mame/src/devices/machine/x76f041.cpp

775 lines
21 KiB
C++

// license:BSD-3-Clause
// copyright-holders:smf
/*
* x76f041.c
*
* Secure SerialFlash
*
* The X76F041 is a Password Access Security Supervisor, containing four 128 x 8 bit SecureFlash arrays.
* Access can be controlled by three 64-bit programmable passwords, one for read operations, one for write
* operations and one for device configuration.
*
* The data sheet has an incorrect diagrams for sequential read with password, there shouldn't be an extra address after the 0xc0 command.
*
*/
#include "emu.h"
#include "machine/x76f041.h"
#include <cstdarg>
#define VERBOSE_LEVEL ( 0 )
inline void ATTR_PRINTF( 3, 4 ) x76f041_device::verboselog( int n_level, const char *s_fmt, ... )
{
if( VERBOSE_LEVEL >= n_level )
{
va_list v;
char buf[ 32768 ];
va_start( v, s_fmt );
vsprintf( buf, s_fmt, v );
va_end( v );
logerror( "%s: x76f041(%s) %s", machine().describe_context(), tag(), buf );
}
}
// device type definition
DEFINE_DEVICE_TYPE(X76F041, x76f041_device, "x76f041", "X76F041 Secure SerialFlash")
x76f041_device::x76f041_device( const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock )
: device_t( mconfig, X76F041, tag, owner, clock ),
device_nvram_interface(mconfig, *this),
m_region(*this, DEVICE_SELF),
m_cs( 0 ),
m_rst( 0 ),
m_scl( 0 ),
m_sdaw( 0 ),
m_sdar( 0 ),
m_state( STATE_STOP ),
m_shift( 0 ),
m_bit( 0 ),
m_byte( 0 ),
m_command( 0 ),
m_address( 0 ),
m_is_password_accepted ( false )
{
}
void x76f041_device::device_start()
{
std::fill( std::begin( m_write_buffer ), std::end( m_write_buffer ), 0 );
std::fill( std::begin( m_password_temp ), std::end( m_password_temp ), 0 );
save_item( NAME( m_cs ) );
save_item( NAME( m_rst ) );
save_item( NAME( m_scl ) );
save_item( NAME( m_sdaw ) );
save_item( NAME( m_sdar ) );
save_item( NAME( m_state ) );
save_item( NAME( m_shift ) );
save_item( NAME( m_bit ) );
save_item( NAME( m_byte ) );
save_item( NAME( m_command ) );
save_item( NAME( m_address ) );
save_item( NAME( m_is_password_accepted ) );
save_item( NAME( m_write_buffer ) );
save_item( NAME( m_response_to_reset ) );
save_item( NAME( m_write_password ) );
save_item( NAME( m_read_password ) );
save_item( NAME( m_configuration_password ) );
save_item( NAME( m_configuration_registers ) );
save_item( NAME( m_data ) );
save_item( NAME( m_password_temp ) );
}
void x76f041_device::device_reset()
{
std::fill( std::begin( m_write_buffer ), std::end( m_write_buffer ), 0 );
std::fill( std::begin( m_password_temp ), std::end( m_password_temp ), 0 );
m_cs = 0;
m_rst = 0;
m_scl = 0;
m_sdaw = 0;
m_sdar = 0;
m_state = STATE_STOP;
m_shift = 0;
m_bit = 0;
m_byte = 0;
m_command = 0;
m_address = 0;
m_is_password_accepted = false;
}
WRITE_LINE_MEMBER( x76f041_device::write_cs )
{
if( m_cs != state )
{
verboselog( 2, "cs=%d\n", state );
}
if( m_cs != 0 && state == 0 )
{
/* enable chip */
m_state = STATE_STOP;
}
if( m_cs == 0 && state != 0 )
{
/* disable chip */
m_state = STATE_STOP;
/* high impendence? */
m_sdar = 0;
}
m_cs = state;
}
WRITE_LINE_MEMBER( x76f041_device::write_rst )
{
if( m_rst != state )
{
