mame/src/emu/machine.c
Aaron Giles ed0207f126 Move devices into a proper hierarchy and handle naming
and paths consistently for devices, I/O ports, memory
regions, memory banks, and memory shares. [Aaron Giles]

NOTE: there are likely regressions lurking here, mostly
due to devices not being properly found. I have temporarily
added more logging to -verbose to help understand what's
going on. Please let me know ASAP if anything that is being
actively worked on got broken.

As before, the driver device is the root device and all 
other devices are owned by it. Previously all devices
were kept in a single master list, and the hierarchy was
purely logical. With this change, each device owns its
own list of subdevices, and the hierarchy is explicitly
manifest. This means when a device is removed, all of its
subdevices are automatically removed as well.

A side effect of this is that walking the device list is
no longer simple. To address this, a new set of iterator
classes is provided, which walks the device tree in a depth
first manner. There is a general device_iterator class for
walking all devices, plus templates for a device_type_iterator
and a device_interface_iterator which are used to build
iterators for identifying only devices of a given type or
with a given interface. Typedefs for commonly-used cases
(e.g., screen_device_iterator, memory_interface_iterator)
are provided. Iterators can also provide counts, and can
perform indexed lookups.

All device name lookups are now done relative to another 
device. The maching_config and running_machine classes now
have a root_device() method to get the root of the hierarchy. 
The  existing machine->device("name") is now equivalent to
machine->root_device().subdevice("name").

A proper and normalized device path structure is now
supported. Device names that start with a colon are
treated as absolute paths from the root device. Device
names can also use a caret (^) to refer to the owning
device. Querying the device's tag() returns the device's
full path from the root. A new method basetag() returns
just the final tag.

The new pathing system is built on top of the 
device_t::subtag() method, so anyone using that will 
automatically support the new pathing rules. Each device
has its own internal map to cache successful lookups so
that subsequent lookups should be very fast.

Updated every place I could find that referenced devices,
memory regions, I/O ports, memory banks and memory shares
to leverage subtag/subdevice (or siblingtag/siblingdevice
which are built on top).

Removed the device_list class, as it doesn't apply any
more. Moved some of its methods into running_machine
instead.

Simplified the device callback system since the new 
pathing can describe all of the special-case devices that
were previously handled manually.

Changed the core output function callbacks to be delegates.

Completely rewrote the validity checking mechanism. The
validity checker is now a proper C++ class, and temporarily
takes over the error and warning outputs. All errors and 
warnings are collected during a session, and then output in
a consistent manner, with an explicit driver and source file
listed for each one, as well as additional device and/or
I/O port contexts where appropriate. Validity checkers 
should no longer explicitly output this information, just
the error, assuming that the context is provided.

Rewrote the software_list_device as a modern device, getting
rid of the software_list_config abstraction and simplifying
things.

Changed the way FLAC compiles so that it works like other
external libraries, and also compiles successfully for MSVC
builds.
2012-01-24 20:18:55 +00:00

