mame/src/emu/cpu/powerpc/ppc403.c
Aaron Giles eba2c14060 Change cpu execute function to just use the icount stuffed by
the scheduler, rather than manging an incoming cycle count. It was
confusing to have multiple sources of cycle counts.
2010-06-09 16:20:50 +00:00

954 lines
21 KiB
C

/* PowerPC 403 specific functions */
static void ppc403_dma_exec(int ch);
#define DMA_CE 0x80000000
#define DMA_CIE 0x40000000
#define DMA_TD 0x20000000
#define DMA_PL 0x10000000
#define DMA_DAI 0x02000000
#define DMA_SAI 0x01000000
#define DMA_CP 0x00800000
#define DMA_ETD 0x00000200
#define DMA_TCE 0x00000100
#define DMA_CH 0x00000080
#define DMA_BME 0x00000040
#define DMA_ECE 0x00000020
#define DMA_TCD 0x00000010
#define DMA_PCE 0x00000008
static SPU_RX_HANDLER spu_rx_handler;
static SPU_TX_HANDLER spu_tx_handler;
static TIMER_CALLBACK( ppc403_spu_rx_callback );
static TIMER_CALLBACK( ppc403_spu_tx_callback );
static PPC_DMA_HANDLER spu_rx_dma_handler;
static PPC_DMA_HANDLER spu_tx_dma_handler;
static UINT8 *spu_rx_dma_ptr;
static UINT8 *spu_tx_dma_ptr;
static PPC_DMA_HANDLER dma_read_handler[4];
static PPC_DMA_HANDLER dma_write_handler[4];
static UINT8 *dma_read_ptr[4];
static UINT8 *dma_write_ptr[4];
INLINE void ppc_set_dcr(int dcr, UINT32 value)
{
switch(dcr)
{
case DCR_BEAR: ppc.bear = value; break;
case DCR_BESR: ppc.besr = value; break;
case DCR_BR0: ppc.br[0] = value; break;
case DCR_BR1: ppc.br[1] = value; break;
case DCR_BR2: ppc.br[2] = value; break;
case DCR_BR3: ppc.br[3] = value; break;
case DCR_BR4: ppc.br[4] = value; break;
case DCR_BR5: ppc.br[5] = value; break;
case DCR_BR6: ppc.br[6] = value; break;
case DCR_BR7: ppc.br[7] = value; break;
case DCR_EXISR: ppc.exisr &= ~value; break;
case DCR_EXIER: EXIER = value; ppc.exisr &= EXIER; break;
case DCR_IOCR: ppc.iocr = value; break;
case DCR_DMASR: break; /* TODO */
case DCR_DMADA0: ppc.dma[0].da = value; break;
case DCR_DMADA1: ppc.dma[1].da = value; break;
case DCR_DMADA2: ppc.dma[2].da = value; break;
case DCR_DMADA3: ppc.dma[3].da = value; break;
case DCR_DMASA0: ppc.dma[0].sa = value; break;
case DCR_DMASA1: ppc.dma[1].sa = value; break;
case DCR_DMASA2: ppc.dma[2].sa = value; break;
case DCR_DMASA3: ppc.dma[3].sa = value; break;
case DCR_DMACT0: ppc.dma[0].ct = value; break;
case DCR_DMACT1: ppc.dma[1].ct = value; break;
case DCR_DMACT2: ppc.dma[2].ct = value; break;
case DCR_DMACT3: ppc.dma[3].ct = value; break;
case DCR_DMACR0: ppc.dma[0].cr = value; ppc403_dma_exec(0); break;
case DCR_DMACR1: ppc.dma[1].cr = value; ppc403_dma_exec(1); break;
case DCR_DMACR2: ppc.dma[2].cr = value; ppc403_dma_exec(2); break;
case DCR_DMACR3: ppc.dma[3].cr = value; ppc403_dma_exec(3); break;
default:
fatalerror("ppc: set_dcr: Unimplemented DCR %X", dcr);
break;
}
}
INLINE UINT32 ppc_get_dcr(int dcr)
{
switch(dcr)