verboselog( 2, "rst=%d\n", state );
}
if( m_rst == 0 && state != 0 && m_cs == 0 )
{
verboselog( 1, "goto response to reset\n" );
m_state = STATE_RESPONSE_TO_RESET;
m_bit = 0;
m_byte = 0;
}
m_rst = state;
}
uint8_t *x76f041_device::password()
{
switch( m_command & 0xe0 )
{
case COMMAND_WRITE:
return m_write_password;
case COMMAND_READ:
return m_read_password;
case COMMAND_CONFIGURATION:
if( m_address == CONFIGURATION_PROGRAM_WRITE_PASSWORD )
return m_write_password;
if( m_address == CONFIGURATION_PROGRAM_READ_PASSWORD )
return m_read_password;
return m_configuration_password;
default:
return m_configuration_password;
}
}
void x76f041_device::password_ok()
{
if( m_configuration_registers[ CONFIG_CR ] & CR_RETRY_COUNTER_RESET_BIT )
m_configuration_registers[ CONFIG_RC ] = 0;
switch( m_command & 0xe0 )
{
case COMMAND_WRITE:
m_state = STATE_WRITE_DATA;
break;
case COMMAND_READ:
m_state = STATE_READ_DATA;
break;
case COMMAND_WRITE_USE_CONFIGURATION_PASSWORD:
m_state = STATE_CONFIGURATION_WRITE_DATA;
break;
case COMMAND_READ_USE_CONFIGURATION_PASSWORD:
m_state = STATE_READ_DATA;
break;
case COMMAND_CONFIGURATION:
switch( m_address )
{
case CONFIGURATION_PROGRAM_WRITE_PASSWORD:
m_state = STATE_PROGRAM_WRITE_PASSWORD;
m_byte = 0;
break;
case CONFIGURATION_PROGRAM_READ_PASSWORD:
m_state = STATE_PROGRAM_READ_PASSWORD;
m_byte = 0;
break;
case CONFIGURATION_PROGRAM_CONFIGURATION_PASSWORD:
m_state = STATE_PROGRAM_CONFIGURATION_PASSWORD;
m_byte = 0;
break;
case CONFIGURATION_RESET_WRITE_PASSWORD:
m_state = STATE_RESET_WRITE_PASSWORD;
break;
case CONFIGURATION_RESET_READ_PASSWORD:
m_state = STATE_RESET_READ_PASSWORD;
break;
case CONFIGURATION_PROGRAM_CONFIGURATION_REGISTERS:
m_state = STATE_WRITE_CONFIGURATION_REGISTERS;
m_byte = 0;
break;
case CONFIGURATION_READ_CONFIGURATION_REGISTERS:
m_state = STATE_READ_CONFIGURATION_REGISTERS;
m_byte = 0;
break;
case CONFIGURATION_MASS_PROGRAM:
m_state = STATE_MASS_PROGRAM;
break;
case CONFIGURATION_MASS_ERASE:
m_state = STATE_MASS_ERASE;
break;
default:
break;
}
}
}
void x76f041_device::load_address()
{
m_address = m_shift;
verboselog( 1, "-> address: %02x\n", m_address );
if( ( m_configuration_registers[ CONFIG_CR ] & CR_RETRY_COUNTER_ENABLE_BIT ) != 0 &&
m_configuration_registers[ CONFIG_RR ] == m_configuration_registers[ CONFIG_RC ] &&
( m_configuration_registers[ CONFIG_CR ] & CR_UNAUTHORIZED_ACCESS_BITS ) == 0x80 )
{
// No commands are allowed
verboselog( 1, "unauthorized access rejected\n" );
m_state = STATE_STOP;
m_sdar = 1;
m_byte = 0;
return;
}
if( ( m_command & 0xe0 ) == COMMAND_CONFIGURATION )
{
// Configuration commands can be used regardless of array control register bits
if( m_address == CONFIGURATION_RESET_WRITE_PASSWORD ||
m_address == CONFIGURATION_RESET_READ_PASSWORD ||
m_address == CONFIGURATION_MASS_PROGRAM ||
m_address == CONFIGURATION_MASS_ERASE )
{
verboselog( 1, "password not required\n" );
password_ok();
}
else
{
verboselog( 1, "send password\n" );
m_state = STATE_LOAD_PASSWORD;
m_byte = 0;
}
return;
}
if( ( m_configuration_registers[ CONFIG_CR ] & CR_RETRY_COUNTER_ENABLE_BIT ) != 0 &&