1329 lines
39 KiB
C

/***************************************************************************
machine.c
Controls execution of the core MAME system.
****************************************************************************
Copyright Aaron Giles
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name 'MAME' nor the names of its contributors may be
used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
****************************************************************************
Since there has been confusion in the past over the order of
initialization and other such things, here it is, all spelled out
as of January, 2008:
main()
- does platform-specific init
- calls mame_execute() [mame.c]
mame_execute() [mame.c]
- calls mame_validitychecks() [validity.c] to perform validity checks on all compiled drivers
- begins resource tracking (level 1)
- calls create_machine [mame.c] to initialize the running_machine structure
- calls init_machine() [mame.c]
init_machine() [mame.c]
- calls fileio_init() [fileio.c] to initialize file I/O info
- calls config_init() [config.c] to initialize configuration system
- calls input_init() [input.c] to initialize the input system
- calls output_init() [output.c] to initialize the output system
- calls state_init() [state.c] to initialize save state system
- calls state_save_allow_registration() [state.c] to allow registrations
- calls palette_init() [palette.c] to initialize palette system
- calls render_init() [render.c] to initialize the rendering system
- calls ui_init() [ui.c] to initialize the user interface
- calls generic_machine_init() [machine/generic.c] to initialize generic machine structures
- calls generic_video_init() [video/generic.c] to initialize generic video structures
- calls generic_sound_init() [audio/generic.c] to initialize generic sound structures
- calls timer_init() [timer.c] to reset the timer system
- calls osd_init() [osdepend.h] to do platform-specific initialization
- calls input_port_init() [inptport.c] to set up the input ports
- calls rom_init() [romload.c] to load the game's ROMs
- calls memory_init() [memory.c] to process the game's memory maps
- calls watchdog_init() [watchdog.c] to initialize the watchdog system
- calls the driver's DRIVER_INIT callback
- calls device_list_start() [devintrf.c] to start any devices
- calls video_init() [video.c] to start the video system
- calls tilemap_init() [tilemap.c] to start the tilemap system
- calls crosshair_init() [crsshair.c] to configure the crosshairs
- calls sound_init() [sound.c] to start the audio system
- calls debugger_init() [debugger.c] to set up the debugger
- calls the driver's MACHINE_START, SOUND_START, and VIDEO_START callbacks
- calls cheat_init() [cheat.c] to initialize the cheat system
- calls image_init() [image.c] to initialize the image system
- calls config_load_settings() [config.c] to load the configuration file
- calls nvram_load [machine/generic.c] to load NVRAM
- calls ui_display_startup_screens() [ui.c] to display the the startup screens
- begins resource tracking (level 2)
- calls soft_reset() [mame.c] to reset all systems
-------------------( at this point, we're up and running )----------------------
- calls scheduler->timeslice() [schedule.c] over and over until we exit
- ends resource tracking (level 2), freeing all auto_mallocs and timers
- calls the nvram_save() [machine/generic.c] to save NVRAM
- calls config_save_settings() [config.c] to save the game's configuration
- calls all registered exit routines [mame.c]
- ends resource tracking (level 1), freeing all auto_mallocs and timers
- exits the program
***************************************************************************/
#include "emu.h"
#include "emuopts.h"
#include "osdepend.h"
#include "config.h"
#include "debugger.h"
#include "image.h"
#include "profiler.h"
#include "render.h"
#include "cheat.h"
#include "ui.h"
#include "uimenu.h"
#include "uimain.h"
#include "uiinput.h"
#include "crsshair.h"
#include "validity.h"
#include "unzip.h"
#include "debug/debugcon.h"
#include <time.h>
//**************************************************************************
// GLOBAL VARIABLES
//**************************************************************************
// a giant string buffer for temporary strings
static char giant_string_buffer[65536] = { 0 };
//**************************************************************************
// RUNNING MACHINE
//**************************************************************************
//-------------------------------------------------
// running_machine - constructor
//-------------------------------------------------
running_machine::running_machine(const machine_config &_config, osd_interface &osd, bool exit_to_game_select)
