// map the read bank
if (rtag != nullptr)
{
std::string fulltag = device().siblingtag(rtag);
memory_bank &bank = bank_find_or_allocate(fulltag.c_str(), addrstart, addrend, addrmirror, ROW_READ);
read().map_range(nstart, nend, nmask, nmirror, bank.index());
}
// map the write bank
if (wtag != nullptr)
{
std::string fulltag = device().siblingtag(wtag);
memory_bank &bank = bank_find_or_allocate(fulltag.c_str(), addrstart, addrend, addrmirror, ROW_WRITE);
write().map_range(nstart, nend, nmask, nmirror, bank.index());
}
// update the memory dump
generate_memdump(machine());
}
void address_space::install_bank_generic(offs_t addrstart, offs_t addrend, offs_t addrmirror, memory_bank *rbank, memory_bank *wbank)
{
VPRINTF(("address_space::install_readwrite_bank(%s-%s mirror=%s, read=\"%s\" / write=\"%s\")\n",
core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
core_i64_hex_format(addrmirror, m_addrchars),
(rbank != nullptr) ? rbank->tag() : "(none)", (wbank != nullptr) ? wbank->tag() : "(none)"));
offs_t nstart, nend, nmask, nmirror;
check_optimize_mirror("install_bank_generic", addrstart, addrend, addrmirror, nstart, nend, nmask, nmirror);
// map the read bank
if (rbank != nullptr)
{
read().map_range(nstart, nend, nmask, nmirror, rbank->index());
}
// map the write bank
if (wbank != nullptr)
{
write().map_range(nstart, nend, nmask, nmirror, wbank->index());
}
// update the memory dump
generate_memdump(machine());
}
//-------------------------------------------------
// install_ram_generic - install a simple fixed
// RAM region into the given address space
//-------------------------------------------------
void address_space::install_ram_generic(offs_t addrstart, offs_t addrend, offs_t addrmirror, read_or_write readorwrite, void *baseptr)
{
VPRINTF(("address_space::install_ram_generic(%s-%s mirror=%s, %s, %p)\n",
core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
core_i64_hex_format(addrmirror, m_addrchars),
(readorwrite == ROW_READ) ? "read" : (readorwrite == ROW_WRITE) ? "write" : (readorwrite == ROW_READWRITE) ? "read/write" : "??",
baseptr));
offs_t nstart, nend, nmask, nmirror;
check_optimize_mirror("install_ram_generic", addrstart, addrend, addrmirror, nstart, nend, nmask, nmirror);
// map for read
if (readorwrite == ROW_READ || readorwrite == ROW_READWRITE)
{
// find a bank and map it
memory_bank &bank = bank_find_or_allocate(nullptr, addrstart, addrend, addrmirror, ROW_READ);
read().map_range(nstart, nend, nmask, nmirror, bank.index());
// if we are provided a pointer, set it
if (baseptr != nullptr)
bank.set_base(baseptr);
// if we don't have a bank pointer yet, try to find one
if (bank.base() == nullptr)
{
void *backing = find_backing_memory(addrstart, addrend);
if (backing != nullptr)
bank.set_base(backing);
}
// if we still don't have a pointer, and we're past the initialization phase, allocate a new block
if (bank.base() == nullptr && manager().m_initialized)
{
if (machine().phase() >= MACHINE_PHASE_RESET)
fatalerror("Attempted to call install_ram_generic() after initialization time without a baseptr!\n");
auto block = std::make_unique<memory_block>(*this, address_to_byte(addrstart), address_to_byte_end(addrend));
bank.set_base(block.get()->data());
manager().m_blocklist.push_back(std::move(block));
}
}
// map for write
if (readorwrite == ROW_WRITE || readorwrite == ROW_READWRITE)
{
// find a bank and map it
memory_bank &bank = bank_find_or_allocate(nullptr, addrstart, addrend, addrmirror, ROW_WRITE);
write().map_range(nstart, nend, nmask, nmirror, bank.index());
// if we are provided a pointer, set it
if (baseptr != nullptr)
bank.set_base(baseptr);
// if we don't have a bank pointer yet, try to find one
if (bank.base() == nullptr)
{
void *backing = find_backing_memory(addrstart, addrend);
if (backing != nullptr)
bank.set_base(backing);
}
// if we still don't have a pointer, and we're past the initialization phase, allocate a new block
if (bank.base() == nullptr && manager().m_initialized)
{
if (machine().phase() >= MACHINE_PHASE_RESET)
fatalerror("Attempted to call install_ram_generic() after initialization time without a baseptr!\n");
auto block = std::make_unique<memory_block>(*this, address_to_byte(addrstart), address_to_byte_end(addrend));
bank.set_base(block.get()->data());
manager().m_blocklist.push_back(std::move(block));
}
}
}
//-------------------------------------------------
// install_handler - install 8-bit read/write
// delegate handlers for the space
//-------------------------------------------------
void address_space::install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read8_delegate handler, u64 unitmask)
{
VPRINTF(("address_space::install_read_handler(%s-%s mask=%s mirror=%s, %s, %s)\n",
core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
handler.name(), core_i64_hex_format(unitmask, data_width() / 4)));
offs_t nstart, nend, nmask, nmirror;
check_optimize_all("install_read_handler", addrstart, addrend, addrmask, addrmirror, addrselect, nstart, nend, nmask, nmirror);
read().handler_map_range(nstart, nend, nmask, nmirror, unitmask).set_delegate(handler);
generate_memdump(machine());
}
void address_space::install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, write8_delegate handler, u64 unitmask)
{
VPRINTF(("address_space::install_write_handler(%s-%s mask=%s mirror=%s, %s, %s)\n",
core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
handler.name(), core_i64_hex_format(unitmask, data_width() / 4)));
offs_t nstart, nend, nmask, nmirror;
check_optimize_all("install_write_handler", addrstart, addrend, addrmask, addrmirror, addrselect, nstart, nend, nmask, nmirror);
write().handler_map_range(nstart, nend, nmask, nmirror, unitmask).set_delegate(handler);
generate_memdump(machine());
}
void address_space::install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read8_delegate rhandler, write8_delegate whandler, u64 unitmask)
{
install_read_handler(addrstart, addrend, addrmask, addrmirror, addrselect, rhandler, unitmask);
install_write_handler(addrstart, addrend, addrmask, addrmirror, addrselect, whandler, unitmask);
}
//-------------------------------------------------
// install_handler - install 16-bit read/write
// delegate handlers for the space
//-------------------------------------------------
void address_space::install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read16_delegate handler, u64 unitmask)
{
offs_t nstart, nend, nmask, nmirror;
check_optimize_all("install_read_handler", addrstart, addrend, addrmask, addrmirror, addrselect, nstart, nend, nmask, nmirror);
read().handler_map_range(nstart, nend, nmask, nmirror, unitmask).set_delegate(handler);
generate_memdump(machine());
}
void address_space::install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, write16_delegate handler, u64 unitmask)
{
offs_t nstart, nend, nmask, nmirror;
check_optimize_all("install_write_handler", addrstart, addrend, addrmask, addrmirror, addrselect, nstart, nend, nmask, nmirror);
write().handler_map_range(nstart, nend, nmask, nmirror, unitmask).set_delegate(handler);
generate_memdump(machine());
}
void address_space::install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read16_delegate rhandler, write16_delegate whandler, u64 unitmask)
{
install_read_handler(addrstart, addrend, addrmask, addrmirror, addrselect, rhandler, unitmask);
install_write_handler(addrstart, addrend, addrmask, addrmirror, addrselect, whandler, unitmask);
}
//-------------------------------------------------
// install_handler - install 32-bit read/write
// delegate handlers for the space
//-------------------------------------------------
void address_space::install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read32_delegate handler, u64 unitmask)
{
offs_t nstart, nend, nmask, nmirror;
check_optimize_all("install_read_handler", addrstart, addrend, addrmask, addrmirror, addrselect, nstart, nend, nmask, nmirror);
read().handler_map_range(nstart, nend, nmask, nmirror, unitmask).set_delegate(handler);
generate_memdump(machine());
}
void address_space::install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, write32_delegate handler, u64 unitmask)
{
offs_t nstart, nend, nmask, nmirror;
check_optimize_all("install_write_handler", addrstart, addrend, addrmask, addrmirror, addrselect, nstart, nend, nmask, nmirror);
write().handler_map_range(nstart, nend, nmask, nmirror, unitmask).set_delegate(handler);
generate_memdump(machine());
}
void address_space::install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read32_delegate rhandler, write32_delegate whandler, u64 unitmask)
{
install_read_handler(addrstart, addrend, addrmask, addrmirror, addrselect, rhandler, unitmask);
install_write_handler(addrstart, addrend, addrmask, addrmirror, addrselect, whandler, unitmask);
}
//-------------------------------------------------
// install_handler64 - install 64-bit read/write
// delegate handlers for the space
//-------------------------------------------------
void address_space::install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read64_delegate handler, u64 unitmask)
{
offs_t nstart, nend, nmask, nmirror;
check_optimize_all("install_read_handler", addrstart, addrend, addrmask, addrmirror, addrselect, nstart, nend, nmask, nmirror);
read().handler_map_range(nstart, nend, nmask, nmirror, unitmask).set_delegate(handler);
generate_memdump(machine());
}
void address_space::install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, write64_delegate handler, u64 unitmask)
{
offs_t nstart, nend, nmask, nmirror;
check_optimize_all("install_write_handler", addrstart, addrend, addrmask, addrmirror, addrselect, nstart, nend, nmask, nmirror);
write().handler_map_range(nstart, nend, nmask, nmirror, unitmask).set_delegate(handler);
generate_memdump(machine());
}
void address_space::install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read64_delegate rhandler, write64_delegate whandler, u64 unitmask)
{
install_read_handler(addrstart, addrend, addrmask, addrmirror, addrselect, rhandler, unitmask);
install_write_handler(addrstart, addrend, addrmask, addrmirror, addrselect, whandler, unitmask);
}
//-----------------------------------------------------------------------
// install_setoffset_handler - install set_offset delegate handlers for the space
