mame/src/emu/sound/discrete.c
Couriersud dd836ed4d5 Discrete sound parallel tasks
Introduced DISCRETE_TASK_START, DISCRETE_TASK_END

DISCRETE_TASK_START
- Start a new task. A task is a set of nodes which only depend on input nodes and nodes in the set

DISCRETE_TASK_END(task_output_node)
- Marks the end of the task. task_output_node is the node whose output over time should be preserved. This node can be accessed by nodes in the main thread.

Order of execution:
a) All tasks in parallel
b) All nodes not part of a task. These may only refer to nodes listed in DISCRETE_TASK_END

Illustrated the concept in the dkong discrete emulation. This also has been enhanced to buffer DAC output. 

Further changes:
- DISCRETE_OUTPUT now is a stepping node.
- DISCRETE_STREAM_INPUT now advances input pointer in step.
- More linked_list usage.

I estimate that the rework without tasks leads to a 5% performance gain. For dkong, the usage of tasks adds another 15%.
There are some features missing:
- Multiple nodes in DISCRETE_TASK_END
- More task consistency checks
- Task identifiers for tasks
2009-08-25 23:29:31 +00:00

1077 lines
41 KiB
C

/************************************************************************
*
* MAME - Discrete sound system emulation library
*
* Written by Keith Wilkins (mame@esplexo.co.uk)
*
* (c) K.Wilkins 2000
*
* Coding started in November 2000
* KW - Added Sawtooth waveforms Feb2003
*
***********************************************************************
*
* SEE DISCRETE.H for documentation on usage
*
***********************************************************************
*
* Each sound primative DSS_xxxx or DST_xxxx has its own implementation
* file. All discrete sound primatives MUST implement the following
* API:
*
* dsX_NAME_step(inputs, context,float timestep) - Perform time step
* return output value
* dsX_NAME_reset(context) - Reset to initial state
*
* Core software takes care of traversing the netlist in the correct
* order
*
* DEVICE_START(discrete) - Read Node list, initialise & reset
* DEVICE_STOP(discrete) - Shutdown discrete sound system
* DEVICE_RESET(discrete) - Put sound system back to time 0
* discrete_stream_update() - This does the real update to the sim
*
************************************************************************/
#include "sndintrf.h"
#include "streams.h"
#include "inptport.h"
#include "wavwrite.h"
#include "discrete.h"
#include "eminline.h"
/*************************************
*
* Debugging
*
*************************************/
#define DISCRETE_DEBUGLOG (0)
/*************************************
*
* Profiling Nodes
*
*************************************/
#define DISCRETE_PROFILING (0)
/*************************************
*
* Prototypes
*
*************************************/
static void init_nodes(discrete_info *info, linked_list_entry *block_list, const device_config *device);
static void find_input_nodes(discrete_info *info);
static void setup_disc_logs(discrete_info *info);
static node_description *discrete_find_node(const discrete_info *info, int node);
static DEVICE_RESET( discrete );
static STREAM_UPDATE( discrete_stream_update );
/*************************************
*
* Debug logging
*
*************************************/
static void CLIB_DECL ATTR_PRINTF(2,3) discrete_log(const discrete_info *disc_info, const char *text, ...)
{
if (DISCRETE_DEBUGLOG)
{
va_list arg;
va_start(arg, text);
if(disc_info->disclogfile)
{
vfprintf(disc_info->disclogfile, text, arg);
fprintf(disc_info->disclogfile, "\n");
}
va_end(arg);
}
}
typedef struct _task_info task_info;
struct _task_info
{
discrete_task_context *context;
int samples;
};
INLINE void step_nodes_in_list(linked_list_entry **list)
{
linked_list_entry *entry;
for (entry = *list; entry != NULL; entry = entry->next)
{
node_description *node = (node_description *) entry->ptr;
/* Now step the node */
if (DISCRETE_PROFILING)
node->run_time -= osd_profiling_ticks();
(*node->module->step)(node);
//bigselect(info->device, node);
if (DISCRETE_PROFILING)
node->run_time += osd_profiling_ticks();
}
}
static void *task_callback(void *param, int threadid)
{
task_info *ti = (task_info *) param;
int samples;
/* set up task buffer */
ti->context->ptr = &ti->context->node_buf[0];
samples = ti->samples;
while (samples-- > 0)
{
step_nodes_in_list(&ti->context->list);
}
/* reset ptr */
ti->context->ptr = &ti->context->node_buf[0];
free(param);
return NULL;
}
static DISCRETE_STEP( dso_task )
{
discrete_task_context *ctx = (discrete_task_context *) node->context;
*(ctx->ptr++) = (double) *(node->input[0]);
}
static DISCRETE_RESET( dso_task )
{
/* nothing to do - just avoid being stepped */
}
static DISCRETE_STEP( dso_output )
{
stream_sample_t **output = (stream_sample_t **) &node->context;
double val;