: firstcpu(NULL),
primary_screen(NULL),
palette(NULL),
pens(NULL),
colortable(NULL),
shadow_table(NULL),
debug_flags(0),
memory_data(NULL),
palette_data(NULL),
romload_data(NULL),
input_port_data(NULL),
ui_input_data(NULL),
debugcpu_data(NULL),
generic_machine_data(NULL),
generic_video_data(NULL),
generic_audio_data(NULL),
m_config(_config),
m_system(_config.gamedrv()),
m_osd(osd),
m_regionlist(m_respool),
m_save(*this),
m_scheduler(*this),
m_cheat(NULL),
m_render(NULL),
m_input(NULL),
m_sound(NULL),
m_video(NULL),
m_tilemap(NULL),
m_debug_view(NULL),
m_current_phase(MACHINE_PHASE_PREINIT),
m_paused(false),
m_hard_reset_pending(false),
m_exit_pending(false),
m_exit_to_game_select(exit_to_game_select),
m_new_driver_pending(NULL),
m_soft_reset_timer(NULL),
m_rand_seed(0x9d14abd7),
m_ui_active(false),
m_basename(_config.gamedrv().name),
m_sample_rate(_config.options().sample_rate()),
m_logfile(NULL),
m_saveload_schedule(SLS_NONE),
m_saveload_schedule_time(attotime::zero),
m_saveload_searchpath(NULL),
m_logerror_list(m_respool)
{
memset(gfx, 0, sizeof(gfx));
memset(&generic, 0, sizeof(generic));
memset(&m_base_time, 0, sizeof(m_base_time));
// set the machine on all devices
device_iterator iter(root_device());
for (device_t *device = iter.first(); device != NULL; device = iter.next())
device->set_machine(*this);
// find devices
for (device_t *device = iter.first(); device != NULL; device = iter.next())
if (dynamic_cast<cpu_device *>(device) != NULL)
{
firstcpu = downcast<cpu_device *>(device);
break;
}
screen_device_iterator screeniter(root_device());
primary_screen = screeniter.first();
// fetch core options
if (options().debug())
debug_flags = (DEBUG_FLAG_ENABLED | DEBUG_FLAG_CALL_HOOK) | (options().debug_internal() ? 0 : DEBUG_FLAG_OSD_ENABLED);
}
//-------------------------------------------------
// ~running_machine - destructor
//-------------------------------------------------
running_machine::~running_machine()
{
}
//-------------------------------------------------
// describe_context - return a string describing
// which device is currently executing and its
// PC
//-------------------------------------------------
const char *running_machine::describe_context()
{
device_execute_interface *executing = m_scheduler.currently_executing();
if (executing != NULL)
{
cpu_device *cpu = downcast<cpu_device *>(&executing->device());
if (cpu != NULL)
m_context.printf("'%s' (%s)", cpu->tag(), core_i64_format(cpu->pc(), cpu->space(AS_PROGRAM)->logaddrchars(), cpu->is_octal()));
}
else
m_context.cpy("(no context)");
return m_context;
}
//-------------------------------------------------
// start - initialize the emulated machine
//-------------------------------------------------
void running_machine::start()
{
// initialize basic can't-fail systems here
config_init(*this);
m_input = auto_alloc(*this, input_manager(*this));
output_init(*this);
palette_init(*this);
m_render = auto_alloc(*this, render_manager(*this));
generic_machine_init(*this);
generic_sound_init(*this);
// allocate a soft_reset timer
m_soft_reset_timer = m_scheduler.timer_alloc(timer_expired_delegate(FUNC(running_machine::soft_reset), this));
// init the osd layer
m_osd.init(*this);
// create the video manager
m_video = auto_alloc(*this, video_manager(*this));
ui_init(*this);
// initialize the base time (needed for doing record/playback)
::time(&m_base_time);
// initialize the input system and input ports for the game
// this must be done before memory_init in order to allow specifying
// callbacks based on input port tags
time_t newbase = input_port_init(*this);
if (newbase != 0)
m_base_time = newbase;
// intialize UI input
ui_input_init(*this);
// initialize the streams engine before the sound devices start
m_sound = auto_alloc(*this, sound_manager(*this));
// first load ROMs, then populate memory, and finally initialize CPUs
// these operations must proceed in this order
rom_init(*this);
memory_init(*this);
watchdog_init(*this);
// must happen after memory_init because this relies on generic.spriteram
generic_video_init(*this);
// allocate the gfx elements prior to device initialization
gfx_init(*this);
// initialize natural keyboard support
inputx_init(*this);
// initialize image devices
image_init(*this);
m_tilemap = auto_alloc(*this, tilemap_manager(*this));
crosshair_init(*this);
network_init(*this);
// initialize the debugger
if ((debug_flags & DEBUG_FLAG_ENABLED) != 0)
debugger_init(*this);
// call the game driver's init function
// this is where decryption is done and memory maps are altered
// so this location in the init order is important
ui_set_startup_text(*this, "Initializing...", true);
// register callbacks for the devices, then start them