//-----------------------------------------------------------------------
void address_space::install_setoffset_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, setoffset_delegate handler, u64 unitmask)
{
VPRINTF(("address_space::install_setoffset_handler(%s-%s mask=%s mirror=%s, %s, %s)\n",
core_i64_hex_format(addrstart, m_addrchars), core_i64_hex_format(addrend, m_addrchars),
core_i64_hex_format(addrmask, m_addrchars), core_i64_hex_format(addrmirror, m_addrchars),
handler.name(), core_i64_hex_format(unitmask, data_width() / 4)));
offs_t nstart, nend, nmask, nmirror;
check_optimize_all("install_setoffset_handler", addrstart, addrend, addrmask, addrmirror, addrselect, nstart, nend, nmask, nmirror);
setoffset().handler_map_range(nstart, nend, nmask, nmirror, unitmask).set_delegate(handler);
}
//**************************************************************************
// MEMORY MAPPING HELPERS
//**************************************************************************
//-------------------------------------------------
// find_backing_memory - return a pointer to
// the base of RAM associated with the given
// device and offset
//-------------------------------------------------
void *address_space::find_backing_memory(offs_t addrstart, offs_t addrend)
{
offs_t bytestart = address_to_byte(addrstart);
offs_t byteend = address_to_byte_end(addrend);
VPRINTF(("address_space::find_backing_memory('%s',%s,%08X-%08X) -> ", m_device.tag(), m_name, bytestart, byteend));
if (m_map == nullptr)
return nullptr;
// look in the address map first
for (address_map_entry &entry : m_map->m_entrylist)
{
offs_t maskstart = bytestart & entry.m_bytemask;
offs_t maskend = byteend & entry.m_bytemask;
if (entry.m_memory != nullptr && maskstart >= entry.m_bytestart && maskend <= entry.m_byteend)
{
VPRINTF(("found in entry %08X-%08X [%p]\n", entry.m_addrstart, entry.m_addrend, (u8 *)entry.m_memory + (maskstart - entry.m_bytestart)));
return (u8 *)entry.m_memory + (maskstart - entry.m_bytestart);
}
}
// if not found there, look in the allocated blocks
for (auto &block : manager().m_blocklist)
if (block->contains(*this, bytestart, byteend))
{
VPRINTF(("found in allocated memory block %08X-%08X [%p]\n", block->bytestart(), block->byteend(), block->data() + (bytestart - block->bytestart())));
return block->data() + bytestart - block->bytestart();
}
VPRINTF(("did not find\n"));
return nullptr;
}
//-------------------------------------------------
// space_needs_backing_store - return whether a
// given memory map entry implies the need of
// allocating and registering memory
//-------------------------------------------------
bool address_space::needs_backing_store(const address_map_entry &entry)
{
// if we are sharing, and we don't have a pointer yet, create one
if (entry.m_share != nullptr)
{
std::string fulltag = entry.m_devbase.subtag(entry.m_share);
auto share = manager().shares().find(fulltag.c_str());
if (share != manager().shares().end() && share->second->ptr() == nullptr)
return true;
}
// if we're writing to any sort of bank or RAM, then yes, we do need backing
if (entry.m_write.m_type == AMH_BANK || entry.m_write.m_type == AMH_RAM)
return true;
// if we're reading from RAM or from ROM outside of address space 0 or its region, then yes, we do need backing
memory_region *region = machine().root_device().memregion(m_device.tag());
if (entry.m_read.m_type == AMH_RAM ||
(entry.m_read.m_type == AMH_ROM && (m_spacenum != AS_0 || region == nullptr || entry.m_addrstart >= region->bytes())))
return true;
// all other cases don't need backing
return false;
}
//**************************************************************************
// BANKING HELPERS
//**************************************************************************
//-------------------------------------------------
// bank_find_or_allocate - allocate a new
// bank, or find an existing one, and return the
// read/write handler
//-------------------------------------------------
memory_bank &address_space::bank_find_or_allocate(const char *tag, offs_t addrstart, offs_t addrend, offs_t addrmirror, read_or_write readorwrite)
{
// adjust the addresses, handling mirrors and such
offs_t bytemirror = addrmirror;
offs_t bytestart = addrstart;
offs_t bytemask = 0;
offs_t byteend = addrend;
adjust_addresses(bytestart, byteend, bytemask, bytemirror);
// look up the bank by name, or else by byte range
memory_bank *membank = nullptr;
if (tag != nullptr) {
auto bank = manager().banks().find(tag);
if (bank != manager().banks().end())
membank = bank->second.get();
}
else {
membank = bank_find_anonymous(bytestart, byteend);
}
// if we don't have a bank yet, find a free one
if (membank == nullptr)
{
// handle failure
int banknum = manager().m_banknext++;
if (banknum > STATIC_BANKMAX)
{
if (tag != nullptr)
throw emu_fatalerror("Unable to allocate new bank '%s'", tag);
else
throw emu_fatalerror("Unable to allocate bank for RAM/ROM area %X-%X\n", bytestart, byteend);
}
// if no tag, create a unique one
auto bank = std::make_unique<memory_bank>(*this, banknum, bytestart, byteend, tag);
std::string temptag;
if (tag == nullptr) {
temptag = string_format("anon_%p", bank.get());
tag = temptag.c_str();
}
manager().m_banklist.emplace(tag, std::move(bank));
membank = manager().m_banklist.find(tag)->second.get();
}
// add a reference for this space
membank->add_reference(*this, readorwrite);
return *membank;
}
//-------------------------------------------------
// bank_find_anonymous - try to find an anonymous
// bank matching the given byte range
//-------------------------------------------------
memory_bank *address_space::bank_find_anonymous(offs_t bytestart, offs_t byteend) const
{
// try to find an exact match
for (auto &bank : manager().banks())
if (bank.second->anonymous() && bank.second->references_space(*this, ROW_READWRITE) && bank.second->matches_exactly(bytestart, byteend))
return bank.second.get();
// not found
return nullptr;
}
//**************************************************************************
// TABLE MANAGEMENT
//**************************************************************************
//-------------------------------------------------
// address_table - constructor
//-------------------------------------------------
address_table::address_table(address_space &space, bool large)
: m_table(1 << LEVEL1_BITS),
m_space(space),
m_large(large),
m_subtable(SUBTABLE_COUNT),
m_subtable_alloc(0)
{
m_live_lookup = &m_table[0];
// make our static table all watchpoints
if (s_watchpoint_table[0] != STATIC_WATCHPOINT)
for (unsigned int i=0; i != ARRAY_LENGTH(s_watchpoint_table); i++)
s_watchpoint_table[i] = STATIC_WATCHPOINT;
// initialize everything to unmapped
for (unsigned int i=0; i != 1 << LEVEL1_BITS; i++)
m_table[i] = STATIC_UNMAP;
// initialize the handlers freelist
for (int i=0; i != SUBTABLE_BASE-STATIC_COUNT-1; i++)
handler_next_free[i] = i+STATIC_COUNT+1;
handler_next_free[SUBTABLE_BASE-STATIC_COUNT-1] = STATIC_INVALID;
handler_free = STATIC_COUNT;
// initialize the handlers refcounts
memset(handler_refcount, 0, sizeof(handler_refcount));
}
//-------------------------------------------------
// ~address_table - destructor
//-------------------------------------------------
address_table::~address_table()
{
}
//-------------------------------------------------
// map_range - map a specific entry in the address
// map
//-------------------------------------------------
void address_table::map_range(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, u16 entry)
{
// convert addresses to bytes
offs_t bytestart = addrstart;
offs_t byteend = addrend;
offs_t bytemask = addrmask;
offs_t bytemirror = addrmirror;
m_space.adjust_addresses(bytestart, byteend, bytemask, bytemirror);
// validity checks
assert_always(addrstart <= addrend, "address_table::map_range called with start greater than end");
assert_always((bytestart & (m_space.data_width() / 8 - 1)) == 0, "address_table::map_range called with misaligned start address");
assert_always((byteend & (m_space.data_width() / 8 - 1)) == (m_space.data_width() / 8 - 1), "address_table::map_range called with misaligned end address");
// configure the entry to our parameters (but not for static non-banked cases)
handler_entry &curentry = handler(entry);
if (entry <= STATIC_BANKMAX || entry >= STATIC_COUNT)
curentry.configure(bytestart, byteend, bytemask);
// populate it
populate_range_mirrored(bytestart, byteend, bytemirror, entry);
// recompute any direct access on this space if it is a read modification
m_space.m_direct->force_update(entry);
// verify_reference_counts();
}
u16 address_table::get_free_handler()
{
if (handler_free == STATIC_INVALID)
throw emu_fatalerror("Out of handler entries in address table");
u16 handler = handler_free;
handler_free = handler_next_free[handler - STATIC_COUNT];
return handler;
}
//-------------------------------------------------
// setup_range - finds an appropriate handler entry
// and requests to populate the address map with
// it
//-------------------------------------------------
void address_table::setup_range(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, u64 mask, std::list<u32> &entries)
{
// Careful, you can't shift by 64 or more
u64 testmask = (1ULL << (m_space.data_width()-1) << 1) - 1;
if((mask & testmask) == 0 || (mask & testmask) == testmask)
setup_range_solid(addrstart, addrend, addrmask, addrmirror, entries);
else
setup_range_masked(addrstart, addrend, addrmask, addrmirror, mask, entries);
}
//-------------------------------------------------
// setup_range_solid - finds an appropriate handler
// entry and requests to populate the address map with
// it. Replace what's there.
//-------------------------------------------------
void address_table::setup_range_solid(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, std::list<u32> &entries)
{
// Grab a free entry
u16 entry = get_free_handler();
// Add it in the "to be setup" list
entries.push_back(entry);
// Configure and map it
map_range(addrstart, addrend, addrmask, addrmirror, entry);
}
//-------------------------------------------------
// setup_range_solid - finds an appropriate handler
// entry and requests to populate the address map with
// it. Handle non-overlapping subunits.