/* Add gain to the output and put into the buffers */
/* Clipping will be handled by the main sound system */
val = (*node->input[0]) * (*node->input[1]);
**output = val;
(*output)++;
}
static DISCRETE_RESET( dso_output )
{
/* nothing to do - just avoid being stepped */
}
/*************************************
*
* Included simulation objects
*
*************************************/
#include "disc_wav.c" /* Wave sources - SINE/SQUARE/NOISE/etc */
#include "disc_mth.c" /* Math Devices - ADD/GAIN/etc */
#include "disc_inp.c" /* Input Devices - INPUT/CONST/etc */
#include "disc_flt.c" /* Filter Devices - RCF/HPF/LPF */
#include "disc_dev.c" /* Popular Devices - NE555/etc */
/*************************************
*
* Master module list
*
*************************************/
static const discrete_module module_list[] =
{
{ DSO_OUTPUT ,"DSO_OUTPUT" , 0 ,sizeof(0) ,dso_output_reset ,dso_output_step },
{ DSO_CSVLOG ,"DSO_CSVLOG" , 0 ,0 ,NULL ,NULL },
{ DSO_WAVELOG ,"DSO_WAVELOG" , 0 ,0 ,NULL ,NULL },
{ DSO_IMPORT ,"DSO_IMPORT" , 0 ,0 ,NULL ,NULL },
/* parallel modules */
{ DSO_TASK_START ,"DSO_TASK_START" , 0 ,0 ,NULL ,NULL },
{ DSO_TASK_END ,"DSO_TASK_END" , 0 ,0 ,dso_task_reset ,dso_task_step },
{ DSO_TASK_SYNC ,"DSO_TASK_SYNC" , 0 ,0 ,NULL ,NULL },
/* nop */
{ DSS_NOP ,"DSS_NOP" , 0 ,0 ,NULL ,NULL },
/* from disc_inp.c */
{ DSS_ADJUSTMENT ,"DSS_ADJUSTMENT" , 1 ,sizeof(struct dss_adjustment_context) ,dss_adjustment_reset ,dss_adjustment_step },
{ DSS_CONSTANT ,"DSS_CONSTANT" , 1 ,0 ,dss_constant_reset ,NULL },
{ DSS_INPUT_DATA ,"DSS_INPUT_DATA" , 1 ,sizeof(UINT8) ,dss_input_reset ,NULL },
{ DSS_INPUT_LOGIC ,"DSS_INPUT_LOGIC" , 1 ,sizeof(UINT8) ,dss_input_reset ,NULL },
{ DSS_INPUT_NOT ,"DSS_INPUT_NOT" , 1 ,sizeof(UINT8) ,dss_input_reset ,NULL },
{ DSS_INPUT_PULSE ,"DSS_INPUT_PULSE" , 1 ,sizeof(UINT8) ,dss_input_reset ,dss_input_pulse_step },
{ DSS_INPUT_STREAM,"DSS_INPUT_STREAM", 1 ,0 ,dss_input_stream_reset,dss_input_stream_step},
/* from disc_wav.c */
/* Generic modules */
{ DSS_COUNTER ,"DSS_COUNTER" , 1 ,sizeof(struct dss_counter_context) ,dss_counter_reset ,dss_counter_step },
{ DSS_LFSR_NOISE ,"DSS_LFSR_NOISE" , 2 ,sizeof(struct dss_lfsr_context) ,dss_lfsr_reset ,dss_lfsr_step },
{ DSS_NOISE ,"DSS_NOISE" , 1 ,sizeof(struct dss_noise_context) ,dss_noise_reset ,dss_noise_step },
{ DSS_NOTE ,"DSS_NOTE" , 1 ,sizeof(struct dss_note_context) ,dss_note_reset ,dss_note_step },
{ DSS_SAWTOOTHWAVE,"DSS_SAWTOOTHWAVE", 1 ,sizeof(struct dss_sawtoothwave_context),dss_sawtoothwave_reset,dss_sawtoothwave_step},
{ DSS_SINEWAVE ,"DSS_SINEWAVE" , 1 ,sizeof(struct dss_sinewave_context) ,dss_sinewave_reset ,dss_sinewave_step },
{ DSS_SQUAREWAVE ,"DSS_SQUAREWAVE" , 1 ,sizeof(struct dss_squarewave_context) ,dss_squarewave_reset ,dss_squarewave_step },
{ DSS_SQUAREWFIX ,"DSS_SQUAREWFIX" , 1 ,sizeof(struct dss_squarewfix_context) ,dss_squarewfix_reset ,dss_squarewfix_step },
{ DSS_SQUAREWAVE2 ,"DSS_SQUAREWAVE2" , 1 ,sizeof(struct dss_squarewave_context) ,dss_squarewave2_reset ,dss_squarewave2_step },
{ DSS_TRIANGLEWAVE,"DSS_TRIANGLEWAVE", 1 ,sizeof(struct dss_trianglewave_context),dss_trianglewave_reset,dss_trianglewave_step},
/* Component specific modules */
{ DSS_INVERTER_OSC ,"DSS_INVERTER_OSC" , 1 ,sizeof(struct dss_inverter_osc_context) ,dss_inverter_osc_reset ,dss_inverter_osc_step },
{ DSS_OP_AMP_OSC ,"DSS_OP_AMP_OSC" , 1 ,sizeof(struct dss_op_amp_osc_context) ,dss_op_amp_osc_reset ,dss_op_amp_osc_step },
{ DSS_SCHMITT_OSC ,"DSS_SCHMITT_OSC" , 1 ,sizeof(struct dss_schmitt_osc_context) ,dss_schmitt_osc_reset ,dss_schmitt_osc_step },
/* Not yet implemented */
{ DSS_ADSR ,"DSS_ADSR" , 1 ,sizeof(struct dss_adsr_context) ,dss_adsrenv_reset ,dss_adsrenv_step },
/* from disc_mth.c */
/* Generic modules */
{ DST_ADDER ,"DST_ADDER" , 1 ,0 ,NULL ,dst_adder_step },
{ DST_CLAMP ,"DST_CLAMP" , 1 ,0 ,NULL ,dst_clamp_step },
{ DST_DIVIDE ,"DST_DIVIDE" , 1 ,0 ,NULL ,dst_divide_step },
{ DST_GAIN ,"DST_GAIN" , 1 ,0 ,NULL ,dst_gain_step },
{ DST_LOGIC_INV ,"DST_LOGIC_INV" , 1 ,0 ,NULL ,dst_logic_inv_step },
{ DST_GAIN ,"DST_GAIN" , 1 ,0 ,NULL ,dst_gain_step },
{ DST_BITS_DECODE ,"DST_BITS_DECODE" , 8 ,sizeof(struct dst_bits_decode_context) ,dst_bits_decode_reset ,dst_bits_decode_step },
{ DST_LOGIC_AND ,"DST_LOGIC_AND" , 1 ,0 ,NULL ,dst_logic_and_step },
{ DST_LOGIC_NAND ,"DST_LOGIC_NAND" , 1 ,0 ,NULL ,dst_logic_nand_step },
{ DST_LOGIC_OR ,"DST_LOGIC_OR" , 1 ,0 ,NULL ,dst_logic_or_step },
{ DST_LOGIC_NOR ,"DST_LOGIC_NOR" , 1 ,0 ,NULL ,dst_logic_nor_step },
{ DST_LOGIC_XOR ,"DST_LOGIC_XOR" , 1 ,0 ,NULL ,dst_logic_xor_step },
{ DST_LOGIC_NXOR ,"DST_LOGIC_NXOR" , 1 ,0 ,NULL ,dst_logic_nxor_step },
{ DST_LOGIC_DFF ,"DST_LOGIC_DFF" , 1 ,sizeof(struct dst_flipflop_context) ,dst_logic_ff_reset ,dst_logic_dff_step },