add_notifier(MACHINE_NOTIFY_RESET, machine_notify_delegate(FUNC(running_machine::reset_all_devices), this));
add_notifier(MACHINE_NOTIFY_EXIT, machine_notify_delegate(FUNC(running_machine::stop_all_devices), this));
save().register_presave(save_prepost_delegate(FUNC(running_machine::presave_all_devices), this));
save().register_postload(save_prepost_delegate(FUNC(running_machine::postload_all_devices), this));
start_all_devices();
// if we're coming in with a savegame request, process it now
const char *savegame = options().state();
if (savegame[0] != 0)
schedule_load(savegame);
// if we're in autosave mode, schedule a load
else if (options().autosave() && (m_system.flags & GAME_SUPPORTS_SAVE) != 0)
schedule_load("auto");
// set up the cheat engine
m_cheat = auto_alloc(*this, cheat_manager(*this));
// disallow save state registrations starting here
m_save.allow_registration(false);
}
//-------------------------------------------------
// add_dynamic_device - dynamically add a device
//-------------------------------------------------
device_t &running_machine::add_dynamic_device(device_t &owner, device_type type, const char *tag, UINT32 clock)
{
// add the device in a standard manner
device_t *device = const_cast<machine_config &>(m_config).device_add(&owner, tag, type, clock);
// notify this device and all its subdevices that they are now configured
device_iterator iter(root_device());
for (device_t *device = iter.first(); device != NULL; device = iter.next())
if (!device->configured())
device->config_complete();
return *device;
}
//-------------------------------------------------
// run - execute the machine
//-------------------------------------------------
int running_machine::run(bool firstrun)
{
int error = MAMERR_NONE;
// use try/catch for deep error recovery
try
{
// move to the init phase
m_current_phase = MACHINE_PHASE_INIT;
// if we have a logfile, set up the callback
if (options().log())
{
m_logfile = auto_alloc(*this, emu_file(OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS));
file_error filerr = m_logfile->open("error.log");
assert_always(filerr == FILERR_NONE, "unable to open log file");
add_logerror_callback(logfile_callback);
}
// then finish setting up our local machine
start();
// load the configuration settings and NVRAM
bool settingsloaded = config_load_settings(*this);
nvram_load(*this);
sound().ui_mute(false);
// display the startup screens
ui_display_startup_screens(*this, firstrun, !settingsloaded);
// perform a soft reset -- this takes us to the running phase
soft_reset();
// run the CPUs until a reset or exit
m_hard_reset_pending = false;
while ((!m_hard_reset_pending && !m_exit_pending) || m_saveload_schedule != SLS_NONE)
{
g_profiler.start(PROFILER_EXTRA);
// execute CPUs if not paused
if (!m_paused)
m_scheduler.timeslice();
// otherwise, just pump video updates through
else
m_video->frame_update();
// handle save/load
if (m_saveload_schedule != SLS_NONE)
handle_saveload();
g_profiler.stop();
}
// and out via the exit phase
m_current_phase = MACHINE_PHASE_EXIT;
// save the NVRAM and configuration
sound().ui_mute(true);
nvram_save(*this);
config_save_settings(*this);
}
catch (emu_fatalerror &fatal)
{
mame_printf_error("%s\n", fatal.string());
error = MAMERR_FATALERROR;
if (fatal.exitcode() != 0)
error = fatal.exitcode();
}
catch (emu_exception &)
{
mame_printf_error("Caught unhandled emulator exception\n");
error = MAMERR_FATALERROR;
}
catch (std::bad_alloc &)
{
mame_printf_error("Out of memory!\n");
error = MAMERR_FATALERROR;
}
// make sure our phase is set properly before cleaning up,
// in case we got here via exception
m_current_phase = MACHINE_PHASE_EXIT;
// call all exit callbacks registered
call_notifiers(MACHINE_NOTIFY_EXIT);
zip_file_cache_clear();
// close the logfile
auto_free(*this, m_logfile);
return error;
}
//-------------------------------------------------
// schedule_exit - schedule a clean exit
//-------------------------------------------------
void running_machine::schedule_exit()
{
// if we are in-game but we started with the select game menu, return to that instead
if (m_exit_to_game_select && options().system_name()[0] != 0)
{
options().set_system_name("");
ui_menu_force_game_select(*this, &render().ui_container());
}
// otherwise, exit for real
else
m_exit_pending = true;
// if we're executing, abort out immediately
m_scheduler.eat_all_cycles();
// if we're autosaving on exit, schedule a save as well
if (options().autosave() && (m_system.flags & GAME_SUPPORTS_SAVE) && this->time() > attotime::zero)
schedule_save("auto");
}
//-------------------------------------------------
// schedule_hard_reset - schedule a hard-reset of
// the machine
//-------------------------------------------------