//-------------------------------------------------
namespace {
struct subrange {
offs_t start, end;
subrange(offs_t _start, offs_t _end) : start(_start), end(_end) {}
};
}
void address_table::setup_range_masked(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, u64 mask, std::list<u32> &entries)
{
// convert addresses to bytes
offs_t bytestart = addrstart;
offs_t byteend = addrend;
offs_t bytemask = addrmask;
offs_t bytemirror = addrmirror;
m_space.adjust_addresses(bytestart, byteend, bytemask, bytemirror);
// Validity checks
assert_always(addrstart <= addrend, "address_table::setup_range called with start greater than end");
assert_always((bytestart & (m_space.data_width() / 8 - 1)) == 0, "address_table::setup_range called with misaligned start address");
assert_always((byteend & (m_space.data_width() / 8 - 1)) == (m_space.data_width() / 8 - 1), "address_table::setup_range called with misaligned end address");
// Scan the memory to see what has to be done
std::list<subrange> range_override;
std::map<u16, std::list<subrange> > range_partial;
offs_t base_mirror = 0;
do
{
offs_t base_address = base_mirror | bytestart;
offs_t end_address = base_mirror | byteend;
do
{
offs_t range_start, range_end;
u16 entry = derive_range(base_address, range_start, range_end);
u32 stop_address = range_end > end_address ? end_address : range_end;
if (entry < STATIC_COUNT || handler(entry).overriden_by_mask(mask))
range_override.push_back(subrange(base_address, stop_address));
else
range_partial[entry].push_back(subrange(base_address, stop_address));
base_address = stop_address + 1;
}
while (base_address != end_address + 1);
// Efficient method to go to the next range start given a mirroring mask
base_mirror = (base_mirror + 1 + ~bytemirror) & bytemirror;
}
while (base_mirror);
// Ranges in range_override must be plain replaced by the new handler
if (!range_override.empty())
{
// Grab a free entry
u16 entry = get_free_handler();
// configure the entry to our parameters
handler_entry &curentry = handler(entry);
curentry.configure(bytestart, byteend, bytemask);
// Populate it wherever needed
for (std::list<subrange>::const_iterator i = range_override.begin(); i != range_override.end(); ++i)
populate_range(i->start, i->end, entry);
// Add it in the "to be setup" list
entries.push_back(entry);
// recompute any direct access on this space if it is a read modification
m_space.m_direct->force_update(entry);
}
// Ranges in range_partial must be duplicated then partially changed
if (!range_partial.empty())
{
for (std::map<u16, std::list<subrange> >::const_iterator i = range_partial.begin(); i != range_partial.end(); ++i)
{
// Theorically, if the handler to change matches the
// characteristics of ours, we can directly change it. In
// practice, it's more complex than that because the
// mirroring is not saved, so we're not sure there aren't
// mappings on the handler outside of the zones we're
// supposed to change. So we won't do the obvious
// optimization at this point.
// Get the original handler
handler_entry *base_entry = &handler(i->first);
offs_t previous_bytemask = base_entry->bytemask();
// Grab a new handler and copy it there
u16 entry = get_free_handler();
handler_entry &curentry = handler(entry);
curentry.copy(base_entry);
// Clear the colliding entries
curentry.clear_conflicting_subunits(mask);
// Reconfigure the base addresses
curentry.configure(bytestart, byteend, bytemask);
// Populate it wherever needed
for (const auto & elem : i->second)
populate_range(elem.start, elem.end, entry);
curentry.expand_bytemask(previous_bytemask);
// Add it in the "to be setup" list
entries.push_back(entry);
// recompute any direct access on this space if it is a read modification
m_space.m_direct->force_update(entry);
}
}
// verify_reference_counts();
}
//-------------------------------------------------
// verify_reference_counts - check how much of a
// hash we've made of things
//-------------------------------------------------
void address_table::verify_reference_counts()
{
int actual_refcounts[SUBTABLE_BASE-STATIC_COUNT];
memset(actual_refcounts, 0, sizeof(actual_refcounts));
bool subtable_seen[TOTAL_MEMORY_BANKS - SUBTABLE_BASE];
memset(subtable_seen, 0, sizeof(subtable_seen));
for (int level1 = 0; level1 != 1 << LEVEL1_BITS; level1++)
{
u16 l1_entry = m_table[level1];
if (l1_entry >= SUBTABLE_BASE)
{
assert(m_large);
if (subtable_seen[l1_entry - SUBTABLE_BASE])
continue;
subtable_seen[l1_entry - SUBTABLE_BASE] = true;
const u16 *subtable = subtable_ptr(l1_entry);
for (int level2 = 0; level2 != 1 << LEVEL2_BITS; level2++)
{
u16 l2_entry = subtable[level2];
assert(l2_entry < SUBTABLE_BASE);
if (l2_entry >= STATIC_COUNT)
actual_refcounts[l2_entry - STATIC_COUNT]++;
}
}
else if (l1_entry >= STATIC_COUNT)
actual_refcounts[l1_entry - STATIC_COUNT]++;
}
if (memcmp(actual_refcounts, handler_refcount, sizeof(handler_refcount)))
{
osd_printf_error("Refcount failure:\n");
for(int i = STATIC_COUNT; i != SUBTABLE_BASE; i++)
osd_printf_error("%02x: %4x .. %4x\n", i, handler_refcount[i-STATIC_COUNT], actual_refcounts[i-STATIC_COUNT]);
throw emu_fatalerror("memory.c: refcounts are fucked.\n");
}
}
//-------------------------------------------------
// populate_range - assign a memory handler to a
// range of addresses
//-------------------------------------------------
void address_table::populate_range(offs_t bytestart, offs_t byteend, u16 handlerindex)
{
offs_t l2mask = (1 << level2_bits()) - 1;
offs_t l1start = bytestart >> level2_bits();
offs_t l2start = bytestart & l2mask;
offs_t l1stop = byteend >> level2_bits();
offs_t l2stop = byteend & l2mask;
// sanity check
if (bytestart > byteend)
return;
// handle the starting edge if it's not on a block boundary
if (l2start != 0)
{
u16 *subtable = subtable_open(l1start);
// if the start and stop end within the same block, handle that
if (l1start == l1stop)
{
handler_ref(handlerindex, l2stop-l2start+1);
for (int i = l2start; i <= l2stop; i++)
{
handler_unref(subtable[i]);
subtable[i] = handlerindex;
}
subtable_close(l1start);
return;
}
// otherwise, fill until the end
handler_ref(handlerindex, l2mask - l2start + 1);
for (int i = l2start; i <= l2mask; i++)
{
handler_unref(subtable[i]);
subtable[i] = handlerindex;
}
subtable_close(l1start);
if (l1start != (offs_t)~0)
l1start++;
}
// handle the trailing edge if it's not on a block boundary
if (l2stop != l2mask)
{
u16 *subtable = subtable_open(l1stop);
// fill from the beginning
handler_ref(handlerindex, l2stop+1);
for (int i = 0; i <= l2stop; i++)
{
handler_unref(subtable[i]);
subtable[i] = handlerindex;
}
subtable_close(l1stop);
// if the start and stop end within the same block, handle that
if (l1start == l1stop)
return;
if (l1stop != 0)
l1stop--;
}
// now fill in the middle tables
handler_ref(handlerindex, l1stop - l1start + 1);
for (offs_t l1index = l1start; l1index <= l1stop; l1index++)
{
u16 subindex = m_table[l1index];
// if we have a subtable here, release it
if (subindex >= SUBTABLE_BASE)
subtable_release(subindex);
else
handler_unref(subindex);
m_table[l1index] = handlerindex;
}
}
//-------------------------------------------------
// populate_range_mirrored - assign a memory
// handler to a range of addresses including
// mirrors
//-------------------------------------------------
void address_table::populate_range_mirrored(offs_t bytestart, offs_t byteend, offs_t bytemirror, u16 handlerindex)
{
// determine the mirror bits
offs_t lmirrorbits = 0;
offs_t lmirrorbit[32];
for (int bit = 0; bit < level2_bits(); bit++)
if (bytemirror & (1 << bit))
lmirrorbit[lmirrorbits++] = 1 << bit;
offs_t hmirrorbits = 0;
offs_t hmirrorbit[32];
for (int bit = level2_bits(); bit < 32; bit++)
if (bytemirror & (1 << bit))
hmirrorbit[hmirrorbits++] = 1 << bit;
// loop over mirrors in the level 2 table
u16 prev_entry = STATIC_INVALID;
int prev_index = 0;
for (offs_t hmirrorcount = 0; hmirrorcount < (1 << hmirrorbits); hmirrorcount++)
{
// compute the base of this mirror
offs_t hmirrorbase = 0;
for (int bit = 0; bit < hmirrorbits; bit++)
if (hmirrorcount & (1 << bit))
hmirrorbase |= hmirrorbit[bit];
// invalidate any intersecting cached ranges
for (offs_t lmirrorcount = 0; lmirrorcount < (1 << lmirrorbits); lmirrorcount++)
{
// compute the base of this mirror
offs_t lmirrorbase = hmirrorbase;
for (int bit = 0; bit < lmirrorbits; bit++)
if (lmirrorcount & (1 << bit))
lmirrorbase |= lmirrorbit[bit];
m_space.m_direct->remove_intersecting_ranges(bytestart + lmirrorbase, byteend + lmirrorbase);
}
// if this is not our first time through, and the level 2 entry matches the previous
// level 2 entry, just do a quick map and get out; note that this only works for entries
// which don't span multiple level 1 table entries
int cur_index = level1_index(bytestart + hmirrorbase);
if (cur_index == level1_index(byteend + hmirrorbase))
{
if (hmirrorcount != 0 && prev_entry == m_table[cur_index])
{
VPRINTF(("Quick mapping subtable at %08X to match subtable at %08X\n", cur_index << level2_bits(), prev_index << level2_bits()));
// release the subtable if the old value was a subtable
if (m_table[cur_index] >= SUBTABLE_BASE)
subtable_release(m_table[cur_index]);
else
handler_unref(m_table[cur_index]);
// reallocate the subtable if the new value is a subtable
if (m_table[prev_index] >= SUBTABLE_BASE)
subtable_realloc(m_table[prev_index]);
else
handler_ref(m_table[prev_index], 1);
// set the new value and short-circuit the mapping step
m_table[cur_index] = m_table[prev_index];
continue;
}
prev_index = cur_index;
prev_entry = m_table[cur_index];
}
// loop over mirrors in the level 1 table
for (offs_t lmirrorcount = 0; lmirrorcount < (1 << lmirrorbits); lmirrorcount++)
{
// compute the base of this mirror
offs_t lmirrorbase = hmirrorbase;
for (int bit = 0; bit < lmirrorbits; bit++)
if (lmirrorcount & (1 << bit))
lmirrorbase |= lmirrorbit[bit];