{ DST_LOGIC_JKFF ,"DST_LOGIC_JKFF" , 1 ,sizeof(struct dst_flipflop_context) ,dst_logic_ff_reset ,dst_logic_jkff_step },
{ DST_LOOKUP_TABLE,"DST_LOOKUP_TABLE", 1 ,0 ,NULL ,dst_lookup_table_step},
{ DST_MULTIPLEX ,"DST_MULTIPLEX" , 1 ,sizeof(struct dst_size_context) ,dst_multiplex_reset ,dst_multiplex_step },
{ DST_ONESHOT ,"DST_ONESHOT" , 1 ,sizeof(struct dst_oneshot_context) ,dst_oneshot_reset ,dst_oneshot_step },
{ DST_RAMP ,"DST_RAMP" , 1 ,sizeof(struct dss_ramp_context) ,dst_ramp_reset ,dst_ramp_step },
{ DST_SAMPHOLD ,"DST_SAMPHOLD" , 1 ,sizeof(struct dst_samphold_context) ,dst_samphold_reset ,dst_samphold_step },
{ DST_SWITCH ,"DST_SWITCH" , 1 ,0 ,NULL ,dst_switch_step },
{ DST_ASWITCH ,"DST_ASWITCH" , 1 ,0 ,NULL ,dst_aswitch_step },
{ DST_TRANSFORM ,"DST_TRANSFORM" , 1 ,0 ,NULL ,dst_transform_step },
/* Component specific */
{ DST_COMP_ADDER ,"DST_COMP_ADDER" , 1 ,sizeof(struct dst_comp_adder_context) ,dst_comp_adder_reset ,dst_comp_adder_step },
{ DST_DAC_R1 ,"DST_DAC_R1" , 1 ,sizeof(struct dst_dac_r1_context) ,dst_dac_r1_reset ,dst_dac_r1_step },
{ DST_DIODE_MIX ,"DST_DIODE_MIX" , 1 ,sizeof(struct dst_diode_mix__context) ,dst_diode_mix_reset ,dst_diode_mix_step },
{ DST_INTEGRATE ,"DST_INTEGRATE" , 1 ,sizeof(struct dst_integrate_context) ,dst_integrate_reset ,dst_integrate_step },
{ DST_MIXER ,"DST_MIXER" , 1 ,sizeof(struct dst_mixer_context) ,dst_mixer_reset ,dst_mixer_step },
{ DST_OP_AMP ,"DST_OP_AMP" , 1 ,sizeof(struct dst_op_amp_context) ,dst_op_amp_reset ,dst_op_amp_step },
{ DST_OP_AMP_1SHT ,"DST_OP_AMP_1SHT" , 1 ,sizeof(struct dst_op_amp_1sht_context) ,dst_op_amp_1sht_reset ,dst_op_amp_1sht_step },
{ DST_TVCA_OP_AMP ,"DST_TVCA_OP_AMP" , 1 ,sizeof(struct dst_tvca_op_amp_context) ,dst_tvca_op_amp_reset ,dst_tvca_op_amp_step },
{ DST_VCA ,"DST_VCA" , 1 ,0 ,NULL ,NULL },
/* from disc_flt.c */
/* Generic modules */
{ DST_FILTER1 ,"DST_FILTER1" , 1 ,sizeof(struct dss_filter1_context) ,dst_filter1_reset ,dst_filter1_step },
{ DST_FILTER2 ,"DST_FILTER2" , 1 ,sizeof(struct dss_filter2_context) ,dst_filter2_reset ,dst_filter2_step },
/* Component specific modules */
{ DST_SALLEN_KEY ,"DST_SALLEN_KEY" , 1 ,sizeof(struct dss_filter2_context) ,dst_sallen_key_reset ,dst_sallen_key_step },
{ DST_CRFILTER ,"DST_CRFILTER" , 1 ,sizeof(struct dst_rcfilter_context) ,dst_crfilter_reset ,dst_crfilter_step },
{ DST_OP_AMP_FILT ,"DST_OP_AMP_FILT" , 1 ,sizeof(struct dst_op_amp_filt_context) ,dst_op_amp_filt_reset ,dst_op_amp_filt_step },
{ DST_RCDISC ,"DST_RCDISC" , 1 ,sizeof(struct dst_rcdisc_context) ,dst_rcdisc_reset ,dst_rcdisc_step },
{ DST_RCDISC2 ,"DST_RCDISC2" , 1 ,sizeof(struct dst_rcdisc_context) ,dst_rcdisc2_reset ,dst_rcdisc2_step },
{ DST_RCDISC3 ,"DST_RCDISC3" , 1 ,sizeof(struct dst_rcdisc_context) ,dst_rcdisc3_reset ,dst_rcdisc3_step },
{ DST_RCDISC4 ,"DST_RCDISC4" , 1 ,sizeof(struct dst_rcdisc4_context) ,dst_rcdisc4_reset ,dst_rcdisc4_step },
{ DST_RCDISC5 ,"DST_RCDISC5" , 1 ,sizeof(struct dst_rcdisc_context) ,dst_rcdisc5_reset ,dst_rcdisc5_step },
{ DST_RCINTEGRATE ,"DST_RCINTEGRATE" , 1 ,sizeof(struct dst_rcintegrate_context) ,dst_rcintegrate_reset ,dst_rcintegrate_step },
{ DST_RCDISC_MOD ,"DST_RCDISC_MOD" , 1 ,sizeof(struct dst_rcdisc_mod_context) ,dst_rcdisc_mod_reset ,dst_rcdisc_mod_step },
{ DST_RCFILTER ,"DST_RCFILTER" , 1 ,sizeof(struct dst_rcfilter_context) ,dst_rcfilter_reset ,dst_rcfilter_step },
{ DST_RCFILTER_SW ,"DST_RCFILTER_SW" , 1 ,sizeof(struct dst_rcfilter_sw_context) ,dst_rcfilter_sw_reset ,dst_rcfilter_sw_step },
/* For testing - seem to be buggered. Use versions not ending in N. */
{ DST_RCFILTERN ,"DST_RCFILTERN" , 1 ,sizeof(struct dss_filter1_context) ,dst_rcfilterN_reset ,dst_filter1_step },
{ DST_RCDISCN ,"DST_RCDISCN" , 1 ,sizeof(struct dss_filter1_context) ,dst_rcdiscN_reset ,dst_rcdiscN_step },
{ DST_RCDISC2N ,"DST_RCDISC2N" , 1 ,sizeof(struct dss_rcdisc2_context) ,dst_rcdisc2N_reset ,dst_rcdisc2N_step },
/* from disc_dev.c */
/* generic modules */
{ DST_CUSTOM ,"DST_CUSTOM" , 1 ,0 ,NULL ,NULL },
/* Component specific modules */
{ DSD_555_ASTBL ,"DSD_555_ASTBL" , 1 ,sizeof(struct dsd_555_astbl_context) ,dsd_555_astbl_reset ,dsd_555_astbl_step },
{ DSD_555_MSTBL ,"DSD_555_MSTBL" , 1 ,sizeof(struct dsd_555_mstbl_context) ,dsd_555_mstbl_reset ,dsd_555_mstbl_step },
{ DSD_555_CC ,"DSD_555_CC" , 1 ,sizeof(struct dsd_555_cc_context) ,dsd_555_cc_reset ,dsd_555_cc_step },
{ DSD_555_VCO1 ,"DSD_555_VCO1" , 1 ,sizeof(struct dsd_555_vco1_context) ,dsd_555_vco1_reset ,dsd_555_vco1_step },
{ DSD_566 ,"DSD_566" , 1 ,sizeof(struct dsd_566_context) ,dsd_566_reset ,dsd_566_step },
{ DSD_LS624 ,"DSD_LS624" , 1 ,sizeof(struct dsd_ls624_context) ,dsd_ls624_reset ,dsd_ls624_step },
/* must be the last one */
{ DSS_NULL ,"DSS_NULL" , 0 ,0 ,NULL ,NULL }
};
/*************************************
*
* Add an entry to a list