{
case DCR_BEAR: return ppc.bear;
case DCR_BESR: return ppc.besr;
case DCR_BR0: return ppc.br[0];
case DCR_BR1: return ppc.br[1];
case DCR_BR2: return ppc.br[2];
case DCR_BR3: return ppc.br[3];
case DCR_BR4: return ppc.br[4];
case DCR_BR5: return ppc.br[5];
case DCR_BR6: return ppc.br[6];
case DCR_BR7: return ppc.br[7];
case DCR_EXISR: return EXISR;
case DCR_EXIER: return EXIER;
case DCR_IOCR: return ppc.iocr;
case DCR_DMASR: return ppc.dmasr;
case DCR_DMADA0: return ppc.dma[0].da;
case DCR_DMADA1: return ppc.dma[1].da;
case DCR_DMADA2: return ppc.dma[2].da;
case DCR_DMADA3: return ppc.dma[3].da;
case DCR_DMASA0: return ppc.dma[0].sa;
case DCR_DMASA1: return ppc.dma[1].sa;
case DCR_DMASA2: return ppc.dma[2].sa;
case DCR_DMASA3: return ppc.dma[3].sa;
case DCR_DMACT0: return ppc.dma[0].ct;
case DCR_DMACT1: return ppc.dma[1].ct;
case DCR_DMACT2: return ppc.dma[2].ct;
case DCR_DMACT3: return ppc.dma[3].ct;
case DCR_DMACR0: return ppc.dma[0].cr;
case DCR_DMACR1: return ppc.dma[1].cr;
case DCR_DMACR2: return ppc.dma[2].cr;
case DCR_DMACR3: return ppc.dma[3].cr;
default:
fatalerror("ppc: get_dcr: Unimplemented DCR %X", dcr);
break;
}
}
#ifndef PPC_DRC
INLINE void ppc403_check_interrupts(void)
{
if (MSR & MSR_EE)
{
if (ppc.interrupt_pending != 0)
{
if (ppc.interrupt_pending & 0x1)
{
ppc403_exception(EXCEPTION_IRQ);
}
else if (ppc.interrupt_pending & 0x2)
{
ppc403_exception(EXCEPTION_PROGRAMMABLE_INTERVAL_TIMER);
}
else if (ppc.interrupt_pending & 0x4)
{
ppc403_exception(EXCEPTION_FIXED_INTERVAL_TIMER);
}
}
}
}
static CPU_RESET( ppc403 )
{
ppc.pc = ppc.npc = 0xfffffffc;
ppc_set_msr(0);
}
static CPU_EXECUTE( ppc403 )
{
UINT32 fit_trigger_cycle;
ppc_tb_base_icount = cycles;
fit_trigger_cycle = 0x7fffffff;
if (ppc.fit_int_enable)
{
UINT32 tb = (UINT32)ppc.tb;
UINT32 fit_cycles = 0;
if (ppc.tb & ppc.fit_bit)
{
fit_cycles += ppc.fit_bit;
tb += fit_cycles;
}
fit_cycles += ppc.fit_bit - (tb & (ppc.fit_bit-1));
fit_trigger_cycle = ppc_icount - fit_cycles;
}
while( ppc_icount > 0 )
{
UINT32 opcode;
debugger_instruction_hook(device, ppc.pc);
ppc.pc = ppc.npc;
ppc.npc += 4;
opcode = ROPCODE(ppc.pc);
switch(opcode >> 26)
{
case 19: ppc.optable19[(opcode >> 1) & 0x3ff](opcode); break;
case 31: ppc.optable31[(opcode >> 1) & 0x3ff](opcode); break;
case 59: ppc.optable59[(opcode >> 1) & 0x3ff](opcode); break;
case 63: ppc.optable63[(opcode >> 1) & 0x3ff](opcode); break;
default: ppc.optable[opcode >> 26](opcode); break;
}
ppc_icount--;
/* Programmable Interval Timer (PIT) */
if (ppc.pit_counter > 0)
{
ppc.pit_counter--;
if (ppc.pit_counter == 0)
{
if (ppc.pit_int_enable) {
ppc.interrupt_pending |= 0x2;
}
if (ppc.tcr & 0x00400000) // Automatic reload
{
ppc.pit_counter = ppc.pit;
}
}
}
/* Fixed Interval Timer */
if (fit_trigger_cycle != 0x7fffffff)
{
if (ppc_icount == fit_trigger_cycle)