// populate the tables
populate_range(bytestart + lmirrorbase, byteend + lmirrorbase, handlerindex);
}
}
}
//-------------------------------------------------
// derive_range - look up the entry for a memory
// range, and then compute the extent of that
// range based on the lookup tables
//-------------------------------------------------
u16 address_table::derive_range(offs_t byteaddress, offs_t &bytestart, offs_t &byteend) const
{
// look up the initial address to get the entry we care about
u16 l1entry;
u16 entry = l1entry = m_table[level1_index(byteaddress)];
if (l1entry >= SUBTABLE_BASE)
entry = m_table[level2_index(l1entry, byteaddress)];
// use the bytemask of the entry to set minimum and maximum bounds
offs_t minscan, maxscan;
handler(entry).mirrored_start_end(byteaddress, minscan, maxscan);
// first scan backwards to find the start address
u16 curl1entry = l1entry;
u16 curentry = entry;
bytestart = byteaddress;
while (1)
{
// if we need to scan the subtable, do it
if (curentry != curl1entry)
{
u32 minindex = level2_index(curl1entry, 0);
u32 index;
// scan backwards from the current address, until the previous entry doesn't match
for (index = level2_index(curl1entry, bytestart); index > minindex; index--, bytestart -= 1)
if (m_table[index - 1] != entry)
break;
// if we didn't hit the beginning, then we're finished scanning
if (index != minindex)
break;
}
// move to the beginning of this L1 entry; stop at the minimum address
bytestart &= ~((1 << level2_bits()) - 1);
if (bytestart <= minscan)
break;
// look up the entry of the byte at the end of the previous L1 entry; if it doesn't match, stop
curentry = curl1entry = m_table[level1_index(bytestart - 1)];
if (curl1entry >= SUBTABLE_BASE)
curentry = m_table[level2_index(curl1entry, bytestart - 1)];
if (curentry != entry)
break;
// move into the previous entry and resume searching
bytestart -= 1;
}
// then scan forwards to find the end address
curl1entry = l1entry;
curentry = entry;
byteend = byteaddress;
while (1)
{
// if we need to scan the subtable, do it
if (curentry != curl1entry)
{
u32 maxindex = level2_index(curl1entry, ~0);
u32 index;
// scan forwards from the current address, until the next entry doesn't match
for (index = level2_index(curl1entry, byteend); index < maxindex; index++, byteend += 1)
if (m_table[index + 1] != entry)
break;
// if we didn't hit the end, then we're finished scanning
if (index != maxindex)
break;
}
// move to the end of this L1 entry; stop at the maximum address
byteend |= (1 << level2_bits()) - 1;
if (byteend >= maxscan)
break;
// look up the entry of the byte at the start of the next L1 entry; if it doesn't match, stop
curentry = curl1entry = m_table[level1_index(byteend + 1)];
if (curl1entry >= SUBTABLE_BASE)
curentry = m_table[level2_index(curl1entry, byteend + 1)];
if (curentry != entry)
break;
// move into the next entry and resume searching
byteend += 1;
}
return entry;
}
//-------------------------------------------------
// mask_all_handlers - apply a mask to all
// address handlers
//-------------------------------------------------
void address_table::mask_all_handlers(offs_t mask)
{
// we don't loop over map entries because the mask applies to static handlers as well
for (int entrynum = 0; entrynum < ENTRY_COUNT; entrynum++)
handler(entrynum).apply_mask(mask);
}
//**************************************************************************
// SUBTABLE MANAGEMENT
//**************************************************************************
//-------------------------------------------------
// subtable_alloc - allocate a fresh subtable
// and set its usecount to 1
//-------------------------------------------------
u16 address_table::subtable_alloc()
{
// loop
while (1)
{
// find a subtable with a usecount of 0
for (u16 subindex = 0; subindex < SUBTABLE_COUNT; subindex++)
if (m_subtable[subindex].m_usecount == 0)
{
// if this is past our allocation budget, allocate some more
if (subindex >= m_subtable_alloc)
{
m_subtable_alloc += SUBTABLE_ALLOC;
u32 newsize = (1 << LEVEL1_BITS) + (m_subtable_alloc << level2_bits());
bool was_live = (m_live_lookup == &m_table[0]);
int oldsize = m_table.size();
m_table.resize(newsize);
memset(&m_table[oldsize], 0, (newsize-oldsize)*sizeof(m_table[0]));
if (was_live)
m_live_lookup = &m_table[0];
}
// bump the usecount and return
m_subtable[subindex].m_usecount++;
return subindex + SUBTABLE_BASE;
}
// merge any subtables we can
if (!subtable_merge())
fatalerror("Ran out of subtables!\n");
}
}
//-------------------------------------------------
// subtable_realloc - increment the usecount on
// a subtable
//-------------------------------------------------
void address_table::subtable_realloc(u16 subentry)
{
u16 subindex = subentry - SUBTABLE_BASE;
// sanity check
if (m_subtable[subindex].m_usecount <= 0)
fatalerror("Called subtable_realloc on a table with a usecount of 0\n");
// increment the usecount
m_subtable[subindex].m_usecount++;
}
//-------------------------------------------------
// subtable_merge - merge any duplicate
// subtables
//-------------------------------------------------
int address_table::subtable_merge()
{
int merged = 0;
u16 subindex;
VPRINTF(("Merging subtables....\n"));
// okay, we failed; update all the checksums and merge tables
for (subindex = 0; subindex < SUBTABLE_COUNT; subindex++)
if (!m_subtable[subindex].m_checksum_valid && m_subtable[subindex].m_usecount != 0)
{
u32 *subtable = reinterpret_cast<u32 *>(subtable_ptr(subindex + SUBTABLE_BASE));
u32 checksum = 0;
// update the checksum
for (int l2index = 0; l2index < (1 << level2_bits())/4; l2index++)
checksum += subtable[l2index];
m_subtable[subindex].m_checksum = checksum;
m_subtable[subindex].m_checksum_valid = true;
}
// see if there's a matching checksum
for (subindex = 0; subindex < SUBTABLE_COUNT; subindex++)
if (m_subtable[subindex].m_usecount != 0)
{
u16 *subtable = subtable_ptr(subindex + SUBTABLE_BASE);
u32 checksum = m_subtable[subindex].m_checksum;
u16 sumindex;
for (sumindex = subindex + 1; sumindex < SUBTABLE_COUNT; sumindex++)
if (m_subtable[sumindex].m_usecount != 0 &&
m_subtable[sumindex].m_checksum == checksum &&
!memcmp(subtable, subtable_ptr(sumindex + SUBTABLE_BASE), 2*(1 << level2_bits())))
{
int l1index;
VPRINTF(("Merging subtable %d and %d....\n", subindex, sumindex));
// find all the entries in the L1 tables that pointed to the old one, and point them to the merged table
for (l1index = 0; l1index <= (0xffffffffUL >> level2_bits()); l1index++)
if (m_table[l1index] == sumindex + SUBTABLE_BASE)
{
subtable_release(sumindex + SUBTABLE_BASE);
subtable_realloc(subindex + SUBTABLE_BASE);
m_table[l1index] = subindex + SUBTABLE_BASE;
merged++;
}
}
}
return merged;
}
//-------------------------------------------------
// subtable_release - decrement the usecount on
// a subtable and free it if we're done
//-------------------------------------------------
void address_table::subtable_release(u16 subentry)
{
u16 subindex = subentry - SUBTABLE_BASE;
// sanity check
if (m_subtable[subindex].m_usecount <= 0)
fatalerror("Called subtable_release on a table with a usecount of 0\n");
// decrement the usecount and clear the checksum if we're at 0
// also unref the subhandlers
m_subtable[subindex].m_usecount--;
if (m_subtable[subindex].m_usecount == 0)
{
m_subtable[subindex].m_checksum = 0;
u16 *subtable = subtable_ptr(subentry);
for (int i = 0; i < (1 << LEVEL2_BITS); i++)
handler_unref(subtable[i]);
}
}
//-------------------------------------------------
// subtable_open - gain access to a subtable for
// modification
//-------------------------------------------------
u16 *address_table::subtable_open(offs_t l1index)
{
u16 subentry = m_table[l1index];
// if we don't have a subtable yet, allocate a new one
if (subentry < SUBTABLE_BASE)
{
int size = 1 << level2_bits();
u16 newentry = subtable_alloc();
handler_ref(subentry, size-1);
u16 *subptr = subtable_ptr(newentry);
for (int i=0; i<size; i++)
subptr[i] = subentry;
m_table[l1index] = newentry;
u32 subkey = subentry + (subentry << 8) + (subentry << 16) + (subentry << 24);
m_subtable[newentry - SUBTABLE_BASE].m_checksum = subkey * (((1 << level2_bits())/4));
subentry = newentry;
}
// if we're sharing this subtable, we also need to allocate a fresh copy
else if (m_subtable[subentry - SUBTABLE_BASE].m_usecount > 1)
{
u16 newentry = subtable_alloc();
// allocate may cause some additional merging -- look up the subentry again
// when we're done; it should still require a split
subentry = m_table[l1index];
assert(subentry >= SUBTABLE_BASE);
assert(m_subtable[subentry - SUBTABLE_BASE].m_usecount > 1);
int size = 1 << level2_bits();
u16 *src = subtable_ptr(subentry);
for(int i=0; i != size; i++)
handler_ref(src[i], 1);
memcpy(subtable_ptr(newentry), src, 2*size);
subtable_release(subentry);
m_table[l1index] = newentry;
m_subtable[newentry - SUBTABLE_BASE].m_checksum = m_subtable[subentry - SUBTABLE_BASE].m_checksum;
subentry = newentry;
}
// mark the table dirty
m_subtable[subentry - SUBTABLE_BASE].m_checksum_valid = false;
// return the pointer to the subtable
return subtable_ptr(subentry);
}
//-------------------------------------------------
// subtable_close - stop access to a subtable
//-------------------------------------------------
void address_table::subtable_close(offs_t l1index)
{
// defer any merging until we run out of tables
}
//-------------------------------------------------
// handler_name - return friendly string
// description of a handler
//-------------------------------------------------
const char *address_table::handler_name(u16 entry) const
{
// banks have names
if (entry >= STATIC_BANK1 && entry <= STATIC_BANKMAX)
for (auto &info : m_space.manager().banks())
if (info.second->index() == entry)
return info.second->name();
// constant strings for static entries
if (entry == STATIC_INVALID) return "invalid";