*
*************************************/
static void add_list(discrete_info *info, linked_list_entry ***list, void *ptr)
{
**list = auto_alloc(info->device->machine, linked_list_entry);
(**list)->ptr = ptr;
(**list)->next = NULL;
*list = &((**list)->next);
}
/*************************************
*
* Find a given node
*
*************************************/
static node_description *discrete_find_node(const discrete_info *info, int node)
{
if (node < NODE_START || node > NODE_END) return NULL;
return info->indexed_node[NODE_INDEX(node)];
}
/*************************************
*
* Build import list
*
*************************************/
static void discrete_build_list(discrete_info *info, discrete_sound_block *intf, linked_list_entry ***current)
{
int node_count = 0;
for (; intf[node_count].type != DSS_NULL; )
{
/* scan imported */
if (intf[node_count].type == DSO_IMPORT)
{
discrete_log(info, "discrete_build_list() - DISCRETE_IMPORT @ NODE_%02d", NODE_INDEX(intf[node_count].node) );
discrete_build_list(info, (discrete_sound_block *) intf[node_count].custom, current);
}
else if (intf[node_count].type == DSO_REPLACE)
{
linked_list_entry *entry;
node_count++;
if (intf[node_count].type == DSS_NULL)
fatalerror("discrete_build_list: DISCRETE_REPLACE at end of node_list");
for (entry = info->block_list; entry != NULL; entry = entry->next)
{
discrete_sound_block *block = (discrete_sound_block *) entry->ptr;
if (block->type != NODE_SPECIAL )
if (block->node == intf[node_count].node)
{
entry->ptr = (void *) &intf[node_count];
discrete_log(info, "discrete_build_list() - DISCRETE_REPLACE @ NODE_%02d", NODE_INDEX(intf[node_count].node) );
break;
}
}
if (entry == NULL)
fatalerror("discrete_build_list: DISCRETE_REPLACE did not found node %d", NODE_INDEX(intf[node_count].node));
}
else if (intf[node_count].type == DSO_DELETE)
{
linked_list_entry *entry, *last;
last = NULL;
for (entry = info->block_list; entry != NULL; last = entry, entry = entry->next)
{
discrete_sound_block *block = (discrete_sound_block *) entry->ptr;
if ((block->node >= intf[node_count].input_node[0]) &&
(block->node <= intf[node_count].input_node[1]))
{
discrete_log(info, "discrete_build_list() - DISCRETE_DELETE deleted NODE_%02d", NODE_INDEX(block->node) );
if (last != NULL)
last->next = entry->next;
else
info->block_list = entry->next;
}
}
}
else
{
discrete_log(info, "discrete_build_list() - adding node %d (*current %p)\n", node_count, *current);
add_list(info, current, &intf[node_count]);
}
node_count++;
}
}
/*************************************
*
* Sanity check list
*
*************************************/
static void discrete_sanity_check(discrete_info *info)
{
linked_list_entry *entry;
int node_count = 0;
discrete_log(info, "discrete_start() - Doing node list sanity check");
for (entry = info->block_list; entry != NULL; entry = entry->next)
{
discrete_sound_block *block = (discrete_sound_block *) entry->ptr;
/* make sure we don't have too many nodes overall */
if (node_count > DISCRETE_MAX_NODES)
fatalerror("discrete_start() - Upper limit of %d nodes exceeded, have you terminated the interface block?", DISCRETE_MAX_NODES);
/* make sure the node number is in range */
if (block->node < NODE_START || block->node > NODE_END)
fatalerror("discrete_start() - Invalid node number on node %02d descriptor", block->node);
/* make sure the node type is valid */
if (block->type > DSO_OUTPUT)
fatalerror("discrete_start() - Invalid function type on NODE_%02d", NODE_INDEX(block->node) );
/* make sure this is a main node */
if (NODE_CHILD_NODE_NUM(block->node) > 0)
fatalerror("discrete_start() - Child node number on NODE_%02d", NODE_INDEX(block->node) );
node_count++;
}
discrete_log(info, "discrete_start() - Sanity check counted %d nodes", node_count);
}
/*************************************
*
* Master discrete system start
*
*************************************/
static DEVICE_START( discrete )
{
linked_list_entry **intf;
discrete_sound_block *intf_start = (discrete_sound_block *)device->static_config;
discrete_info *info = get_safe_token(device);
char name[32];
info->device = device;
/* If a clock is specified we will use it, otherwise run at the audio sample rate. */
if (device->clock)
info->sample_rate = device->clock;
else
info->sample_rate = device->machine->sample_rate;
info->sample_time = 1.0 / info->sample_rate;
info->neg_sample_time = - info->sample_time;
info->total_samples = 0;
/* create the logfile */
sprintf(name, "discrete%s.log", device->tag);
if (DISCRETE_DEBUGLOG)
info->disclogfile = fopen(name, "w");
/* Build the final block list */
info->block_list = NULL;
intf = &info->block_list;
discrete_build_list(info, intf_start, &intf);
/* first pass through the nodes: sanity check, fill in the indexed_nodes, and make a total count */