{
if (ppc.fit_int_enable)
{
fit_trigger_cycle -= ppc.fit_bit;
ppc.interrupt_pending |= 0x4;
}
}
}
#if 0
/* Watchdog Timer */
if (((UINT32)(ppc.tb) & ppc.wdt_bit) && (tblo & ppc.wdt_bit) == 0) {
switch((ppc.tsr >> 28) & 0x3)
{
case 0: ppc.tsr |= TSR_ENW; break;
case 1: ppc.tsr |= TSR_ENW; break;
case 2:
if (ppc.wdt_int_enable && (ppc.msr & MSR_CE)) {
ppc403_exception(EXCEPTION_WATCHDOG_TIMER);
}
break;
case 3:
fatalerror("PPC: Watchdog Timer caused reset");
break;
}
}
#endif
ppc403_check_interrupts();
}
// update timebase
ppc.tb += (ppc_tb_base_icount - ppc_icount);
}
void ppc403_exception(int exception)
{
switch( exception )
{
case EXCEPTION_IRQ: /* External Interrupt */
{
if( ppc_get_msr() & MSR_EE ) {
UINT32 msr = ppc_get_msr();
SRR0 = ppc.npc;
SRR1 = msr;
msr &= ~(MSR_WE | MSR_PR | MSR_EE | MSR_PE); // Clear WE, PR, EE, PR
if( msr & MSR_LE )
msr |= MSR_ILE;
else
msr &= ~MSR_ILE;
ppc_set_msr(msr);
ppc.npc = EVPR | 0x0500;
ppc.interrupt_pending &= ~0x1;
}
break;
}
case EXCEPTION_TRAP: /* Program exception / Trap */
{
UINT32 msr = ppc_get_msr();
SRR0 = ppc.pc;
SRR1 = msr;
msr &= ~(MSR_WE | MSR_PR | MSR_EE | MSR_PE); // Clear WE, PR, EE, PR
if( msr & MSR_ILE )
msr |= MSR_LE;
else
msr &= ~MSR_LE;
ppc_set_msr(msr);
if( msr & MSR_IP )
ppc.npc = 0xfff00000 | 0x0700;
else
ppc.npc = EVPR | 0x0700;
break;
}
case EXCEPTION_SYSTEM_CALL: /* System call */
{
UINT32 msr = ppc_get_msr();
SRR0 = ppc.npc;
SRR1 = msr;
msr &= ~(MSR_WE | MSR_PR | MSR_EE | MSR_PE); // Clear WE, PR, EE, PR
if( msr & MSR_ILE )
msr |= MSR_LE;
else
msr &= ~MSR_LE;
ppc_set_msr(msr);
if( msr & MSR_IP )
ppc.npc = 0xfff00000 | 0x0c00;
else
ppc.npc = EVPR | 0x0c00;
break;
}
case EXCEPTION_PROGRAMMABLE_INTERVAL_TIMER:
{
if( ppc_get_msr() & MSR_EE ) {
UINT32 msr = ppc_get_msr();
SRR0 = ppc.npc;
SRR1 = msr;
msr &= ~(MSR_WE | MSR_PR | MSR_EE | MSR_PE); // Clear WE, PR, EE, PR
if( msr & MSR_LE )
msr |= MSR_ILE;
else
msr &= ~MSR_ILE;
ppc_set_msr(msr);
ppc.npc = EVPR | 0x1000;
ppc.tsr |= 0x08000000; // PIT interrupt
ppc.interrupt_pending &= ~0x2;
}
break;
}
case EXCEPTION_FIXED_INTERVAL_TIMER: /* Fixed Interval Timer */
{
if( ppc_get_msr() & MSR_EE ) {
UINT32 msr = ppc_get_msr();
SRR0 = ppc.npc;
SRR1 = msr;
msr &= ~(MSR_WE | MSR_PR | MSR_EE | MSR_PE); // Clear WE, PR, EE, PR
if( msr & MSR_LE )
msr |= MSR_ILE;
else
msr &= ~MSR_ILE;
ppc_set_msr(msr);
ppc.npc = EVPR | 0x1010;
ppc.interrupt_pending &= ~0x4;
}
break;
}
case EXCEPTION_WATCHDOG_TIMER: /* Watchdog Timer */
{
UINT32 msr = ppc_get_msr();
SRR2 = ppc.npc;
SRR3 = msr;
msr &= ~(MSR_WE | MSR_PR | MSR_CE | MSR_EE | MSR_DE | MSR_PE | MSR_DR | MSR_IR);
if (msr & MSR_LE)
msr |= MSR_ILE;
else
msr &= ~MSR_ILE;
ppc_set_msr(msr);
ppc.npc = EVPR | 0x1020;
break;
}
case EXCEPTION_CRITICAL_INTERRUPT:
{
UINT32 msr = ppc_get_msr();
SRR2 = ppc.npc;
SRR3 = msr;