m_configuration_registers[ CONFIG_RR ] == m_configuration_registers[ CONFIG_RC ] &&
( m_configuration_registers[ CONFIG_CR ] & CR_UNAUTHORIZED_ACCESS_BITS ) != 0x80 )
{
// Only configuration commands are allowed
verboselog( 1, "unauthorized access rejected\n" );
m_state = STATE_STOP;
m_sdar = 1;
m_byte = 0;
return;
}
int bcr = m_configuration_registers[ ( m_command & 1 ) ? CONFIG_BCR2 : CONFIG_BCR1 ];
if( ( m_address & 0x80 ) != 0 )
{
bcr >>= 4;
}
if( ( ( m_command & 0xe0 ) == COMMAND_READ && ( bcr & BCR_Z ) != 0 && ( bcr & BCR_T ) != 0 ) ||
( ( m_command & 0xe0 ) == COMMAND_WRITE && ( bcr & BCR_Z ) != 0 ) )
{
/* todo: find out when this is really checked. */
verboselog( 1, "command not allowed\n" );
m_state = STATE_STOP;
m_sdar = 1;
m_byte = 0;
}
else if( ( ( m_command & 0xe0 ) == COMMAND_WRITE && ( bcr & BCR_X ) == 0 ) ||
( ( m_command & 0xe0 ) == COMMAND_READ && ( bcr & BCR_Y ) == 0 ) )
{
verboselog( 1, "password not required\n" );
password_ok();
}
else
{
verboselog( 1, "send password\n" );
m_state = STATE_LOAD_PASSWORD;
m_byte = 0;
}
}
int x76f041_device::data_offset()
{
int block_offset = ( ( m_command & 1 ) << 8 ) + m_address;
// TODO: confirm block_start doesn't wrap.
return ( block_offset & 0x180 ) | ( ( block_offset + m_byte ) & 0x7f );
}
WRITE_LINE_MEMBER( x76f041_device::write_scl )
{
if( m_scl != state )
{
verboselog( 2, "scl=%d\n", state );
}
if( m_cs == 0 )
{
switch( m_state )
{
case STATE_STOP:
break;
case STATE_RESPONSE_TO_RESET:
if( m_scl != 0 && state == 0 )
{
m_sdar = ( m_response_to_reset[ m_byte ] >> m_bit ) & 1;
verboselog( 2, "in response to reset %d (%d/%d)\n", m_sdar, m_byte, m_bit );
m_bit++;
if( m_bit == 8 )
{
m_bit = 0;
m_byte++;
if( m_byte == sizeof( m_response_to_reset ) )
{
m_byte = 0;
}
}
}
break;
case STATE_LOAD_COMMAND:
case STATE_LOAD_ADDRESS:
case STATE_LOAD_PASSWORD:
case STATE_VERIFY_PASSWORD:
case STATE_WRITE_DATA:
case STATE_CONFIGURATION_WRITE_DATA:
case STATE_WRITE_CONFIGURATION_REGISTERS:
case STATE_PROGRAM_WRITE_PASSWORD:
case STATE_PROGRAM_READ_PASSWORD:
case STATE_PROGRAM_CONFIGURATION_PASSWORD:
case STATE_RESET_WRITE_PASSWORD:
case STATE_RESET_READ_PASSWORD:
case STATE_MASS_PROGRAM:
case STATE_MASS_ERASE:
// FIXME: Processing on the rising edge of the clock causes sda to change state while clock is high
// which is not allowed. Also need to ensure that only valid device-id's and commands
// are acknowledged.
if( m_scl == 0 && state != 0 )
{
if( m_bit < 8 )
{
verboselog( 2, "clock\n" );
m_shift <<= 1;
if( m_sdaw != 0 )
{
m_shift |= 1;
}
m_bit++;
}
else
{
m_sdar = 0;
switch( m_state )
{
case STATE_LOAD_COMMAND:
m_command = m_shift;
verboselog( 1, "-> command: %02x\n", m_command );
/* todo: verify command is valid? */
m_state = STATE_LOAD_ADDRESS;
break;
case STATE_LOAD_ADDRESS:
load_address();
break;
case STATE_LOAD_PASSWORD:
verboselog( 1, "-> password: %02x\n", m_shift );
m_write_buffer[ m_byte++ ] = m_shift;
if( m_byte == sizeof( m_write_buffer ) )
{
m_state = STATE_VERIFY_PASSWORD;
// Perform the password acceptance check before verify password because
// password verify ack is spammed and will quickly overflow the
// retry counter.