discrete_sanity_check(info);
/* Start with empty lists */
info->node_list = NULL;
info->step_list = NULL;
/* allocate memory to hold pointers to nodes by index */
info->indexed_node = auto_alloc_array_clear(device->machine, node_description *, DISCRETE_MAX_NODES);
/* initialize the node data */
init_nodes(info, info->block_list, device);
/* now go back and find pointers to all input nodes */
find_input_nodes(info);
/* then set up the output nodes */
/* initialize the stream(s) */
info->discrete_stream = stream_create(device, info->discrete_input_streams, info->discrete_outputs, info->sample_rate, info, discrete_stream_update);
/* allocate a queue */
info->queue = osd_work_queue_alloc(WORK_QUEUE_FLAG_MULTI | WORK_QUEUE_FLAG_HIGH_FREQ);
setup_disc_logs(info);
}
/*************************************
*
* Master discrete system stop
*
*************************************/
static DEVICE_STOP( discrete )
{
discrete_info *info = get_safe_token(device);
int log_num;
osd_work_queue_free(info->queue);
if (DISCRETE_PROFILING)
{
int count = 0;
linked_list_entry *entry;
osd_ticks_t total = 0;
osd_ticks_t tresh;
/* calculate total time */
for (entry = info->step_list; entry != NULL; entry = entry->next)
{
node_description *node = (node_description *) entry->ptr;
/* Now step the node */
total += node->run_time;
count++;
}
/* print statistics */
printf("Total Samples: %d\n", info->total_samples);
tresh = total / count;
for (entry = info->step_list; entry != NULL; entry = entry->next)
{
node_description *node = (node_description *) entry->ptr;
if (node->run_time > tresh)
printf("%3d: %20s %8.2f %10d\n", NODE_INDEX(node->node), node->module->name, (float) node->run_time / (float) total * 100.0, ((int) node->run_time) / info->total_samples);
}
}
/* close any csv files */
for (log_num = 0; log_num < info->num_csvlogs; log_num++)
if (info->disc_csv_file[log_num])
fclose(info->disc_csv_file[log_num]);
/* close any wave files */
for (log_num = 0; log_num < info->num_wavelogs; log_num++)
if (info->disc_wav_file[log_num])
wav_close(info->disc_wav_file[log_num]);
if (DISCRETE_DEBUGLOG)
{
/* close the debug log */
if (info->disclogfile)
fclose(info->disclogfile);
info->disclogfile = NULL;
}
}
/*************************************
*
* Master reset of all nodes
*
*************************************/
static DEVICE_RESET( discrete )
{
discrete_info *info = get_safe_token(device);
linked_list_entry *entry;
/* loop over all nodes */
for (entry = info->node_list; entry != 0; entry = entry->next)
{
node_description *node = (node_description *) entry->ptr;
node->output[0] = 0;
/* if the node has a reset function, call it */
if (node->module->reset)
(*node->module->reset)(node);
/* otherwise, just step it */
else if (node->module->step)
(*node->module->step)(node);
}
}
/* This was a try which unfortunately did not provide
* any improvement. Left here for reference
*/
#if 0
INLINE void bigselect(const device_config *device, node_description *node)
{
switch (node->module.type)
{
case DSS_ADJUSTMENT : dss_adjustment_step(device, node); break;
case DSS_INPUT_PULSE : dss_input_pulse_step(device, node); break;
case DSS_INPUT_STREAM: dss_input_stream_step(device, node); break;
case DSS_COUNTER : dss_counter_step(device, node); break;
case DSS_LFSR_NOISE : dss_lfsr_step(device, node); break;
case DSS_NOISE : dss_noise_step(device, node); break;
case DSS_NOTE : dss_note_step(device, node); break;
case DSS_SAWTOOTHWAVE: dss_sawtoothwave_step(device, node); break;
case DSS_SINEWAVE : dss_sinewave_step(device, node); break;
case DSS_SQUAREWAVE : dss_squarewave_step(device, node); break;
case DSS_SQUAREWFIX : dss_squarewfix_step(device, node); break;
case DSS_SQUAREWAVE2 : dss_squarewave2_step(device, node); break;
case DSS_TRIANGLEWAVE: dss_trianglewave_step(device, node); break;
case DSS_INVERTER_OSC : dss_inverter_osc_step(device, node); break;
case DSS_OP_AMP_OSC : dss_op_amp_osc_step(device, node); break;
case DSS_SCHMITT_OSC : dss_schmitt_osc_step(device, node); break;
case DSS_ADSR : dss_adsrenv_step(device, node); break;
case DST_ADDER : dst_adder_step(device, node); break;
case DST_CLAMP : dst_clamp_step(device, node); break;
case DST_DIVIDE : dst_divide_step(device, node); break;
case DST_GAIN : dst_gain_step(device, node); break;
case DST_LOGIC_INV : dst_logic_inv_step(device, node); break;
case DST_LOGIC_AND : dst_logic_and_step(device, node); break;
case DST_LOGIC_NAND : dst_logic_nand_step(device, node); break;
case DST_LOGIC_OR : dst_logic_or_step(device, node); break;
case DST_LOGIC_NOR : dst_logic_nor_step(device, node); break;
case DST_LOGIC_XOR : dst_logic_xor_step(device, node); break;
case DST_LOGIC_NXOR : dst_logic_nxor_step(device, node); break;
case DST_LOGIC_DFF : dst_logic_dff_step(device, node); break;
