mame/src/emu/digfx.cpp
2020-06-19 12:38:41 +02:00

368 lines
11 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Nicola Salmoria, Aaron Giles, Alex W. Jackson
/***************************************************************************
digfx.cpp
Device graphics interfaces.
***************************************************************************/
#include "emu.h"
#include "validity.h"
//**************************************************************************
// DEVICE GFX INTERFACE
//**************************************************************************
GFXDECODE_START( device_gfx_interface::empty )
GFXDECODE_END
//-------------------------------------------------
// device_gfx_interface - constructor
//-------------------------------------------------
device_gfx_interface::device_gfx_interface(
const machine_config &mconfig,
device_t &device,
const gfx_decode_entry *gfxinfo,
const char *palette_tag) :
device_interface(device, "gfx"),
m_palette(*this, palette_tag),
m_gfxdecodeinfo(gfxinfo),
m_palette_is_disabled(false),
m_decoded(false)
{
}
//-------------------------------------------------
// ~device_gfx_interface - destructor
//-------------------------------------------------
device_gfx_interface::~device_gfx_interface()
{
}
//-------------------------------------------------
// set_palette_disable: configuration helper to
// disable the use of a palette by the device
//-------------------------------------------------
void device_gfx_interface::set_palette_disable(bool disable)
{
m_palette_is_disabled = disable;
}
//-------------------------------------------------
// interface_pre_start - make sure all our input
// devices are started
//-------------------------------------------------
void device_gfx_interface::interface_pre_start()
{
if (!m_palette_is_disabled && !m_palette)
{
std::pair<device_t &, char const *> const target(m_palette.finder_target());
if (target.second == finder_base::DUMMY_TAG)
{
fatalerror("No palette specified for device %s\n", device().tag());
}
else
{
fatalerror(
"Device '%s' specifies nonexistent device '%s' relative to '%s' as palette\n",
device().tag(),
target.second,
target.first.tag());
}
}
// if palette device isn't started, wait for it
// if (m_palette && !m_palette->device().started())
// throw device_missing_dependencies();
}
//-------------------------------------------------
// interface_post_start - decode gfx, if we
// haven't done so already
//-------------------------------------------------
void device_gfx_interface::interface_post_start()
{
if (!m_decoded)
decode_gfx(m_gfxdecodeinfo);
}
//-------------------------------------------------
// decode_gfx - parse gfx decode info and
// create gfx elements
//-------------------------------------------------
void device_gfx_interface::decode_gfx(const gfx_decode_entry *gfxdecodeinfo)
{
// skip if nothing to do
if (gfxdecodeinfo == nullptr)
return;
// local variables to hold mutable copies of gfx layout data
gfx_layout glcopy;
std::vector<u32> extxoffs(0);
std::vector<u32> extyoffs(0);
// loop over all elements
for (u8 curgfx = 0; curgfx < MAX_GFX_ELEMENTS && gfxdecodeinfo[curgfx].gfxlayout != nullptr; curgfx++)
{
const gfx_decode_entry &gfx = gfxdecodeinfo[curgfx];
// extract the scale factors and xormask
u32 xscale = GFXENTRY_GETXSCALE(gfx.flags);
u32 yscale = GFXENTRY_GETYSCALE(gfx.flags);
u32 xormask = GFXENTRY_ISREVERSE(gfx.flags) ? 7 : 0;
// resolve the region
u32 region_length;
const u8 *region_base;
u8 region_width;
endianness_t region_endianness;
if (gfx.memory_region != nullptr)
{
device_t &basedevice = (GFXENTRY_ISDEVICE(gfx.flags)) ? device() : *device().owner();
if (GFXENTRY_ISRAM(gfx.flags))
{
memory_share *share = basedevice.memshare(gfx.memory_region);
assert(share != nullptr);
region_length = 8 * share->bytes();
region_base = reinterpret_cast<u8 *>(share->ptr());
region_width = share->bytewidth();
region_endianness = share->endianness();
}
else
{
memory_region *region = basedevice.memregion(gfx.memory_region);
assert(region != nullptr);
region_length = 8 * region->bytes();
region_base = region->base();
region_width = region->bytewidth();
region_endianness = region->endianness();
}
}
else
{
region_length = 0;
region_base = nullptr;
region_width = 1;
region_endianness = ENDIANNESS_NATIVE;
}
if (region_endianness != ENDIANNESS_NATIVE)
{
switch (region_width)
{
case 2:
xormask |= 0x08;
break;
case 4:
xormask |= 0x18;
break;
case 8:
xormask |= 0x38;
break;
}
}
// copy the layout into our temporary variable
memcpy(&glcopy, gfx.gfxlayout, sizeof(gfx_layout));
// if the character count is a region fraction, compute the effective total
if (IS_FRAC(glcopy.total))
{
assert(region_length != 0);
glcopy.total = region_length / glcopy.charincrement * FRAC_NUM(glcopy.total) / FRAC_DEN(glcopy.total);
}
// for non-raw graphics, decode the X and Y offsets
if (glcopy.planeoffset[0] != GFX_RAW)
{
// copy the X and Y offsets into our temporary arrays
extxoffs.resize(glcopy.width * xscale);
extyoffs.resize(glcopy.height * yscale);
memcpy(&extxoffs[0], (glcopy.extxoffs != nullptr) ? glcopy.extxoffs : glcopy.xoffset, glcopy.width * sizeof(u32));