m_is_password_accepted = memcmp( password(), m_write_buffer, sizeof( m_write_buffer ) ) == 0;
if( !m_is_password_accepted )
{
if( m_configuration_registers[ CONFIG_CR ] & CR_RETRY_COUNTER_ENABLE_BIT )
m_configuration_registers[ CONFIG_RC ]++;
}
}
break;
case STATE_VERIFY_PASSWORD:
verboselog( 1, "-> verify password: %02x\n", m_shift );
/* todo: this should probably be handled as a command */
if( m_shift == 0xc0 )
{
/* todo: this should take 10ms before it returns ok. */
if( m_is_password_accepted )
{
password_ok();
}
else
{
m_sdar = 1;
}
}
break;
case STATE_WRITE_DATA:
verboselog( 2, "-> data: %02x\n", m_shift );
m_write_buffer[ m_byte++ ] = m_shift;
if( m_byte == sizeof( m_write_buffer ) )
{
int bcr = m_configuration_registers[ ( m_command & 1 ) ? CONFIG_BCR2 : CONFIG_BCR1 ];
if( ( m_address & 0x80 ) != 0 )
{
bcr >>= 4;
}
if( ( bcr & ( BCR_Z | BCR_T ) ) == BCR_T )
{
// Bits in the data can only be set, not cleared, when in program only mode
bool is_unauthorized_write = false;
for( m_byte = 0; m_byte < sizeof( m_write_buffer ); m_byte++ )
{
int offset = data_offset();
if( m_write_buffer[ m_byte ] < m_data[ offset ] )
{
verboselog( 1, "tried to unset bits while in program only mode\n" );
is_unauthorized_write = true;
break;
}
}
if( is_unauthorized_write )
{
m_sdar = 1;
m_byte = 0;
break;
}
}
for( m_byte = 0; m_byte < sizeof( m_write_buffer ); m_byte++ )
{
int offset = data_offset();
verboselog( 1, "-> data[ %03x ]: %02x\n", offset, m_write_buffer[ m_byte ] );
m_data[ offset ] = m_write_buffer[ m_byte ];
}
m_byte = 0;
verboselog( 1, "data flushed\n" );
}
break;
case STATE_CONFIGURATION_WRITE_DATA:
// Unlike normal writes, configuration writes aren't required to be exactly 8 bytes
// TODO: Store data in a temporary buffer until the proper end of the command before writing
verboselog( 2, "-> data: %02x\n", m_shift );
m_data[ data_offset() ] = m_shift;
m_byte++;
break;
case STATE_WRITE_CONFIGURATION_REGISTERS:
verboselog( 1, "-> configuration register[ %d ]: %02x\n", m_byte, m_shift );
/* todo: write after all bytes received? */
m_configuration_registers[ m_byte++ ] = m_shift;
if( m_byte == sizeof( m_configuration_registers ) )
{
m_byte = 0;
}
break;
case STATE_PROGRAM_WRITE_PASSWORD:
verboselog( 1, "-> program write password[ %d ]: %02x\n", m_byte, m_shift );
m_password_temp[ m_byte++ ] = m_shift;
if( m_byte == sizeof( m_password_temp ) )
{
// Read in the password twice and if the two copies match then write it to the password field
if( memcmp( &m_password_temp[ 0 ], &m_password_temp[ 8 ], sizeof( m_write_password ) ) == 0 )
{
std::copy_n( std::begin( m_password_temp ), sizeof( m_write_password ), std::begin ( m_write_password ) );
}
else {
m_sdar = 1;
}
std::fill( std::begin( m_password_temp ), std::end( m_password_temp ), 0 );
m_byte = 0;
}
break;
case STATE_PROGRAM_READ_PASSWORD:
verboselog( 1, "-> program read password[ %d ]: %02x\n", m_byte, m_shift );
m_password_temp[ m_byte++ ] = m_shift;
if( m_byte == sizeof( m_password_temp ) )
{
if( memcmp( &m_password_temp[ 0 ], &m_password_temp[ 8 ], sizeof( m_read_password ) ) == 0 )
{
std::copy_n( std::begin( m_password_temp ), sizeof( m_read_password ), std::begin ( m_read_password ) );
}
else {
m_sdar = 1;
}
std::fill( std::begin( m_password_temp ), std::end( m_password_temp ), 0 );
m_byte = 0;
}
break;