if (entry == STATIC_NOP) return "nop";
if (entry == STATIC_UNMAP) return "unmapped";
if (entry == STATIC_WATCHPOINT) return "watchpoint";
static char desc[4096];
handler(entry).description(desc);
if (desc[0])
return desc;
return "???";
}
//-------------------------------------------------
// address_table_read - constructor
//-------------------------------------------------
address_table_read::address_table_read(address_space &space, bool large)
: address_table(space, large)
{
// allocate handlers for each entry, prepopulating the bankptrs for banks
for (int entrynum = 0; entrynum < ARRAY_LENGTH(m_handlers); entrynum++)
{
u8 **bankptr = (entrynum >= STATIC_BANK1 && entrynum <= STATIC_BANKMAX) ? space.manager().bank_pointer_addr(entrynum) : nullptr;
m_handlers[entrynum] = std::make_unique<handler_entry_read>(space.data_width(), space.endianness(), bankptr);
}
// we have to allocate different object types based on the data bus width
switch (space.data_width())
{
// 8-bit case
case 8:
m_handlers[STATIC_UNMAP]->set_delegate(read8_delegate(FUNC(address_table_read::unmap_r<u8>), this));
m_handlers[STATIC_NOP]->set_delegate(read8_delegate(FUNC(address_table_read::nop_r<u8>), this));
m_handlers[STATIC_WATCHPOINT]->set_delegate(read8_delegate(FUNC(address_table_read::watchpoint_r<u8>), this));
break;
// 16-bit case
case 16:
m_handlers[STATIC_UNMAP]->set_delegate(read16_delegate(FUNC(address_table_read::unmap_r<u16>), this));
m_handlers[STATIC_NOP]->set_delegate(read16_delegate(FUNC(address_table_read::nop_r<u16>), this));
m_handlers[STATIC_WATCHPOINT]->set_delegate(read16_delegate(FUNC(address_table_read::watchpoint_r<u16>), this));
break;
// 32-bit case
case 32:
m_handlers[STATIC_UNMAP]->set_delegate(read32_delegate(FUNC(address_table_read::unmap_r<u32>), this));
m_handlers[STATIC_NOP]->set_delegate(read32_delegate(FUNC(address_table_read::nop_r<u32>), this));
m_handlers[STATIC_WATCHPOINT]->set_delegate(read32_delegate(FUNC(address_table_read::watchpoint_r<u32>), this));
break;
// 64-bit case
case 64:
m_handlers[STATIC_UNMAP]->set_delegate(read64_delegate(FUNC(address_table_read::unmap_r<u64>), this));
m_handlers[STATIC_NOP]->set_delegate(read64_delegate(FUNC(address_table_read::nop_r<u64>), this));
m_handlers[STATIC_WATCHPOINT]->set_delegate(read64_delegate(FUNC(address_table_read::watchpoint_r<u64>), this));
break;
}
// reset the byte masks on the special handlers to open up the full address space for proper reporting
m_handlers[STATIC_UNMAP]->configure(0, space.bytemask(), ~0);
m_handlers[STATIC_NOP]->configure(0, space.bytemask(), ~0);
m_handlers[STATIC_WATCHPOINT]->configure(0, space.bytemask(), ~0);
}
//-------------------------------------------------
// address_table_read - destructor
//-------------------------------------------------
address_table_read::~address_table_read()
{
}
//-------------------------------------------------
// handler - return the generic handler entry for
// this index
//-------------------------------------------------
handler_entry &address_table_read::handler(u32 index) const
{
assert(index < ARRAY_LENGTH(m_handlers));
return *m_handlers[index];
}
//-------------------------------------------------
// address_table_write - constructor
//-------------------------------------------------
address_table_write::address_table_write(address_space &space, bool large)
: address_table(space, large)
{
// allocate handlers for each entry, prepopulating the bankptrs for banks
for (int entrynum = 0; entrynum < ARRAY_LENGTH(m_handlers); entrynum++)
{
u8 **bankptr = (entrynum >= STATIC_BANK1 && entrynum <= STATIC_BANKMAX) ? space.manager().bank_pointer_addr(entrynum) : nullptr;
m_handlers[entrynum] = std::make_unique<handler_entry_write>(space.data_width(), space.endianness(), bankptr);
}
// we have to allocate different object types based on the data bus width
switch (space.data_width())
{
// 8-bit case
case 8:
m_handlers[STATIC_UNMAP]->set_delegate(write8_delegate(FUNC(address_table_write::unmap_w<u8>), this));
m_handlers[STATIC_NOP]->set_delegate(write8_delegate(FUNC(address_table_write::nop_w<u8>), this));
m_handlers[STATIC_WATCHPOINT]->set_delegate(write8_delegate(FUNC(address_table_write::watchpoint_w<u8>), this));
break;
// 16-bit case
case 16:
m_handlers[STATIC_UNMAP]->set_delegate(write16_delegate(FUNC(address_table_write::unmap_w<u16>), this));
m_handlers[STATIC_NOP]->set_delegate(write16_delegate(FUNC(address_table_write::nop_w<u16>), this));
m_handlers[STATIC_WATCHPOINT]->set_delegate(write16_delegate(FUNC(address_table_write::watchpoint_w<u16>), this));
break;
// 32-bit case
case 32:
m_handlers[STATIC_UNMAP]->set_delegate(write32_delegate(FUNC(address_table_write::unmap_w<u32>), this));
m_handlers[STATIC_NOP]->set_delegate(write32_delegate(FUNC(address_table_write::nop_w<u32>), this));
m_handlers[STATIC_WATCHPOINT]->set_delegate(write32_delegate(FUNC(address_table_write::watchpoint_w<u32>), this));
break;
// 64-bit case
case 64:
m_handlers[STATIC_UNMAP]->set_delegate(write64_delegate(FUNC(address_table_write::unmap_w<u64>), this));
m_handlers[STATIC_NOP]->set_delegate(write64_delegate(FUNC(address_table_write::nop_w<u64>), this));
m_handlers[STATIC_WATCHPOINT]->set_delegate(write64_delegate(FUNC(address_table_write::watchpoint_w<u64>), this));
break;
}
// reset the byte masks on the special handlers to open up the full address space for proper reporting
m_handlers[STATIC_UNMAP]->configure(0, space.bytemask(), ~0);
m_handlers[STATIC_NOP]->configure(0, space.bytemask(), ~0);
m_handlers[STATIC_WATCHPOINT]->configure(0, space.bytemask(), ~0);
}
//-------------------------------------------------
// address_table_write - destructor
//-------------------------------------------------
address_table_write::~address_table_write()
{
}
//-------------------------------------------------
// handler - return the generic handler entry for
// this index
//-------------------------------------------------
handler_entry &address_table_write::handler(u32 index) const
{
assert(index < ARRAY_LENGTH(m_handlers));
return *m_handlers[index];
}
//**************************************************************************
// DIRECT MEMORY RANGES
//**************************************************************************
//-------------------------------------------------
// direct_read_data - constructor
//-------------------------------------------------
direct_read_data::direct_read_data(address_space &space)
: m_space(space),
m_ptr(nullptr),
m_bytemask(space.bytemask()),
m_bytestart(1),
m_byteend(0),
m_entry(STATIC_UNMAP)
{
}
//-------------------------------------------------
// ~direct_read_data - destructor
//-------------------------------------------------
direct_read_data::~direct_read_data()
{
}
//-------------------------------------------------
// set_direct_region - called by device cores to
// update the opcode base for the given address
//-------------------------------------------------
bool direct_read_data::set_direct_region(offs_t &byteaddress)
{
// allow overrides
offs_t overrideaddress = byteaddress;
if (!m_directupdate.isnull())
{
overrideaddress = m_directupdate(*this, overrideaddress);
if (overrideaddress == ~0)
return true;
byteaddress = overrideaddress;
}
// find or allocate a matching range
direct_range *range = find_range(overrideaddress, m_entry);
// if we don't map to a bank, return false
if (m_entry < STATIC_BANK1 || m_entry > STATIC_BANKMAX)
{
// ensure future updates to land here as well until we get back into a bank
m_byteend = 0;
m_bytestart = 1;
return false;
}
u8 *base = *m_space.manager().bank_pointer_addr(m_entry);
// compute the adjusted base
offs_t maskedbits = overrideaddress & ~m_space.bytemask();
const handler_entry_read &handler = m_space.read().handler_read(m_entry);
m_bytemask = handler.bytemask();
m_ptr = base - (handler.bytestart() & m_bytemask);
m_bytestart = maskedbits | range->m_bytestart;
m_byteend = maskedbits | range->m_byteend;
return true;
}
//-------------------------------------------------
// find_range - find a byte address in a range
//-------------------------------------------------
direct_read_data::direct_range *direct_read_data::find_range(offs_t byteaddress, u16 &entry)
{
// determine which entry
byteaddress &= m_space.m_bytemask;
entry = m_space.read().lookup_live_nowp(byteaddress);
// scan our table
for (auto &range : m_rangelist[entry])
if (byteaddress >= range.m_bytestart && byteaddress <= range.m_byteend)
return &range;
// didn't find out; create a new one
direct_range range;
m_space.read().derive_range(byteaddress, range.m_bytestart, range.m_byteend);
m_rangelist[entry].push_front(range);
return &m_rangelist[entry].front();
}
//-------------------------------------------------
// remove_intersecting_ranges - remove all cached
// ranges that intersect the given address range
//-------------------------------------------------
void direct_read_data::remove_intersecting_ranges(offs_t bytestart, offs_t byteend)
{
// loop over all entries
for (auto & elem : m_rangelist)
{
// loop over all ranges in this entry's list
for (auto range = elem.begin(); range!=elem.end();)
{
// if we intersect, remove
if (bytestart <= range->m_byteend && byteend >= range->m_bytestart)
range = elem.erase(range);
else
range ++;
}
}
}
//-------------------------------------------------
// set_direct_update - set a custom direct range
// update callback
//-------------------------------------------------
direct_update_delegate direct_read_data::set_direct_update(direct_update_delegate function)
{
direct_update_delegate old = m_directupdate;
m_directupdate = function;
return old;
}
//-------------------------------------------------
// explicit_configure - explicitly configure
// the start/end/mask and the pointers from
// within a custom callback
//-------------------------------------------------