case DST_LOGIC_JKFF : dst_logic_jkff_step(device, node); break;
case DST_LOOKUP_TABLE: dst_lookup_table_step(device, node); break;
case DST_MULTIPLEX : dst_multiplex_step(device, node); break;
case DST_ONESHOT : dst_oneshot_step(device, node); break;
case DST_RAMP : dst_ramp_step(device, node); break;
case DST_SAMPHOLD : dst_samphold_step(device, node); break;
case DST_SWITCH : dst_switch_step(device, node); break;
case DST_ASWITCH : dst_aswitch_step(device, node); break;
case DST_TRANSFORM : dst_transform_step(device, node); break;
case DST_COMP_ADDER : dst_comp_adder_step(device, node); break;
case DST_DAC_R1 : dst_dac_r1_step(device, node); break;
case DST_DIODE_MIX : dst_diode_mix_step(device, node); break;
case DST_INTEGRATE : dst_integrate_step(device, node); break;
case DST_MIXER : dst_mixer_step(device, node); break;
case DST_OP_AMP : dst_op_amp_step(device, node); break;
case DST_OP_AMP_1SHT : dst_op_amp_1sht_step(device, node); break;
case DST_TVCA_OP_AMP : dst_tvca_op_amp_step(device, node); break;
case DST_FILTER1 : dst_filter1_step(device, node); break;
case DST_FILTER2 : dst_filter2_step(device, node); break;
case DST_SALLEN_KEY : dst_sallen_key_step(device, node); break;
case DST_CRFILTER : dst_crfilter_step(device, node); break;
case DST_OP_AMP_FILT : dst_op_amp_filt_step(device, node); break;
case DST_RCDISC : dst_rcdisc_step(device, node); break;
case DST_RCDISC2 : dst_rcdisc2_step(device, node); break;
case DST_RCDISC3 : dst_rcdisc3_step(device, node); break;
case DST_RCDISC4 : dst_rcdisc4_step(device, node); break;
case DST_RCDISC5 : dst_rcdisc5_step(device, node); break;
case DST_RCINTEGRATE : dst_rcintegrate_step(device, node); break;
case DST_RCDISC_MOD : dst_rcdisc_mod_step(device, node); break;
case DST_RCFILTER : dst_rcfilter_step(device, node); break;
case DST_RCFILTER_SW : dst_rcfilter_sw_step(device, node); break;
case DST_RCFILTERN : dst_filter1_step(device, node); break;
case DST_RCDISCN : dst_rcdiscN_step(device, node); break;
case DST_RCDISC2N : dst_rcdisc2N_step(device, node); break;
case DSD_555_ASTBL : dsd_555_astbl_step(device, node); break;
case DSD_555_MSTBL : dsd_555_mstbl_step(device, node); break;
case DSD_555_CC : dsd_555_cc_step(device, node); break;
case DSD_555_VCO1 : dsd_555_vco1_step(device, node); break;
case DSD_566 : dsd_566_step(device, node); break;
case DSD_LS624 : dsd_ls624_step(device, node); break;
}
}
#endif
/*************************************
*
* Stream update functions
*
*************************************/
INLINE void discrete_stream_update_csv(discrete_info *info)
{
int nodenum, outputnum;
/* Dump any csv logs */
for (outputnum = 0; outputnum < info->num_csvlogs; outputnum++)
{
fprintf(info->disc_csv_file[outputnum], "%" I64FMT "d", ++info->sample_num);
for (nodenum = 0; nodenum < info->csvlog_node[outputnum]->active_inputs; nodenum++)
{
fprintf(info->disc_csv_file[outputnum], ", %f", *info->csvlog_node[outputnum]->input[nodenum]);
}
fprintf(info->disc_csv_file[outputnum], "\n");
}
}
INLINE void discrete_stream_update_wave(discrete_info *info)
{
int outputnum;
double val;
INT16 wave_data_l, wave_data_r;
/* Dump any wave logs */
for (outputnum = 0; outputnum < info->num_wavelogs; outputnum++)
{
/* get nodes to be logged and apply gain, then clip to 16 bit */
val = (*info->wavelog_node[outputnum]->input[0]) * (*info->wavelog_node[outputnum]->input[1]);
val = (val < -32768) ? -32768 : (val > 32767) ? 32767 : val;
wave_data_l = (INT16)val;
if (info->wavelog_node[outputnum]->active_inputs == 2)
{
/* DISCRETE_WAVELOG1 */
wav_add_data_16(info->disc_wav_file[outputnum], &wave_data_l, 1);
}
else
{
/* DISCRETE_WAVELOG2 */
val = (*info->wavelog_node[outputnum]->input[2]) * (*info->wavelog_node[outputnum]->input[3]);
val = (val < -32768) ? -32768 : (val > 32767) ? 32767 : val;
wave_data_r = (INT16)val;
wav_add_data_16lr(info->disc_wav_file[outputnum], &wave_data_l, &wave_data_r, 1);
}
}
}
INLINE void discrete_stream_update_nodes(discrete_info *info)
{
linked_list_entry *entry;
if (DISCRETE_PROFILING)
info->total_samples++;
/* update task nodes */
for (entry = info->task_list; entry != 0; entry = entry->next)
{
discrete_task_context *task = (discrete_task_context *) entry->ptr;
**task->dest = *task->ptr++;
}
/* loop over all nodes */
step_nodes_in_list(&info->step_list);
}
static STREAM_UPDATE( discrete_stream_update )
{
discrete_info *info = (discrete_info *)param;
linked_list_entry *entry;
int samplenum, nodenum, outputnum;
//int j; int left; int run;
if (samples == 0)
return;
/* Setup any output streams */
for (outputnum = 0; outputnum < info->discrete_outputs; outputnum++)
{
info->output_node[outputnum]->context = (void *) outputs[outputnum];
}
/* Setup any input streams */
for (nodenum = 0; nodenum < info->discrete_input_streams; nodenum++)
{