case STATE_PROGRAM_CONFIGURATION_PASSWORD:
verboselog( 1, "-> program configuration password[ %d ]: %02x\n", m_byte, m_shift );
m_password_temp[ m_byte++ ] = m_shift;
if( m_byte == sizeof( m_password_temp ) )
{
if( memcmp( &m_password_temp[ 0 ], &m_password_temp[ 8 ], sizeof( m_configuration_password ) ) == 0 )
{
std::copy_n( std::begin( m_password_temp ), sizeof( m_configuration_password ), std::begin ( m_configuration_password ) );
}
else {
m_sdar = 1;
}
std::fill( std::begin( m_password_temp ), std::end( m_password_temp ), 0 );
m_byte = 0;
}
break;
case STATE_RESET_WRITE_PASSWORD:
verboselog( 1, "-> reset write password\n" );
std::fill( std::begin( m_write_password ), std::end( m_write_password ), 0 );
break;
case STATE_RESET_READ_PASSWORD:
verboselog( 1, "-> reset read password\n" );
std::fill( std::begin( m_read_password ), std::end( m_read_password ), 0 );
break;
case STATE_MASS_PROGRAM:
case STATE_MASS_ERASE:
{
const uint8_t fill = m_state == STATE_MASS_ERASE ? 0xff : 0;
verboselog( 1, "-> mass erase %02x\n", fill );
std::fill( std::begin( m_data ), std::end( m_data ), fill );
std::fill( std::begin( m_configuration_password ), std::end( m_configuration_password ), fill );
std::fill( std::begin( m_configuration_registers ), std::end( m_configuration_registers ), fill );
std::fill( std::begin( m_write_password ), std::end( m_write_password ), fill );
std::fill( std::begin( m_read_password ), std::end( m_read_password ), fill );
break;
}
}
m_bit = 0;
m_shift = 0;
}
}
break;
case STATE_READ_DATA:
case STATE_READ_CONFIGURATION_REGISTERS:
// FIXME: Processing on the rising edge of the clock causes sda to change state while clock is high
// which is not allowed.
if( m_scl == 0 && state != 0 )
{
if( m_bit < 8 )
{
if( m_bit == 0 )
{
int offset;
switch( m_state )
{
case STATE_READ_DATA:
offset = data_offset();
m_shift = m_data[ offset ];
verboselog( 1, "<- data[ %03x ]: %02x\n", offset, m_shift );
break;
case STATE_READ_CONFIGURATION_REGISTERS:
offset = m_byte & 7;
m_shift = m_configuration_registers[ offset ];
verboselog( 1, "<- configuration register[ %d ]: %02x\n", offset, m_shift );
break;
}
}
m_sdar = ( m_shift >> 7 ) & 1;
m_shift <<= 1;
m_bit++;
}
else
{
m_bit = 0;
m_sdar = 0;
if( m_sdaw == 0 )
{
verboselog( 2, "ack <-\n" );
m_byte++;
}
else
{
verboselog( 2, "nak <-\n" );
}
}
}
break;
}
}
m_scl = state;
}
WRITE_LINE_MEMBER( x76f041_device::write_sda )
{
if( m_sdaw != state )
{
verboselog( 2, "sdaw=%d\n", state );
}
if( m_cs == 0 && m_scl != 0 )
{
if( m_sdaw == 0 && state != 0 )
{
verboselog( 1, "goto stop\n" );
m_state = STATE_STOP;
m_sdar = 0;
}
if( m_sdaw != 0 && state == 0 )
{
switch( m_state )
{
case STATE_STOP:
verboselog( 1, "goto start\n" );
m_state = STATE_LOAD_COMMAND;
break;
case STATE_LOAD_PASSWORD:
/* todo: this will be the 0xc0 command, but it's not handled as a command yet. */
verboselog( 1, "goto start\n" );
break;
case STATE_READ_DATA:
verboselog( 1, "goto load address\n" );
m_state = STATE_LOAD_ADDRESS;
break;
default:
verboselog( 1, "skipped start (default)\n" );
break;
}
m_bit = 0;
m_byte = 0;
m_shift = 0;
m_sdar = 0;
}
}
m_sdaw = state;
}
READ_LINE_MEMBER( x76f041_device::read_sda )
{
if( m_cs != 0 )
{
verboselog( 2, "not selected\n" );
return 1;
}
verboselog( 2, "sdar=%d\n", m_sdar );
return m_sdar;
}
void x76f041_device::nvram_default()
{