void direct_read_data::explicit_configure(offs_t bytestart, offs_t byteend, offs_t bytemask, void *ptr)
{
m_bytestart = bytestart;
m_byteend = byteend;
m_bytemask = bytemask;
m_ptr = reinterpret_cast<u8 *>(ptr) - (bytestart & bytemask);
}
//**************************************************************************
// MEMORY BLOCK
//**************************************************************************
//-------------------------------------------------
// memory_block - constructor
//-------------------------------------------------
memory_block::memory_block(address_space &space, offs_t bytestart, offs_t byteend, void *memory)
: m_machine(space.machine()),
m_space(space),
m_bytestart(bytestart),
m_byteend(byteend),
m_data(reinterpret_cast<u8 *>(memory))
{
offs_t const length = byteend + 1 - bytestart;
VPRINTF(("block_allocate('%s',%s,%08X,%08X,%p)\n", space.device().tag(), space.name(), bytestart, byteend, memory));
// allocate a block if needed
if (m_data == nullptr)
{
if (length < 4096)
{
m_allocated.resize(length);
memset(&m_allocated[0], 0, length);
m_data = &m_allocated[0];
}
else
{
m_allocated.resize(length + 0xfff);
memset(&m_allocated[0], 0, length + 0xfff);
m_data = reinterpret_cast<u8 *>((reinterpret_cast<uintptr_t>(&m_allocated[0]) + 0xfff) & ~0xfff);
}
}
// register for saving, but only if we're not part of a memory region
if (space.manager().region_containing(m_data, length) != nullptr)
VPRINTF(("skipping save of this memory block as it is covered by a memory region\n"));
else
{
int bytes_per_element = space.data_width() / 8;
std::string name = string_format("%08x-%08x", bytestart, byteend);
space.machine().save().save_memory(nullptr, "memory", space.device().tag(), space.spacenum(), name.c_str(), m_data, bytes_per_element, (u32)length / bytes_per_element);
}
}
//-------------------------------------------------
// memory_block - destructor
//-------------------------------------------------
memory_block::~memory_block()
{
}
//**************************************************************************
// MEMORY BANK
//**************************************************************************
//-------------------------------------------------
// memory_bank - constructor
//-------------------------------------------------
memory_bank::memory_bank(address_space &space, int index, offs_t bytestart, offs_t byteend, const char *tag)
: m_machine(space.machine()),
m_baseptr(space.manager().bank_pointer_addr(index)),
m_index(index),
m_anonymous(tag == nullptr),
m_bytestart(bytestart),
m_byteend(byteend),
m_curentry(BANK_ENTRY_UNSPECIFIED)
{
// generate an internal tag if we don't have one
if (tag == nullptr)
{
m_tag = string_format("~%d~", index);
m_name = string_format("Internal bank #%d", index);
}
else
{
m_tag.assign(tag);
m_name = string_format("Bank '%s'", tag);
}
if (!m_anonymous && space.machine().save().registration_allowed())
space.machine().save().save_item(nullptr, "memory", m_tag.c_str(), 0, NAME(m_curentry));
}
//-------------------------------------------------
// memory_bank - destructor
//-------------------------------------------------
memory_bank::~memory_bank()
{
}
//-------------------------------------------------
// references_space - walk the list of references
// to find a match against the provided space
// and read/write
//-------------------------------------------------
bool memory_bank::references_space(const address_space &space, read_or_write readorwrite) const
{
for (auto &ref : m_reflist)
if (ref->matches(space, readorwrite))
return true;
return false;
}
//-------------------------------------------------
// add_reference - add a new reference to the
// given space
//-------------------------------------------------
void memory_bank::add_reference(address_space &space, read_or_write readorwrite)
{
// if we already have a reference, skip it
if (references_space(space, readorwrite))
return;
m_reflist.push_back(std::make_unique<bank_reference>(space, readorwrite));
}
//-------------------------------------------------
// invalidate_references - force updates on all
// referencing address spaces
//-------------------------------------------------
void memory_bank::invalidate_references()
{
// invalidate all the direct references to any referenced address spaces
for (auto &ref : m_reflist)
ref->space().direct().force_update();
}
//-------------------------------------------------
// set_base - set the bank base explicitly
//-------------------------------------------------
void memory_bank::set_base(void *base)
{
// nullptr is not an option
if (base == nullptr)
throw emu_fatalerror("memory_bank::set_base called nullptr base");
// set the base and invalidate any referencing spaces
*m_baseptr = reinterpret_cast<u8 *>(base);
invalidate_references();
}
//-------------------------------------------------
// set_entry - set the base to a pre-configured
// entry
//-------------------------------------------------
void memory_bank::set_entry(int entrynum)
{
// validate
if (m_anonymous)
throw emu_fatalerror("memory_bank::set_entry called for anonymous bank");
if (entrynum < 0 || entrynum >= int(m_entry.size()))
throw emu_fatalerror("memory_bank::set_entry called with out-of-range entry %d", entrynum);
if (m_entry[entrynum].m_ptr == nullptr)
throw emu_fatalerror("memory_bank::set_entry called for bank '%s' with invalid bank entry %d", m_tag.c_str(), entrynum);
m_curentry = entrynum;
*m_baseptr = m_entry[entrynum].m_ptr;
// invalidate referencing spaces
invalidate_references();
}
//-------------------------------------------------
// expand_entries - expand the allocated array
// of entries
//-------------------------------------------------
void memory_bank::expand_entries(int entrynum)
{
// allocate a new array and copy from the old one; zero out the new entries
int old_size = m_entry.size();
m_entry.resize(entrynum + 1);
memset(&m_entry[old_size], 0, (entrynum+1-old_size)*sizeof(m_entry[0]));
}
//-------------------------------------------------
// configure_entry - configure an entry
//-------------------------------------------------
void memory_bank::configure_entry(int entrynum, void *base)
{
// must be positive
if (entrynum < 0)
throw emu_fatalerror("memory_bank::configure_entry called with out-of-range entry %d", entrynum);
// if we haven't allocated this many entries yet, expand our array
if (entrynum >= int(m_entry.size()))
expand_entries(entrynum);
// set the entry
m_entry[entrynum].m_ptr = reinterpret_cast<u8 *>(base);
// if the bank base is not configured, and we're the first entry, set us up
if (*m_baseptr == nullptr && entrynum == 0)
*m_baseptr = m_entry[entrynum].m_ptr;
}
//-------------------------------------------------
// configure_entries - configure multiple entries
//-------------------------------------------------
void memory_bank::configure_entries(int startentry, int numentries, void *base, offs_t stride)
{
// fill in the requested bank entries (backwards to improve allocation)
for (int entrynum = startentry + numentries - 1; entrynum >= startentry; entrynum--)
configure_entry(entrynum, reinterpret_cast<u8 *>(base) + (entrynum - startentry) * stride);
}
//**************************************************************************
// MEMORY REGIONS
//**************************************************************************
//-------------------------------------------------
// memory_region - constructor
//-------------------------------------------------
memory_region::memory_region(running_machine &machine, const char *name, u32 length, u8 width, endianness_t endian)
: m_machine(machine),
m_name(name),
m_buffer(length),
m_endianness(endian),
m_bitwidth(width * 8),
m_bytewidth(width)
{
assert(width == 1 || width == 2 || width == 4 || width == 8);
}
//**************************************************************************
// HANDLER ENTRY
//**************************************************************************
//-------------------------------------------------
// handler_entry - constructor
//-------------------------------------------------
handler_entry::handler_entry(u8 width, endianness_t endianness, u8 **rambaseptr)
: m_populated(false),
m_datawidth(width),
m_endianness(endianness),
m_bytestart(0),
m_byteend(0),
m_bytemask(~0),
m_rambaseptr(rambaseptr),
m_subunits(0),
m_invsubmask(0)
{
}
//-------------------------------------------------
// ~handler_entry - destructor
//-------------------------------------------------
handler_entry::~handler_entry()
{
}
//-------------------------------------------------
// copy - copy another handler_entry, but only
// if it is populated and constitutes of one or
// more subunit handlers
//-------------------------------------------------
void handler_entry::copy(handler_entry *entry)
{
assert(entry->m_populated);
assert(entry->m_subunits);
assert(!entry->m_rambaseptr);
assert(!m_populated);
m_populated = true;
m_datawidth = entry->m_datawidth;
m_endianness = entry->m_endianness;
m_bytestart = entry->m_bytestart;
m_byteend = entry->m_byteend;
m_bytemask = entry->m_bytemask;
m_rambaseptr = nullptr;
m_subunits = entry->m_subunits;
memcpy(m_subunit_infos, entry->m_subunit_infos, m_subunits*sizeof(subunit_info));
m_invsubmask = entry->m_invsubmask;
}
//-------------------------------------------------
// reconfigure_subunits - reconfigure the subunits
// to handle a new base address
//-------------------------------------------------
void handler_entry::reconfigure_subunits(offs_t bytestart)
{
s32 delta = bytestart - m_bytestart;
for (int i=0; i != m_subunits; i++)
m_subunit_infos[i].m_offset += delta / (m_subunit_infos[i].m_size / 8);
}
//-------------------------------------------------
// configure_subunits - configure the subunits
// and subshift array to represent the provided
// mask
//-------------------------------------------------