msr &= ~(MSR_WE | MSR_PR | MSR_CE | MSR_EE | MSR_DE | MSR_PE | MSR_DR | MSR_IR);
if (msr & MSR_LE)
msr |= MSR_ILE;
else
msr &= ~MSR_ILE;
ppc_set_msr(msr);
EXISR |= 0x80000000;
ppc.npc = EVPR | 0x100;
break;
}
default:
fatalerror("ppc: Unhandled exception %d", exception);
break;
}
}
static void ppc403_set_irq_line(int irqline, int state)
{
if (irqline >= INPUT_LINE_IRQ0 && irqline <= INPUT_LINE_IRQ4)
{
UINT32 mask = (1 << (4 - irqline));
if( state == ASSERT_LINE) {
if( EXIER & mask ) {
ppc.exisr |= mask;
ppc.interrupt_pending |= 0x1;
if (ppc.irq_callback)
{
ppc.irq_callback(ppc.device, irqline);
}
}
}
// clear line is used to clear the interrupt when the interrupts are level-sensitive
else if (state == CLEAR_LINE)
{
ppc.exisr &= ~mask;
}
}
else if (irqline == PPC_IRQ_SPU_RX)
{
UINT32 mask = 0x08000000;
if (state) {
if( EXIER & mask ) {
ppc.exisr |= mask;
ppc.interrupt_pending |= 0x1;
}
}
}
else if (irqline == PPC_IRQ_SPU_TX)
{
UINT32 mask = 0x04000000;
if (state) {
if( EXIER & mask ) {
ppc.exisr |= mask;
ppc.interrupt_pending |= 0x1;
}
}
}
else if (irqline == PPC_IRQ_CRITICAL)
{
if (state) {
if (EXIER & 0x80000000) {
ppc403_exception(EXCEPTION_CRITICAL_INTERRUPT);
}
}
}
else
{
fatalerror("PPC: Unknown IRQ line %d", irqline);
}
}
static void ppc403_dma_set_irq_line(int dma, int state)
{
UINT32 mask = (1 << (3 - dma)) << 20;
if( state ) {
if( EXIER & mask ) {
ppc.exisr |= mask;
ppc.interrupt_pending |= 0x1;
}
}
}
#endif
#ifdef PPC_DRC
static void ppc403_dma_set_irq_line(int dma, int state)
{
UINT32 mask = (1 << (3 - dma)) << 20;
if( state ) {
if( EXIER & mask ) {
ppc.exisr |= mask;
ppc.exception_pending |= 0x1;
}
}
}
#endif
#ifndef PPC_DRC
static void ppc_dccci(UINT32 op)
{
}
static void ppc_dcread(UINT32 op)
{
}
static void ppc_icbt(UINT32 op)
{
}
static void ppc_iccci(UINT32 op)
{
}
static void ppc_icread(UINT32 op)
{
}
static void ppc_rfci(UINT32 op)
{
UINT32 msr;
ppc.npc = ppc.srr2;
msr = ppc.srr3;
ppc_set_msr( msr );
}
#endif
static void ppc_mfdcr(UINT32 op)
{
REG(RT) = ppc_get_dcr(SPR);
}
static void ppc_mtdcr(UINT32 op)
{
ppc_set_dcr(SPR, REG(RS));
}
static void ppc_wrtee(UINT32 op)
{
if( REG(RS) & 0x8000 )
ppc_set_msr( ppc_get_msr() | MSR_EE);
else
ppc_set_msr( ppc_get_msr() & ~MSR_EE);
}
static void ppc_wrteei(UINT32 op)
{
if( op & 0x8000 )
ppc_set_msr( ppc_get_msr() | MSR_EE);
else
ppc_set_msr( ppc_get_msr() & ~MSR_EE);
}
/**************************************************************************/
/* PPC403 Serial Port */
static UINT8 ppc403_spu_r(UINT32 a)
{
switch(a & 0xf)
{
case 0x0: return ppc.spu.spls | 0x6; /* transmit buffer is always empty */
case 0x2: return ppc.spu.sphs;
case 0x4: return (ppc.spu.brd >> 8) & 0xf;
case 0x5: return (ppc.spu.brd & 0xff);
case 0x6: return ppc.spu.spctl;
case 0x7: return ppc.spu.sprc;