info->input_stream_data[nodenum] = inputs[nodenum];
}
for (entry = info->task_list; entry != 0; entry = entry->next)
{
task_info *ti = malloc(sizeof(task_info));
discrete_task_context *task = (discrete_task_context *) entry->ptr;
/* Fire task */
ti->context = task;
ti->samples = samples;
osd_work_item_queue(info->queue, task_callback, (void *) ti, WORK_ITEM_FLAG_AUTO_RELEASE);
}
/* and wait for them */
osd_work_queue_wait(info->queue, osd_ticks_per_second()*10);
if ((info->num_csvlogs == 0) && (info->num_wavelogs == 0))
{
/* Now we must do samples iterations of the node list, one output for each step */
for (samplenum = 0; samplenum < samples; samplenum++)
discrete_stream_update_nodes(info);
}
else
{
/* Now we must do samples iterations of the node list, one output for each step */
for (samplenum = 0; samplenum < samples; samplenum++)
{
discrete_stream_update_nodes(info);
discrete_stream_update_csv(info);
discrete_stream_update_wave(info);
}
}
}
/*************************************
*
* First pass init of nodes
*
*************************************/
static void init_nodes(discrete_info *info, linked_list_entry *block_list, const device_config *device)
{
linked_list_entry **step_list = &info->step_list;
linked_list_entry **node_list = &info->node_list;
linked_list_entry **task_list = &info->task_list;
linked_list_entry **cur_task_node = NULL;
linked_list_entry *entry;
discrete_task_context *task;
/* start with no outputs or input streams */
info->discrete_outputs = 0;
info->discrete_input_streams = 0;
/* loop over all nodes */
for (entry = block_list; entry != NULL; entry = entry->next)
{
discrete_sound_block *block = (discrete_sound_block *) entry->ptr;
node_description *node = auto_alloc_clear(info->device->machine, node_description);
int inputnum, modulenum;
/* find the requested module */
for (modulenum = 0; module_list[modulenum].type != DSS_NULL; modulenum++)
if (module_list[modulenum].type == block->type)
break;
if (module_list[modulenum].type != block->type)
fatalerror("init_nodes() - Unable to find discrete module type %d for NODE_%02d", block->type, NODE_INDEX(block->node));
/* static inits */
node->context = NULL;
node->info = info;
node->node = block->node;
node->module = &module_list[modulenum];
node->output[0] = 0.0;
node->block = block;
node->custom = block->custom;
/* keep track of special nodes */
if (block->node == NODE_SPECIAL)
{
switch(block->type)
{
/* Output Node */
case DSO_OUTPUT:
if (info->discrete_outputs == DISCRETE_MAX_OUTPUTS)
fatalerror("init_nodes() - There can not be more then %d output nodes", DISCRETE_MAX_OUTPUTS);
info->output_node[info->discrete_outputs++] = node;
break;
/* CSVlog Node for debugging */
case DSO_CSVLOG:
if (info->num_csvlogs == DISCRETE_MAX_CSVLOGS)
fatalerror("init_nodes() - There can not be more then %d discrete CSV logs.", DISCRETE_MAX_WAVELOGS);
info->csvlog_node[info->num_csvlogs++] = node;
break;
/* Wavelog Node for debugging */
case DSO_WAVELOG:
if (info->num_wavelogs == DISCRETE_MAX_WAVELOGS)
fatalerror("init_nodes() - There can not be more then %d discrete wave logs.", DISCRETE_MAX_WAVELOGS);
info->wavelog_node[info->num_wavelogs++] = node;
break;
/* Task processing */
case DSO_TASK_START:
if (cur_task_node != NULL)
fatalerror("init_nodes() - Nested DISCRETE_START_TASK.");
task = auto_alloc_clear(info->device->machine, discrete_task_context);
add_list(info, &task_list, task);
cur_task_node = &task->list;
break;
case DSO_TASK_END:
if (cur_task_node == NULL)
fatalerror("init_nodes() - NO DISCRETE_START_TASK.");
node->context = task;
task->dest = (double **) &node->input[0];
task = NULL;
break;
default:
fatalerror("init_nodes() - Failed, trying to create unknown special discrete node.");
}
}
/* otherwise, make sure we are not a duplicate, and put ourselves into the indexed list */
else
{
if (info->indexed_node[NODE_INDEX(block->node)])
fatalerror("init_nodes() - Duplicate entries for NODE_%02d", NODE_INDEX(block->node));
info->indexed_node[NODE_INDEX(block->node)] = node;
}
node->active_inputs = block->active_inputs;
for (inputnum = 0; inputnum < DISCRETE_MAX_INPUTS; inputnum++)
{
node->input[inputnum] = &(block->initial[inputnum]);
}
/* setup module if custom */
if (block->type == DST_CUSTOM)
{
const discrete_custom_info *custom = (const discrete_custom_info *)node->custom;
node->module = &custom->module;
node->custom = custom->custom;
}
/* allocate memory if necessary */
if (node->module->contextsize)
node->context = auto_alloc_array_clear(device->machine, UINT8, node->module->contextsize);
/* if we are an stream input node, track that */
if (block->type == DSS_INPUT_STREAM)
{
if (info->discrete_input_streams == DISCRETE_MAX_OUTPUTS)
fatalerror("init_nodes() - There can not be more then %d input stream nodes", DISCRETE_MAX_OUTPUTS);