m_response_to_reset[0] = 0x19;
m_response_to_reset[1] = 0x55;
m_response_to_reset[2] = 0xaa;
m_response_to_reset[3] = 0x55,
memset( m_write_password, 0, sizeof( m_write_password ) );
memset( m_read_password, 0, sizeof( m_read_password ) );
memset( m_configuration_password, 0, sizeof( m_configuration_password ) );
memset( m_configuration_registers, 0, sizeof( m_configuration_registers ) );
memset( m_data, 0, sizeof( m_data ) );
int expected_bytes = sizeof( m_response_to_reset ) + sizeof( m_write_password ) + sizeof( m_read_password ) +
sizeof( m_configuration_password ) + sizeof( m_configuration_registers ) + sizeof( m_data );
if (!m_region.found())
{
logerror( "x76f041(%s) region not found\n", tag() );
}
else if( m_region->bytes() != expected_bytes )
{
logerror( "x76f041(%s) region length 0x%x expected 0x%x\n", tag(), m_region->bytes(), expected_bytes );
}
else
{
uint8_t *region = m_region->base();
memcpy( m_response_to_reset, region, sizeof( m_response_to_reset ) ); region += sizeof( m_response_to_reset );
memcpy( m_write_password, region, sizeof( m_write_password ) ); region += sizeof( m_write_password );
memcpy( m_read_password, region, sizeof( m_read_password ) ); region += sizeof( m_read_password );
memcpy( m_configuration_password, region, sizeof( m_configuration_password ) ); region += sizeof( m_configuration_password );
memcpy( m_configuration_registers, region, sizeof( m_configuration_registers ) ); region += sizeof( m_configuration_registers );
memcpy( m_data, region, sizeof( m_data ) ); region += sizeof( m_data );
}
}
bool x76f041_device::nvram_read( util::read_stream &file )
{
size_t actual;
bool result = !file.read( m_response_to_reset, sizeof( m_response_to_reset ), actual ) && actual == sizeof( m_response_to_reset );
result = result && !file.read( m_write_password, sizeof( m_write_password ), actual ) && actual == sizeof( m_write_password );
result = result && !file.read( m_read_password, sizeof( m_read_password ), actual ) && actual == sizeof( m_read_password );
result = result && !file.read( m_configuration_password, sizeof( m_configuration_password ), actual ) && actual == sizeof( m_configuration_password );
result = result && !file.read( m_configuration_registers, sizeof( m_configuration_registers ), actual ) && actual == sizeof( m_configuration_registers );
result = result && !file.read( m_data, sizeof( m_data ), actual ) && actual == sizeof( m_data );
return result;
}
bool x76f041_device::nvram_write( util::write_stream &file )
{
size_t actual;
bool result = !file.write( m_response_to_reset, sizeof( m_response_to_reset ), actual ) && actual == sizeof( m_response_to_reset );
result = result && !file.write( m_write_password, sizeof( m_write_password ), actual ) && actual == sizeof( m_write_password );
result = result && !file.write( m_read_password, sizeof( m_read_password ), actual ) && actual == sizeof( m_read_password );
result = result && !file.write( m_configuration_password, sizeof( m_configuration_password ), actual ) && actual == sizeof( m_configuration_password );
result = result && !file.write( m_configuration_registers, sizeof( m_configuration_registers ), actual ) && actual == sizeof( m_configuration_registers );
result = result && !file.write( m_data, sizeof( m_data ), actual ) && actual == sizeof( m_data );
return result;
}