case 0x8: return ppc.spu.sptc;
case 0x9: return ppc.spu.sprb;
default: fatalerror("ppc: spu_r: %02X", a & 0xf);
}
}
static void ppc403_spu_w(UINT32 a, UINT8 d)
{
switch(a & 0xf)
{
case 0x0:
if( d & 0x80 ) ppc.spu.spls &= ~0x80;
if( d & 0x40 ) ppc.spu.spls &= ~0x40;
if( d & 0x20 ) ppc.spu.spls &= ~0x20;
if( d & 0x10 ) ppc.spu.spls &= ~0x10;
if( d & 0x08 ) ppc.spu.spls &= ~0x08;
break;
case 0x2:
ppc.spu.sphs = d;
break;
case 0x4:
ppc.spu.brd &= 0xff;
ppc.spu.brd |= (d << 8);
break;
case 0x5:
ppc.spu.brd &= 0xff00;
ppc.spu.brd |= d;
if (ppc.iocr & 0x2) {
mame_printf_debug("ppc: SPU Baud rate: %d\n", (3686400 / (ppc.spu.brd + 1)) / 16);
} else {
mame_printf_debug("ppc: SPU Baud rate: %d\n", (33333333 / (ppc.spu.brd + 1)) / 16);
}
break;
case 0x6:
ppc.spu.spctl = d;
break;
case 0x7:
ppc.spu.sprc = d;
if (ppc.spu.sprc & 0x80) /* enable RX */
{
/*
int baud_rate;
if (ppc.iocr & 0x2) {
baud_rate = (3686400 / (ppc.spu.brd + 1)) / 16;
} else {
baud_rate = (33333333 / (ppc.spu.brd + 1)) / 16;
}
*/
/* check if serial port is hooked to a DMA channel */
/* if so, do a DMA operation */
if( ((((ppc.spu.sprc >> 5) & 0x3) == 2) && (ppc.dma[2].cr & DMA_CE)) ||
((((ppc.spu.sprc >> 5) & 0x3) == 3) && (ppc.dma[3].cr & DMA_CE)) )
{
int i;
int ch = (ppc.spu.sprc >> 5) & 0x3;
// mame_printf_debug("ppc: DMA from serial port on channel %d (DA: %08X)\n", ch, ppc.dma[ch].da);
if (spu_rx_dma_handler)
{
int length = ppc.dma[ch].ct;
spu_rx_dma_handler(length);
for (i=0; i < length; i++)
{
memory_write_byte_32be(ppc.program, ppc.dma[ch].da++, spu_rx_dma_ptr[i]);
}
}
ppc.dmasr |= (1 << (27 - ch));
/* generate interrupts */
if( ppc.dma[ch].cr & DMA_CIE )
{
ppc403_dma_set_irq_line( ch, PULSE_LINE );
}
/* set receive buffer full */
ppc.spu.spls = 0x80;
#ifndef PPC_DRC
ppc403_set_irq_line(PPC_IRQ_SPU_RX, ASSERT_LINE);
#else
ppcdrc403_set_irq_line(PPC_IRQ_SPU_RX, ASSERT_LINE);
#endif
}
}
else /* disable RX */
{
}
break;
case 0x8:
ppc.spu.sptc = d;
break;
case 0x9:
ppc.spu.sptb = d;
ppc403_spu_tx_callback(NULL/* Machine */, NULL, cpunum_get_active());
break;
default:
fatalerror("ppc: spu_w: %02X, %02X", a & 0xf, d);
break;
}
//mame_printf_debug("spu_w: %02X, %02X at %08X\n", a & 0xf, d, ppc.pc);
}
void ppc403_spu_rx(UINT8 data)
{
ppc.spu.sprb = data;
/* set receive buffer full */
ppc.spu.spls = 0x80;
/* generate interrupt if DMA is disabled and RBR interrupt is enabled */
if (((ppc.spu.sprc >> 5) & 0x3) == 0x01) {
#ifndef PPC_DRC
ppc403_set_irq_line(PPC_IRQ_SPU_RX, ASSERT_LINE);
#else
ppcdrc403_set_irq_line(PPC_IRQ_SPU_RX, ASSERT_LINE);
#endif
}
}
static TIMER_CALLBACK( ppc403_spu_rx_callback )
{
if (spu_rx_handler != NULL)
{
ppc403_spu_rx(spu_rx_handler());
}
}
static TIMER_CALLBACK( ppc403_spu_tx_callback )
{
if (spu_tx_handler != NULL)
{
spu_tx_handler(ppc.spu.sptb);