node->context = NULL;
info->discrete_input_streams++;
}
/* add to node list */
add_list(info, &node_list, node);
/* our running order just follows the order specified */
/* does the node step ? */
if (node->module->step != NULL)
{
/* do we belong to a task? */
if (cur_task_node == NULL)
add_list(info, &step_list, node);
else
add_list(info, &cur_task_node, node);
}
if (block->type == DSO_TASK_END)
{
cur_task_node = NULL;
}
/* and register save state */
if (node->node != NODE_SPECIAL)
state_save_register_device_item_array(device, node->node, node->output);
}
/* if no outputs, give an error */
if (info->discrete_outputs == 0)
fatalerror("init_nodes() - Couldn't find an output node");
}
/*************************************
*
* Find and attach all input nodes
*
*************************************/
static void find_input_nodes(discrete_info *info)
{
int inputnum;
linked_list_entry *entry;
/* loop over all nodes */
for (entry = info->node_list; entry != NULL; entry = entry->next)
{
node_description *node = (node_description *) entry->ptr;
const discrete_sound_block *block = node->block;
/* loop over all active inputs */
for (inputnum = 0; inputnum < node->active_inputs; inputnum++)
{
int inputnode = block->input_node[inputnum];
/* if this input is node-based, find the node in the indexed list */
if IS_VALUE_A_NODE(inputnode)
{
node_description *node_ref = info->indexed_node[NODE_INDEX(inputnode)];
if (!node_ref)
fatalerror("discrete_start - NODE_%02d referenced a non existent node NODE_%02d", NODE_INDEX(node->node), NODE_INDEX(inputnode));
if (NODE_CHILD_NODE_NUM(inputnode) >= node_ref->module->num_output)
fatalerror("discrete_start - NODE_%02d referenced non existent output %d on node NODE_%02d", NODE_INDEX(node->node), NODE_CHILD_NODE_NUM(inputnode), NODE_INDEX(inputnode));
node->input[inputnum] = &(node_ref->output[NODE_CHILD_NODE_NUM(inputnode)]); /* Link referenced node out to input */
node->input_is_node |= 1 << inputnum; /* Bit flag if input is node */
}
else
{
/* warn if trying to use a node for an input that can only be static */
if IS_VALUE_A_NODE(block->initial[inputnum])
{
discrete_log(info, "Warning - discrete_start - NODE_%02d trying to use a node on static input %d", NODE_INDEX(node->node), inputnum);
/* also report it in the error log so it is not missed */
logerror("Warning - discrete_start - NODE_%02d trying to use a node on static input %d", NODE_INDEX(node->node), inputnum);
}
}
}
}
}
/*************************************
*
* Set up the logs
*
*************************************/
static void setup_disc_logs(discrete_info *info)
{
int log_num, node_num;
char name[32];
for (log_num = 0; log_num < info->num_csvlogs; log_num++)
{
sprintf(name, "discrete%s_%d.csv", info->device->tag, log_num);
info->disc_csv_file[log_num] = fopen(name, "w");
/* Output some header info */
fprintf(info->disc_csv_file[log_num], "\"MAME Discrete System Node Log\"\n");
fprintf(info->disc_csv_file[log_num], "\"Log Version\", 1.0\n");
fprintf(info->disc_csv_file[log_num], "\"Sample Rate\", %d\n", info->sample_rate);
fprintf(info->disc_csv_file[log_num], "\n");
fprintf(info->disc_csv_file[log_num], "\"Sample\"");
for (node_num = 0; node_num < info->csvlog_node[log_num]->active_inputs; node_num++)
{
fprintf(info->disc_csv_file[log_num], ", \"NODE_%2d\"", NODE_INDEX(info->csvlog_node[log_num]->block->input_node[node_num]));
}
fprintf(info->disc_csv_file[log_num], "\n");
}
for (log_num = 0; log_num < info->num_wavelogs; log_num++)
{
sprintf(name, "discrete%s_%d.wav", info->device->tag, log_num);
info->disc_wav_file[log_num] = wav_open(name, info->sample_rate, info->wavelog_node[log_num]->active_inputs/2);
}
}
/**************************************************************************
* Generic get_info
**************************************************************************/
DEVICE_GET_INFO( discrete )
{
switch (state)
{
/* --- the following bits of info are returned as 64-bit signed integers --- */
case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(discrete_info); break;
/* --- the following bits of info are returned as pointers to data or functions --- */
case DEVINFO_FCT_START: info->start = DEVICE_START_NAME( discrete ); break;
case DEVINFO_FCT_STOP: info->stop = DEVICE_STOP_NAME( discrete ); break;
case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME( discrete ); break;
/* --- the following bits of info are returned as NULL-terminated strings --- */
case DEVINFO_STR_NAME: strcpy(info->s, "Discrete"); break;
case DEVINFO_STR_FAMILY: strcpy(info->s, "Analog"); break;
case DEVINFO_STR_VERSION: strcpy(info->s, "1.1"); break;
case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break;
case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright Nicola Salmoria and the MAME Team"); break;
}
}