void running_machine::schedule_hard_reset()
{
m_hard_reset_pending = true;
// if we're executing, abort out immediately
m_scheduler.eat_all_cycles();
}
//-------------------------------------------------
// schedule_soft_reset - schedule a soft-reset of
// the system
//-------------------------------------------------
void running_machine::schedule_soft_reset()
{
m_soft_reset_timer->adjust(attotime::zero);
// we can't be paused since the timer needs to fire
resume();
// if we're executing, abort out immediately
m_scheduler.eat_all_cycles();
}
//-------------------------------------------------
// schedule_new_driver - schedule a new game to
// be loaded
//-------------------------------------------------
void running_machine::schedule_new_driver(const game_driver &driver)
{
m_hard_reset_pending = true;
m_new_driver_pending = &driver;
// if we're executing, abort out immediately
m_scheduler.eat_all_cycles();
}
//-------------------------------------------------
// set_saveload_filename - specifies the filename
// for state loading/saving
//-------------------------------------------------
void running_machine::set_saveload_filename(const char *filename)
{
// free any existing request and allocate a copy of the requested name
if (osd_is_absolute_path(filename))
{
m_saveload_searchpath = NULL;
m_saveload_pending_file.cpy(filename);
}
else
{
m_saveload_searchpath = options().state_directory();
m_saveload_pending_file.cpy(basename()).cat(PATH_SEPARATOR).cat(filename).cat(".sta");
}
}
//-------------------------------------------------
// schedule_save - schedule a save to occur as
// soon as possible
//-------------------------------------------------
void running_machine::schedule_save(const char *filename)
{
// specify the filename to save or load
set_saveload_filename(filename);
// note the start time and set a timer for the next timeslice to actually schedule it
m_saveload_schedule = SLS_SAVE;
m_saveload_schedule_time = this->time();
// we can't be paused since we need to clear out anonymous timers
resume();
}
//-------------------------------------------------
// schedule_load - schedule a load to occur as
// soon as possible
//-------------------------------------------------
void running_machine::schedule_load(const char *filename)
{
// specify the filename to save or load
set_saveload_filename(filename);
// note the start time and set a timer for the next timeslice to actually schedule it
m_saveload_schedule = SLS_LOAD;
m_saveload_schedule_time = this->time();
// we can't be paused since we need to clear out anonymous timers
resume();
}
//-------------------------------------------------
// pause - pause the system
//-------------------------------------------------
void running_machine::pause()
{
// ignore if nothing has changed
if (m_paused)
return;
m_paused = true;
// call the callbacks
call_notifiers(MACHINE_NOTIFY_PAUSE);
}
//-------------------------------------------------
// resume - resume the system
//-------------------------------------------------
void running_machine::resume()
{
// ignore if nothing has changed
if (!m_paused)
return;
m_paused = false;
// call the callbacks
call_notifiers(MACHINE_NOTIFY_RESUME);
}
//-------------------------------------------------
// region_alloc - allocates memory for a region
//-------------------------------------------------
memory_region *running_machine::region_alloc(const char *name, UINT32 length, UINT8 width, endianness_t endian)
{
mame_printf_verbose("Region '%s' created\n", name);
// make sure we don't have a region of the same name; also find the end of the list
memory_region *info = m_regionlist.find(name);
if (info != NULL)
fatalerror("region_alloc called with duplicate region name \"%s\"\n", name);
// allocate the region
return &m_regionlist.append(name, *auto_alloc(*this, memory_region(*this, name, length, width, endian)));
}
//-------------------------------------------------
// region_free - releases memory for a region
//-------------------------------------------------
void running_machine::region_free(const char *name)
{
m_regionlist.remove(name);
}
//-------------------------------------------------
// add_notifier - add a notifier of the
// given type
//-------------------------------------------------
void running_machine::add_notifier(machine_notification event, machine_notify_delegate callback)
{
assert_always(m_current_phase == MACHINE_PHASE_INIT, "Can only call add_notifier at init time!");
// exit notifiers are added to the head, and executed in reverse order
if (event == MACHINE_NOTIFY_EXIT)
m_notifier_list[event].prepend(*global_alloc(notifier_callback_item(callback)));
// all other notifiers are added to the tail, and executed in the order registered
else