/* generate interrupt if DMA is disabled and TBR interrupt is enabled */
if (((ppc.spu.sptc >> 5) & 0x3) == 0x01) {
#ifndef PPC_DRC
ppc403_set_irq_line(PPC_IRQ_SPU_TX, ASSERT_LINE);
#else
ppcdrc403_set_irq_line(PPC_IRQ_SPU_TX, ASSERT_LINE);
#endif
}
}
}
void ppc403_install_spu_rx_handler(SPU_RX_HANDLER rx_handler)
{
spu_rx_handler = rx_handler;
}
void ppc403_install_spu_tx_handler(SPU_TX_HANDLER tx_handler)
{
spu_tx_handler = tx_handler;
}
void ppc403_spu_rx_dma(UINT8 *data, int length)
{
}
void ppc403_install_spu_rx_dma_handler(PPC_DMA_HANDLER rx_dma_handler, UINT8 *buffer)
{
spu_rx_dma_handler = rx_dma_handler;
spu_rx_dma_ptr = buffer;
}
void ppc403_install_spu_tx_dma_handler(PPC_DMA_HANDLER tx_dma_handler, UINT8 *buffer)
{
spu_tx_dma_handler = tx_dma_handler;
spu_tx_dma_ptr = buffer;
}
/*********************************************************************************/
/* PPC 403 DMA */
static const int dma_transfer_width[4] = { 1, 2, 4, 16 };
void ppc403_install_dma_read_handler(int ch, PPC_DMA_HANDLER dma_handler, UINT8 *buffer)
{
dma_read_handler[ch] = dma_handler;
dma_read_ptr[ch] = buffer;
}
void ppc403_install_dma_write_handler(int ch, PPC_DMA_HANDLER dma_handler, UINT8 *buffer)
{
dma_write_handler[ch] = dma_handler;
dma_write_ptr[ch] = buffer;
}
static void ppc403_dma_exec(int ch)
{
int i;
int dai, sai, width;
/* Is the DMA channel enabled ? */
if( ppc.dma[ch].cr & DMA_CE )
{
/* transfer width */
width = dma_transfer_width[(ppc.dma[ch].cr >> 26) & 0x3];
if( ppc.dma[ch].cr & DMA_DAI )
dai = width;
else
dai = 0; /* DA not incremented */
if( ppc.dma[ch].cr & DMA_SAI )
sai = width;
else
sai = 0; /* SA not incremented */
/* transfer mode */
switch( (ppc.dma[ch].cr >> 21) & 0x3 )
{
case 0: /* buffered DMA */
if( ppc.dma[ch].cr & DMA_TD ) /* peripheral to mem */
{
// nothing to do for now */
}
else /* mem to peripheral */
{
/* check if the serial port is hooked to channel 2 or 3 */
if( (ch == 2 && ((ppc.spu.sptc >> 5) & 0x3) == 2) ||
(ch == 3 && ((ppc.spu.sptc >> 5) & 0x3) == 3) )
{
mame_printf_debug("ppc: dma_exec: DMA to serial port on channel %d (DA: %08X)\n", ch, ppc.dma[ch].da);
if (spu_tx_dma_handler)
{
int length = ppc.dma[ch].ct;
for( i=0; i < length; i++ ) {
spu_tx_dma_ptr[i] = memory_read_byte_32be(ppc.program, ppc.dma[ch].da++);
}
spu_tx_dma_handler(length);
}
#ifndef PPC_DRC
ppc403_set_irq_line(PPC_IRQ_SPU_TX, ASSERT_LINE);
#else
ppcdrc403_set_irq_line(PPC_IRQ_SPU_TX, ASSERT_LINE);
#endif
}
else {
fatalerror("ppc: dma_exec: buffered DMA to unknown peripheral ! (channel %d)", ch);
}
}
break;
case 1: /* fly-by DMA */
fatalerror("ppc: dma_exec: fly-by DMA not implemented");
break;
case 2: /* software initiated mem-to-mem DMA */
//mame_printf_debug("ppc: DMA (%d, SW mem-to-mem): SA = %08X, DA = %08X, CT = %08X\n", ch, ppc.dma[ch].sa, ppc.dma[ch].da, ppc.dma[ch].ct);
switch(width)