memcpy(&extyoffs[0], (glcopy.extyoffs != nullptr) ? glcopy.extyoffs : glcopy.yoffset, glcopy.height * sizeof(u32));
// always use the extended offsets here
glcopy.extxoffs = &extxoffs[0];
glcopy.extyoffs = &extyoffs[0];
// expand X and Y by the scale factors
if (xscale > 1)
{
glcopy.width *= xscale;
for (int j = glcopy.width - 1; j >= 0; j--)
extxoffs[j] = extxoffs[j / xscale];
}
if (yscale > 1)
{
glcopy.height *= yscale;
for (int j = glcopy.height - 1; j >= 0; j--)
extyoffs[j] = extyoffs[j / yscale];
}
// loop over all the planes, converting fractions
for (int j = 0; j < glcopy.planes; j++)
{
u32 value1 = glcopy.planeoffset[j];
if (IS_FRAC(value1))
{
assert(region_length != 0);
glcopy.planeoffset[j] = FRAC_OFFSET(value1) + region_length * FRAC_NUM(value1) / FRAC_DEN(value1);
}
}
// loop over all the X/Y offsets, converting fractions
for (int j = 0; j < glcopy.width; j++)
{
u32 value2 = extxoffs[j];
if (IS_FRAC(value2))
{
assert(region_length != 0);
extxoffs[j] = FRAC_OFFSET(value2) + region_length * FRAC_NUM(value2) / FRAC_DEN(value2);
}
}
for (int j = 0; j < glcopy.height; j++)
{
u32 value3 = extyoffs[j];
if (IS_FRAC(value3))
{
assert(region_length != 0);
extyoffs[j] = FRAC_OFFSET(value3) + region_length * FRAC_NUM(value3) / FRAC_DEN(value3);
}
}
}
// otherwise, just use the line modulo
else
{
int base = gfx.start;
int end = region_length/8;
int linemod = glcopy.yoffset[0];
while (glcopy.total > 0)
{
int elementbase = base + (glcopy.total - 1) * glcopy.charincrement / 8;
int lastpixelbase = elementbase + glcopy.height * linemod / 8 - 1;
if (lastpixelbase < end)
break;
glcopy.total--;
}
}
// allocate the graphics
m_gfx[curgfx] = std::make_unique<gfx_element>(m_palette, glcopy, (region_base != nullptr) ? region_base + gfx.start : nullptr, xormask, gfx.total_color_codes, gfx.color_codes_start);
}
m_decoded = true;
}
//-------------------------------------------------
// interface_validity_check - validate graphics
// decoding configuration
//-------------------------------------------------
void device_gfx_interface::interface_validity_check(validity_checker &valid) const
{
if (!m_palette_is_disabled && !m_palette)
{
std::pair<device_t &, char const *> const target(m_palette.finder_target());
if (target.second == finder_base::DUMMY_TAG)
{
osd_printf_error("No palette specified for device '%s'\n", device().tag());
}
else
{
osd_printf_error(
"Device '%s' specifies nonexistent device '%s' relative to '%s' as palette\n",
device().tag(),
target.second,
target.first.tag());
}
}
if (!m_gfxdecodeinfo)
return;
// validate graphics decoding entries
for (int gfxnum = 0; gfxnum < MAX_GFX_ELEMENTS && m_gfxdecodeinfo[gfxnum].gfxlayout != nullptr; gfxnum++)
{
const gfx_decode_entry &gfx = m_gfxdecodeinfo[gfxnum];
const gfx_layout &layout = *gfx.gfxlayout;
// currently we are unable to validate RAM-based entries
const char *region = gfx.memory_region;
if (region != nullptr && GFXENTRY_ISROM(gfx.flags))
{
// resolve the region
std::string gfxregion;
if (GFXENTRY_ISDEVICE(gfx.flags))
gfxregion = device().subtag(region);
else
gfxregion = device().owner()->subtag(region);
u32 region_length = valid.region_length(gfxregion.c_str());
if (region_length == 0)
osd_printf_error("gfx[%d] references nonexistent region '%s'\n", gfxnum, gfxregion);
// if we have a valid region, and we're not using auto-sizing, check the decode against the region length
else if (!IS_FRAC(layout.total))
{
// determine which plane is at the largest offset
int start = 0;
for (int plane = 0; plane < layout.planes; plane++)
if (layout.planeoffset[plane] > start)
start = layout.planeoffset[plane];
start &= ~(layout.charincrement - 1);
// determine the total length based on this info
int len = layout.total * layout.charincrement;
// do we have enough space in the region to cover the whole decode?
int avail = region_length - (gfx.start & ~(layout.charincrement / 8 - 1));
// if not, this is an error
if ((start + len) / 8 > avail)
osd_printf_error("gfx[%d] extends past allocated memory of region '%s'\n", gfxnum, region);
}
}
int xscale = GFXENTRY_GETXSCALE(gfx.flags);
int yscale = GFXENTRY_GETYSCALE(gfx.flags);
// verify raw decode, which can only be full-region and have no scaling
if (layout.planeoffset[0] == GFX_RAW)
{
if (layout.total != RGN_FRAC(1,1))
osd_printf_error("gfx[%d] RAW layouts can only be RGN_FRAC(1,1)\n", gfxnum);
if (xscale != 1 || yscale != 1)
osd_printf_error("gfx[%d] RAW layouts do not support xscale/yscale\n", gfxnum);
}
// verify traditional decode doesn't have too many planes,
// and has extended offset arrays if its width and/or height demand them
else
{
if (layout.planes > MAX_GFX_PLANES)
osd_printf_error("gfx[%d] planes > %d\n", gfxnum, MAX_GFX_PLANES);
if (layout.width > MAX_GFX_SIZE && layout.extxoffs == nullptr)
osd_printf_error("gfx[%d] width > %d but missing extended xoffset info\n", gfxnum, MAX_GFX_SIZE);
if (layout.height > MAX_GFX_SIZE && layout.extyoffs == nullptr)
osd_printf_error("gfx[%d] height > %d but missing extended yoffset info\n", gfxnum, MAX_GFX_SIZE);
}
}
}