m_notifier_list[event].append(*global_alloc(notifier_callback_item(callback)));
}
//-------------------------------------------------
// add_logerror_callback - adds a callback to be
// called on logerror()
//-------------------------------------------------
void running_machine::add_logerror_callback(logerror_callback callback)
{
assert_always(m_current_phase == MACHINE_PHASE_INIT, "Can only call add_logerror_callback at init time!");
m_logerror_list.append(*auto_alloc(*this, logerror_callback_item(callback)));
}
//-------------------------------------------------
// logerror - printf-style error logging
//-------------------------------------------------
void CLIB_DECL running_machine::logerror(const char *format, ...)
{
// process only if there is a target
if (m_logerror_list.first() != NULL)
{
va_list arg;
va_start(arg, format);
vlogerror(format, arg);
va_end(arg);
}
}
//-------------------------------------------------
// vlogerror - vprintf-style error logging
//-------------------------------------------------
void CLIB_DECL running_machine::vlogerror(const char *format, va_list args)
{
// process only if there is a target
if (m_logerror_list.first() != NULL)
{
g_profiler.start(PROFILER_LOGERROR);
// dump to the buffer
vsnprintf(giant_string_buffer, ARRAY_LENGTH(giant_string_buffer), format, args);
// log to all callbacks
for (logerror_callback_item *cb = m_logerror_list.first(); cb != NULL; cb = cb->next())
(*cb->m_func)(*this, giant_string_buffer);
g_profiler.stop();
}
}
//-------------------------------------------------
// base_datetime - retrieve the time of the host
// system; useful for RTC implementations
//-------------------------------------------------
void running_machine::base_datetime(system_time &systime)
{
systime.set(m_base_time);
}
//-------------------------------------------------
// current_datetime - retrieve the current time
// (offset by the base); useful for RTC
// implementations
//-------------------------------------------------
void running_machine::current_datetime(system_time &systime)
{
systime.set(m_base_time + this->time().seconds);
}
//-------------------------------------------------
// rand - standardized random numbers
//-------------------------------------------------
UINT32 running_machine::rand()
{
m_rand_seed = 1664525 * m_rand_seed + 1013904223;
// return rotated by 16 bits; the low bits have a short period
// and are frequently used
return (m_rand_seed >> 16) | (m_rand_seed << 16);
}
//-------------------------------------------------
// call_notifiers - call notifiers of the given
// type
//-------------------------------------------------
void running_machine::call_notifiers(machine_notification which)
{
for (notifier_callback_item *cb = m_notifier_list[which].first(); cb != NULL; cb = cb->next())
cb->m_func();
}
//-------------------------------------------------
// handle_saveload - attempt to perform a save
// or load
//-------------------------------------------------
void running_machine::handle_saveload()
{
UINT32 openflags = (m_saveload_schedule == SLS_LOAD) ? OPEN_FLAG_READ : (OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
const char *opnamed = (m_saveload_schedule == SLS_LOAD) ? "loaded" : "saved";
const char *opname = (m_saveload_schedule == SLS_LOAD) ? "load" : "save";
file_error filerr = FILERR_NONE;
// if no name, bail
emu_file file(m_saveload_searchpath, openflags);
if (!m_saveload_pending_file)
goto cancel;
// if there are anonymous timers, we can't save just yet, and we can't load yet either
// because the timers might overwrite data we have loaded
if (!m_scheduler.can_save())
{
// if more than a second has passed, we're probably screwed
if ((this->time() - m_saveload_schedule_time) > attotime::from_seconds(1))
{
popmessage("Unable to %s due to pending anonymous timers. See error.log for details.", opname);
goto cancel;
}
return;
}
// open the file
filerr = file.open(m_saveload_pending_file);
if (filerr == FILERR_NONE)
{
// read/write the save state
save_error saverr = (m_saveload_schedule == SLS_LOAD) ? m_save.read_file(file) : m_save.write_file(file);
// handle the result
switch (saverr)
{
case STATERR_ILLEGAL_REGISTRATIONS:
popmessage("Error: Unable to %s state due to illegal registrations. See error.log for details.", opname);
break;
case STATERR_INVALID_HEADER:
popmessage("Error: Unable to %s state due to an invalid header. Make sure the save state is correct for this game.", opname);
break;
case STATERR_READ_ERROR:
popmessage("Error: Unable to %s state due to a read error (file is likely corrupt).", opname);
break;
case STATERR_WRITE_ERROR:
popmessage("Error: Unable to %s state due to a write error. Verify there is enough disk space.", opname);
break;
case STATERR_NONE:
if (!(m_system.flags & GAME_SUPPORTS_SAVE))
popmessage("State successfully %s.\nWarning: Save states are not officially supported for this game.", opnamed);
else
popmessage("State successfully %s.", opnamed);
break;
default:
popmessage("Error: Unknown error during state %s.", opnamed);
break;
}
// close and perhaps delete the file
if (saverr != STATERR_NONE && m_saveload_schedule == SLS_SAVE)
file.remove_on_close();
}
else
popmessage("Error: Failed to open file for %s operation.", opname);
// unschedule the operation
cancel:
m_saveload_pending_file.reset();
m_saveload_searchpath = NULL;
m_saveload_schedule = SLS_NONE;
}
//-------------------------------------------------
// soft_reset - actually perform a soft-reset
// of the system
//-------------------------------------------------
void running_machine::soft_reset(void *ptr, INT32 param)
{
logerror("Soft reset\n");
// temporarily in the reset phase
m_current_phase = MACHINE_PHASE_RESET;
// call all registered reset callbacks
call_notifiers(MACHINE_NOTIFY_RESET);
// now we're running
m_current_phase = MACHINE_PHASE_RUNNING;
}
//-------------------------------------------------
// logfile_callback - callback for logging to
// logfile
//-------------------------------------------------
void running_machine::logfile_callback(running_machine &machine, const char *buffer)
{
if (machine.m_logfile != NULL)
machine.m_logfile->puts(buffer);
}
//-------------------------------------------------
// start_all_devices - start any unstarted devices
//-------------------------------------------------
void running_machine::start_all_devices()
{
// iterate through the devices
int last_failed_starts = -1;
while (last_failed_starts != 0)
{
// iterate over all devices
int failed_starts = 0;
device_iterator iter(root_device());
for (device_t *device = iter.first(); device != NULL; device = iter.next())
if (!device->started())
{
// attempt to start the device, catching any expected exceptions
try
{
// if the device doesn't have a machine yet, set it first
if (device->m_machine == NULL)
device->set_machine(*this);
// now start the device
mame_printf_verbose("Starting %s '%s'\n", device->name(), device->tag());
device->start();
}
// handle missing dependencies by moving the device to the end
catch (device_missing_dependencies &)
{
// if we're the end, fail
mame_printf_verbose(" (missing dependencies; rescheduling)\n");
failed_starts++;
}
}
// each iteration should reduce the number of failed starts; error if
// this doesn't happen
if (failed_starts == last_failed_starts)
throw emu_fatalerror("Circular dependency in device startup!");
last_failed_starts = failed_starts;
}
}
//-------------------------------------------------
// reset_all_devices - reset all devices in the
// hierarchy
//-------------------------------------------------
void running_machine::reset_all_devices()
{
// iterate over devices and reset them
device_iterator iter(root_device());
for (device_t *device = iter.first(); device != NULL; device = iter.next())
device->reset();
}
//-------------------------------------------------
// stop_all_devices - stop all the devices in the
// hierarchy
//-------------------------------------------------
void running_machine::stop_all_devices()
{
// first let the debugger save comments
if ((debug_flags & DEBUG_FLAG_ENABLED) != 0)
debug_comment_save(*this);
// iterate over devices and stop them
device_iterator iter(root_device());
for (device_t *device = iter.first(); device != NULL; device = iter.next())
device->stop();
// then nuke the device tree
// global_free(m_root_device);
}
//-------------------------------------------------
// presave_all_devices - tell all the devices we
// are about to save
//-------------------------------------------------
void running_machine::presave_all_devices()
{
device_iterator iter(root_device());
for (device_t *device = iter.first(); device != NULL; device = iter.next())
device->pre_save();
}
//-------------------------------------------------
// postload_all_devices - tell all the devices we
// just completed a load
//-------------------------------------------------
void running_machine::postload_all_devices()
{
device_iterator iter(root_device());
for (device_t *device = iter.first(); device != NULL; device = iter.next())
device->post_load();
}
/***************************************************************************
MEMORY REGIONS
***************************************************************************/
//-------------------------------------------------
// memory_region - constructor
//-------------------------------------------------
memory_region::memory_region(running_machine &machine, const char *name, UINT32 length, UINT8 width, endianness_t endian)
: m_machine(machine),