void handler_entry::configure_subunits(u64 handlermask, int handlerbits, int &start_slot, int &end_slot)
{
u64 unitmask = ((u64)1 << handlerbits) - 1;
assert(handlermask != 0);
// compute the maximum possible subunits
int maxunits = m_datawidth / handlerbits;
assert(maxunits > 1);
assert(maxunits <= ARRAY_LENGTH(m_subunit_infos));
int shift_xor_mask = m_endianness == ENDIANNESS_LITTLE ? 0 : maxunits - 1;
// walk the handlermask to find out how many we have
int count = 0;
for (int unitnum = 0; unitnum < maxunits; unitnum++)
{
u32 shift = unitnum * handlerbits;
u32 scanmask = handlermask >> shift;
assert((scanmask & unitmask) == 0 || (scanmask & unitmask) == unitmask);
if ((scanmask & unitmask) != 0)
count++;
}
// fill in the shifts
int cur_offset = 0;
start_slot = m_subunits;
for (int unitnum = 0; unitnum < maxunits; unitnum++)
{
u32 shift = (unitnum^shift_xor_mask) * handlerbits;
if (((handlermask >> shift) & unitmask) != 0)
{
m_subunit_infos[m_subunits].m_bytemask = m_bytemask;
m_subunit_infos[m_subunits].m_mask = unitmask;
m_subunit_infos[m_subunits].m_offset = cur_offset++;
m_subunit_infos[m_subunits].m_size = handlerbits;
m_subunit_infos[m_subunits].m_shift = shift;
m_subunit_infos[m_subunits].m_multiplier = count;
m_subunits++;
}
}
end_slot = m_subunits;
// compute the inverse mask
m_invsubmask = 0;
for (int i = 0; i < m_subunits; i++)
m_invsubmask |= u64(m_subunit_infos[i].m_mask) << m_subunit_infos[i].m_shift;
m_invsubmask = ~m_invsubmask;
}
//-------------------------------------------------
// clear_conflicting_subunits - clear the subunits
// conflicting with the provided mask
//-------------------------------------------------
void handler_entry::clear_conflicting_subunits(u64 handlermask)
{
// A mask of 0 is in fact an alternative way of saying ~0
if (!handlermask)
{
m_subunits = 0;
return;
}
// Start by the end to avoid unnecessary memmoves
for (int i=m_subunits-1; i>=0; i--)
if (((handlermask >> m_subunit_infos[i].m_shift) & m_subunit_infos[i].m_mask) != 0)
{
if (i != m_subunits-1)
memmove (m_subunit_infos+i, m_subunit_infos+i+1, (m_subunits-i-1)*sizeof(m_subunit_infos[0]));
remove_subunit(i);
}
// compute the inverse mask
m_invsubmask = 0;
for (int i = 0; i < m_subunits; i++)
m_invsubmask |= u64(m_subunit_infos[i].m_mask) << m_subunit_infos[i].m_shift;
m_invsubmask = ~m_invsubmask;
}
//-------------------------------------------------
// overriden_by_mask - check whether a handler with
// the provided mask fully overrides everything
// that's currently present
//-------------------------------------------------
bool handler_entry::overriden_by_mask(u64 handlermask)
{
// A mask of 0 is in fact an alternative way of saying ~0
if (!handlermask)
return true;
// If there are no subunits, it's going to override
if (!m_subunits)
return true;
// Check whether a subunit would be left
for (int i=0; i != m_subunits; i++)
if (((handlermask >> m_subunit_infos[i].m_shift) & m_subunit_infos[i].m_mask) == 0)
return false;
return true;
}
//-------------------------------------------------
// description - build a printable description
// of the handler
//-------------------------------------------------
void handler_entry::description(char *buffer) const
{
if (m_subunits)
{
for (int i=0; i != m_subunits; i++)
{
if (i)
*buffer++ = ' ';
buffer += sprintf (buffer, "%d:%d:%x:%d:%x:%s",
m_subunit_infos[i].m_size,
m_subunit_infos[i].m_shift,
m_subunit_infos[i].m_offset,
m_subunit_infos[i].m_multiplier,
m_subunit_infos[i].m_bytemask,
subunit_name(i));
}
}
else
strcpy (buffer, name());
}
//**************************************************************************
// HANDLER ENTRY READ
//**************************************************************************
//-------------------------------------------------
// copy - copy another handler_entry, but only
// if it is populated and constitutes of one or
// more subunit handlers
//-------------------------------------------------
void handler_entry_read::copy(handler_entry *entry)
{
handler_entry::copy(entry);
handler_entry_read *rentry = static_cast<handler_entry_read *>(entry);
m_read = rentry->m_read;
for(int i = 0; i < m_subunits; ++i)
{
switch(m_subunit_infos[i].m_size)
{
case 8:
m_subread[i].r8 = rentry->m_subread[i].r8;
break;
case 16:
m_subread[i].r16 = rentry->m_subread[i].r16;
break;
case 32:
m_subread[i].r32 = rentry->m_subread[i].r32;
break;
}
}
}
//-------------------------------------------------
// name - return the handler name, from the
// appropriately-sized delegate
//-------------------------------------------------
const char *handler_entry_read::name() const
{
switch (m_datawidth)
{
case 8: return m_read.r8.name();
case 16: return m_read.r16.name();
case 32: return m_read.r32.name();
case 64: return m_read.r64.name();
}
return nullptr;
}
//-------------------------------------------------
// subunit_name - return the handler name, from the
// appropriately-sized delegate of a subunit
//-------------------------------------------------
const char *handler_entry_read::subunit_name(int entry) const
{
switch (m_subunit_infos[entry].m_size)
{
case 8: return m_subread[entry].r8.name();
case 16: return m_subread[entry].r16.name();
case 32: return m_subread[entry].r32.name();
case 64: return m_subread[entry].r64.name();
}
return nullptr;
}
//-------------------------------------------------
// remove_subunit - delete a subunit specific
// information and shift up the following ones
//-------------------------------------------------
void handler_entry_read::remove_subunit(int entry)
{
int moving = m_subunits - entry - 1;
if (moving)
{
memmove(m_subread+entry, m_subread+entry+1, moving*sizeof(m_subread[0]));
}
m_subunits--;
}
//-------------------------------------------------
// set_delegate - set an 8-bit delegate, and
// configure a stub if necessary
//-------------------------------------------------
void handler_entry_read::set_delegate(read8_delegate delegate, u64 mask)
{
// error if no object
if (!delegate.has_object())
throw emu_fatalerror("Attempted to install delegate '%s' without a bound object", delegate.name());
// make sure this is a valid size
assert(m_datawidth >= 8);
// if mismatched bus width, configure a stub
if (m_datawidth != 8)
{
int start_slot, end_slot;
configure_subunits(mask, 8, start_slot, end_slot);
for (int i=start_slot; i != end_slot; i++)
{
m_subread[i].r8 = delegate;
}
if (m_datawidth == 16)
set_delegate(read16_delegate(&handler_entry_read::read_stub_16, delegate.name(), this));
else if (m_datawidth == 32)
set_delegate(read32_delegate(&handler_entry_read::read_stub_32, delegate.name(), this));
else if (m_datawidth == 64)
set_delegate(read64_delegate(&handler_entry_read::read_stub_64, delegate.name(), this));
}
else
{
m_read.r8 = delegate;
}
}
//-------------------------------------------------
// set_delegate - set a 16-bit delegate, and
// configure a stub if necessary
//-------------------------------------------------
void handler_entry_read::set_delegate(read16_delegate delegate, u64 mask)
{
// error if no object
if (!delegate.has_object())
throw emu_fatalerror("Attempted to install delegate '%s' without a bound object", delegate.name());
// make sure this is a valid size
assert(m_datawidth >= 16);
// if mismatched bus width, configure a stub
if (m_datawidth != 16)
{
int start_slot, end_slot;
configure_subunits(mask, 16, start_slot, end_slot);
for (int i=start_slot; i != end_slot; i++)
{
m_subread[i].r16 = delegate;
}
if (m_datawidth == 32)
set_delegate(read32_delegate(&handler_entry_read::read_stub_32, delegate.name(), this));
else if (m_datawidth == 64)
set_delegate(read64_delegate(&handler_entry_read::read_stub_64, delegate.name(), this));
}
else
{
m_read.r16 = delegate;
}
}
//-------------------------------------------------
// set_delegate - set a 32-bit delegate, and
// configure a stub if necessary
//-------------------------------------------------
void handler_entry_read::set_delegate(read32_delegate delegate, u64 mask)
{
// error if no object
if (!delegate.has_object())
throw emu_fatalerror("Attempted to install delegate '%s' without a bound object", delegate.name());
// make sure this is a valid size
assert(m_datawidth >= 32);
// if mismatched bus width, configure a stub
if (m_datawidth != 32)
{
int start_slot, end_slot;
configure_subunits(mask, 32, start_slot, end_slot);
for (int i=start_slot; i != end_slot; i++)
{
m_subread[i].r32 = delegate;
}
if (m_datawidth == 64)
set_delegate(read64_delegate(&handler_entry_read::read_stub_64, delegate.name(), this));
}
else
{
m_read.r32 = delegate;
}
}
//-------------------------------------------------
// set_delegate - set a 64-bit delegate
//-------------------------------------------------
void handler_entry_read::set_delegate(read64_delegate delegate, u64 mask)
{
// error if no object
if (!delegate.has_object())
throw emu_fatalerror("Attempted to install delegate '%s' without a bound object", delegate.name());
// make sure this is a valid size
assert(m_datawidth >= 64);
m_read.r64 = delegate;
}
//-------------------------------------------------
// set_ioport - configure an I/O port read stub
// of the appropriate size
//-------------------------------------------------
void handler_entry_read::set_ioport(ioport_port &ioport)
{
m_ioport = &ioport;
if (m_datawidth == 8)
set_delegate(read8_delegate(&handler_entry_read::read_stub_ioport<u8>, ioport.tag(), this));
else if (m_datawidth == 16)
set_delegate(read16_delegate(&handler_entry_read::read_stub_ioport<u16>, ioport.tag(), this));
else if (m_datawidth == 32)
set_delegate(read32_delegate(&handler_entry_read::read_stub_ioport<u32>, ioport.tag(), this));
else if (m_datawidth == 64)
set_delegate(read64_delegate(&handler_entry_read::read_stub_ioport<u64>, ioport.tag(), this));
}
//-------------------------------------------------
// read_stub_16 - construct a 16-bit read from
// 8-bit sources
//-------------------------------------------------