{
case 1: /* Byte transfer */
for (i=0; i < ppc.dma[ch].ct; i++)
{
UINT8 b = READ8(ppc.dma[ch].sa);
WRITE8(ppc.dma[ch].da, b);
ppc.dma[ch].sa += sai;
ppc.dma[ch].da += dai;
}
break;
case 2: /* Word transfer */
for (i=0; i < ppc.dma[ch].ct; i++)
{
UINT16 w = READ16(ppc.dma[ch].sa);
WRITE16(ppc.dma[ch].da, w);
ppc.dma[ch].sa += sai;
ppc.dma[ch].da += dai;
}
break;
case 4: /* Double word transfer */
for (i=0; i < ppc.dma[ch].ct; i++)
{
UINT32 d = READ32(ppc.dma[ch].sa);
WRITE32(ppc.dma[ch].da, d);
ppc.dma[ch].sa += sai;
ppc.dma[ch].da += dai;
}
break;
case 16: /* 16-byte transfer */
for (i=0; i < ppc.dma[ch].ct; i++)
{
UINT32 d1 = READ32(ppc.dma[ch].sa+0);
UINT32 d2 = READ32(ppc.dma[ch].sa+4);
UINT32 d3 = READ32(ppc.dma[ch].sa+8);
UINT32 d4 = READ32(ppc.dma[ch].sa+12);
WRITE32(ppc.dma[ch].da+0, d1);
WRITE32(ppc.dma[ch].da+4, d2);
WRITE32(ppc.dma[ch].da+8, d3);
WRITE32(ppc.dma[ch].da+12, d4);
ppc.dma[ch].sa += 16;
ppc.dma[ch].da += 16;
}
break;
default:
fatalerror("dma: dma_exec: SW mem-to-mem DMA, width = %d", width);
}
break;
case 3: /* hardware initiated mem-to-mem DMA */
fatalerror("ppc: dma_exec: HW mem-to-mem DMA not implemented");
break;
}
ppc.dmasr |= (1 << (27 - ch));
/* DEBUG: check for not yet supported features */
if( (ppc.dma[ch].cr & DMA_TCE) == 0 )
fatalerror("ppc: dma_exec: DMA_TCE == 0");
if( ppc.dma[ch].cr & DMA_CH )
fatalerror("ppc: dma_exec: DMA chaining not implemented");
/* generate interrupts */
if( ppc.dma[ch].cr & DMA_CIE )
ppc403_dma_set_irq_line( ch, PULSE_LINE );
}
}
/*********************************************************************************/
static UINT8 ppc403_read8(const address_space *space, UINT32 a)
{
if(a >= 0x40000000 && a <= 0x4000000f) /* Serial Port */
return ppc403_spu_r(a);
return memory_read_byte_32be(space, a);
}
#define ppc403_read16 memory_read_word_32be
#define ppc403_read32 memory_read_dword_32be
static void ppc403_write8(const address_space *space, UINT32 a, UINT8 d)
{
if( a >= 0x40000000 && a <= 0x4000000f ) /* Serial Port */
{
ppc403_spu_w(a, d);
return;
}
memory_write_byte_32be(space, a, d);
}
#define ppc403_write16 memory_write_word_32be
#define ppc403_write32 memory_write_dword_32be
static UINT16 ppc403_read16_unaligned(const address_space *space, UINT32 a)
{
fatalerror("ppc: Unaligned read16 %08X at %08X", a, ppc.pc);
return 0;
}
static UINT32 ppc403_read32_unaligned(const address_space *space, UINT32 a)
{
fatalerror("ppc: Unaligned read32 %08X at %08X", a, ppc.pc);
return 0;
}
static void ppc403_write16_unaligned(const address_space *space, UINT32 a, UINT16 d)
{
fatalerror("ppc: Unaligned write16 %08X, %04X at %08X", a, d, ppc.pc);
}
static void ppc403_write32_unaligned(const address_space *space, UINT32 a, UINT32 d)
{
fatalerror("ppc: Unaligned write32 %08X, %08X at %08X", a, d, ppc.pc);
}