u16 handler_entry_read::read_stub_16(address_space &space, offs_t offset, u16 mask)
{
u16 result = space.unmap() & m_invsubmask;
for (int index = 0; index < m_subunits; index++)
{
const subunit_info &si = m_subunit_infos[index];
u32 submask = (mask >> si.m_shift) & si.m_mask;
if (submask)
{
offs_t aoffset = offset * si.m_multiplier + si.m_offset;
u8 val;
val = m_subread[index].r8(space, aoffset & si.m_bytemask, submask);
result |= val << si.m_shift;
}
}
return result;
}
//-------------------------------------------------
// read_stub_32 - construct a 32-bit read from
// 8-bit and 16-bit sources
//-------------------------------------------------
u32 handler_entry_read::read_stub_32(address_space &space, offs_t offset, u32 mask)
{
u32 result = space.unmap() & m_invsubmask;
for (int index = 0; index < m_subunits; index++)
{
const subunit_info &si = m_subunit_infos[index];
u32 submask = (mask >> si.m_shift) & si.m_mask;
if (submask)
{
offs_t aoffset = offset * si.m_multiplier + si.m_offset;
u16 val = 0;
switch (si.m_size)
{
case 8:
val = m_subread[index].r8(space, aoffset & si.m_bytemask, submask);
break;
case 16:
val = m_subread[index].r16(space, aoffset & si.m_bytemask, submask);
break;
}
result |= val << si.m_shift;
}
}
return result;
}
//-------------------------------------------------
// read_stub_64 - construct a 64-bit read from
// 8-bit, 16-bit and 32-bit sources
//-------------------------------------------------
u64 handler_entry_read::read_stub_64(address_space &space, offs_t offset, u64 mask)
{
u64 result = space.unmap() & m_invsubmask;
for (int index = 0; index < m_subunits; index++)
{
const subunit_info &si = m_subunit_infos[index];
u32 submask = (mask >> si.m_shift) & si.m_mask;
if (submask)
{
offs_t aoffset = offset * si.m_multiplier + si.m_offset;
u32 val = 0;
switch (si.m_size)
{
case 8:
val = m_subread[index].r8(space, aoffset & si.m_bytemask, submask);
break;
case 16:
val = m_subread[index].r16(space, aoffset & si.m_bytemask, submask);
break;
case 32:
val = m_subread[index].r32(space, aoffset & si.m_bytemask, submask);
break;
}
result |= u64(val) << si.m_shift;
}
}
return result;
}
//**************************************************************************
// HANDLER ENTRY WRITE
//**************************************************************************
//-------------------------------------------------
// copy - copy another handler_entry, but only
// if it is populated and constitutes of one or
// more subunit handlers
//-------------------------------------------------
void handler_entry_write::copy(handler_entry *entry)
{
handler_entry::copy(entry);
handler_entry_write *wentry = static_cast<handler_entry_write *>(entry);
m_write = wentry->m_write;
for(int i = 0; i < m_subunits; ++i)
{
switch(m_subunit_infos[i].m_size)
{
case 8:
m_subwrite[i].w8 = wentry->m_subwrite[i].w8;
break;
case 16:
m_subwrite[i].w16 = wentry->m_subwrite[i].w16;
break;
case 32:
m_subwrite[i].w32 = wentry->m_subwrite[i].w32;
break;
}
}
}
//-------------------------------------------------
// name - return the handler name, from the
// appropriately-sized delegate
//-------------------------------------------------
const char *handler_entry_write::name() const
{
switch (m_datawidth)
{
case 8: return m_write.w8.name();
case 16: return m_write.w16.name();
case 32: return m_write.w32.name();
case 64: return m_write.w64.name();
}
return nullptr;
}
//-------------------------------------------------
// subunit_name - return the handler name, from the
// appropriately-sized delegate of a subunit
//-------------------------------------------------
const char *handler_entry_write::subunit_name(int entry) const
{
switch (m_subunit_infos[entry].m_size)
{
case 8: return m_subwrite[entry].w8.name();
case 16: return m_subwrite[entry].w16.name();
case 32: return m_subwrite[entry].w32.name();
case 64: return m_subwrite[entry].w64.name();
}
return nullptr;
}
//-------------------------------------------------
// remove_subunit - delete a subunit specific
// information and shift up the following ones
//-------------------------------------------------
void handler_entry_write::remove_subunit(int entry)
{
int moving = m_subunits - entry - 1;
if (moving)
{
memmove(m_subwrite+entry, m_subwrite+entry+1, moving*sizeof(m_subwrite[0]));
}
m_subunits--;
}
//-------------------------------------------------
// set_delegate - set an 8-bit delegate, and
// configure a stub if necessary
//-------------------------------------------------
void handler_entry_write::set_delegate(write8_delegate delegate, u64 mask)
{
assert(m_datawidth >= 8);
// if mismatched bus width, configure a stub
if (m_datawidth != 8)
{
int start_slot, end_slot;
configure_subunits(mask, 8, start_slot, end_slot);
for (int i=start_slot; i != end_slot; i++)
{
m_subwrite[i].w8 = delegate;
}
if (m_datawidth == 16)
set_delegate(write16_delegate(&handler_entry_write::write_stub_16, delegate.name(), this));
else if (m_datawidth == 32)
set_delegate(write32_delegate(&handler_entry_write::write_stub_32, delegate.name(), this));
else if (m_datawidth == 64)
set_delegate(write64_delegate(&handler_entry_write::write_stub_64, delegate.name(), this));
}
else
{
m_write.w8 = delegate;
}
}
//-------------------------------------------------
// set_delegate - set a 16-bit delegate, and
// configure a stub if necessary
//-------------------------------------------------
void handler_entry_write::set_delegate(write16_delegate delegate, u64 mask)
{
assert(m_datawidth >= 16);
// if mismatched bus width, configure a stub
if (m_datawidth != 16)
{
int start_slot, end_slot;
configure_subunits(mask, 16, start_slot, end_slot);
for (int i=start_slot; i != end_slot; i++)
{
m_subwrite[i].w16 = delegate;
}
if (m_datawidth == 32)
set_delegate(write32_delegate(&handler_entry_write::write_stub_32, delegate.name(), this));
else if (m_datawidth == 64)
set_delegate(write64_delegate(&handler_entry_write::write_stub_64, delegate.name(), this));
}
else
{
m_write.w16 = delegate;
}
}
//-------------------------------------------------
// set_delegate - set a 32-bit delegate, and
// configure a stub if necessary
//-------------------------------------------------
void handler_entry_write::set_delegate(write32_delegate delegate, u64 mask)
{
assert(m_datawidth >= 32);
// if mismatched bus width, configure a stub
if (m_datawidth != 32)
{
int start_slot, end_slot;
configure_subunits(mask, 32, start_slot, end_slot);
for (int i=start_slot; i != end_slot; i++)
{
m_subwrite[i].w32 = delegate;
}
if (m_datawidth == 64)
set_delegate(write64_delegate(&handler_entry_write::write_stub_64, delegate.name(), this));
}
else
{
m_write.w32 = delegate;
}
}
//-------------------------------------------------
// set_delegate - set a 64-bit delegate
//-------------------------------------------------
void handler_entry_write::set_delegate(write64_delegate delegate, u64 mask)
{
assert(m_datawidth >= 64);
m_write.w64 = delegate;
}
//-------------------------------------------------
// set_ioport - configure an I/O port read stub
// of the appropriate size
//-------------------------------------------------
void handler_entry_write::set_ioport(ioport_port &ioport)
{
m_ioport = &ioport;
if (m_datawidth == 8)
set_delegate(write8_delegate(&handler_entry_write::write_stub_ioport<u8>, ioport.tag(), this));
else if (m_datawidth == 16)
set_delegate(write16_delegate(&handler_entry_write::write_stub_ioport<u16>, ioport.tag(), this));
else if (m_datawidth == 32)
set_delegate(write32_delegate(&handler_entry_write::write_stub_ioport<u32>, ioport.tag(), this));
else if (m_datawidth == 64)
set_delegate(write64_delegate(&handler_entry_write::write_stub_ioport<u64>, ioport.tag(), this));
}
//-------------------------------------------------
// write_stub_16 - construct a 16-bit write from
// 8-bit sources
//-------------------------------------------------
void handler_entry_write::write_stub_16(address_space &space, offs_t offset, u16 data, u16 mask)
{
for (int index = 0; index < m_subunits; index++)
{
const subunit_info &si = m_subunit_infos[index];
u32 submask = (mask >> si.m_shift) & si.m_mask;
if (submask)
{
offs_t aoffset = offset * si.m_multiplier + si.m_offset;
u8 adata = data >> si.m_shift;
m_subwrite[index].w8(space, aoffset & si.m_bytemask, adata, submask);
}
}
}
//-------------------------------------------------
// write_stub_32 - construct a 32-bit write from
// 8-bit and 16-bit sources
//-------------------------------------------------
void handler_entry_write::write_stub_32(address_space &space, offs_t offset, u32 data, u32 mask)
{
for (int index = 0; index < m_subunits; index++)
{
const subunit_info &si = m_subunit_infos[index];
u32 submask = (mask >> si.m_shift) & si.m_mask;
if (submask)
{
offs_t aoffset = offset * si.m_multiplier + si.m_offset;
u16 adata = data >> si.m_shift;
switch (si.m_size)
{
case 8:
m_subwrite[index].w8(space, aoffset & si.m_bytemask, adata, submask);
break;
case 16:
m_subwrite[index].w16(space, aoffset & si.m_bytemask, adata, submask);
break;
}
}
}
}
//-------------------------------------------------
// write_stub_64 - construct a 64-bit write from
// 8-bit, 16-bit and 32-bit sources
//-------------------------------------------------
void handler_entry_write::write_stub_64(address_space &space, offs_t offset, u64 data, u64 mask)
{
for (int index = 0; index < m_subunits; index++)
{
const subunit_info &si = m_subunit_infos[index];
u32 submask = (mask >> si.m_shift) & si.m_mask;
if (submask)
{
offs_t aoffset = offset * si.m_multiplier + si.m_offset;
u32 adata = data >> si.m_shift;
switch (si.m_size)
{
case 8:
m_subwrite[index].w8(space, aoffset & si.m_bytemask, adata, submask);
break;
case 16:
m_subwrite[index].w16(space, aoffset & si.m_bytemask, adata, submask);
break;
case 32:
m_subwrite[index].w32(space, aoffset & si.m_bytemask, adata, submask);
break;
}
}
}
}