m_next(NULL),
m_name(name),
m_length(length),
m_width(width),
m_endianness(endian)
{
assert(width == 1 || width == 2 || width == 4 || width == 8);
m_base.u8 = auto_alloc_array(machine, UINT8, length);
}
//-------------------------------------------------
// ~memory_region - destructor
//-------------------------------------------------
memory_region::~memory_region()
{
auto_free(machine(), m_base.v);
}
//**************************************************************************
// CALLBACK ITEMS
//**************************************************************************
//-------------------------------------------------
// notifier_callback_item - constructor
//-------------------------------------------------
running_machine::notifier_callback_item::notifier_callback_item(machine_notify_delegate func)
: m_next(NULL),
m_func(func)
{
}
//-------------------------------------------------
// logerror_callback_item - constructor
//-------------------------------------------------
running_machine::logerror_callback_item::logerror_callback_item(logerror_callback func)
: m_next(NULL),
m_func(func)
{
}
//**************************************************************************
// DRIVER DEVICE
//**************************************************************************
//-------------------------------------------------
// driver_device - constructor
//-------------------------------------------------
driver_device::driver_device(const machine_config &mconfig, device_type type, const char *tag)
: device_t(mconfig, type, "Driver Device", tag, NULL, 0),
m_system(NULL),
m_palette_init(NULL),
m_generic_paletteram(*this, "paletteram"),
m_generic_paletteram16(*this, "paletteram"),
m_generic_paletteram2(*this, "paletteram2")
{
memset(m_callbacks, 0, sizeof(m_callbacks));
}
//-------------------------------------------------
// driver_device - destructor
//-------------------------------------------------
driver_device::~driver_device()
{
}
//-------------------------------------------------
// static_set_game - set the game in the device
// configuration
//-------------------------------------------------
void driver_device::static_set_game(device_t &device, const game_driver &game)
{
driver_device &driver = downcast<driver_device &>(device);
// set the system
driver.m_system = &game;
// set the short name to the game's name
driver.m_shortname = game.name;
// and set the search path to include all parents
driver.m_searchpath = game.name;
for (int parent = driver_list::clone(game); parent != -1; parent = driver_list::clone(parent))
driver.m_searchpath.cat(";").cat(driver_list::driver(parent).name);
}
//-------------------------------------------------
// static_set_machine_start - set the legacy
// machine start callback in the device
// configuration
//-------------------------------------------------
void driver_device::static_set_callback(device_t &device, callback_type type, legacy_callback_func callback)
{
downcast<driver_device &>(device).m_callbacks[type] = callback;
}
//-------------------------------------------------
// static_set_palette_init - set the legacy
// palette init callback in the device
// configuration
//-------------------------------------------------
void driver_device::static_set_palette_init(device_t &device, palette_init_func callback)
{
downcast<driver_device &>(device).m_palette_init = callback;
}
//-------------------------------------------------
// driver_start - default implementation which
// does nothing
//-------------------------------------------------
void driver_device::driver_start()
{
}
//-------------------------------------------------
// machine_start - default implementation which
// calls to the legacy machine_start function
//-------------------------------------------------
void driver_device::machine_start()
{
if (m_callbacks[CB_MACHINE_START] != NULL)
(*m_callbacks[CB_MACHINE_START])(machine());
}
//-------------------------------------------------
// sound_start - default implementation which
// calls to the legacy sound_start function
//-------------------------------------------------
void driver_device::sound_start()
{
if (m_callbacks[CB_SOUND_START] != NULL)
(*m_callbacks[CB_SOUND_START])(machine());
}
//-------------------------------------------------
// video_start - default implementation which
// calls to the legacy video_start function
//-------------------------------------------------
void driver_device::video_start()
{
if (m_callbacks[CB_VIDEO_START] != NULL)
(*m_callbacks[CB_VIDEO_START])(machine());
}
//-------------------------------------------------
// driver_reset - default implementation which
// does nothing
//-------------------------------------------------
void driver_device::driver_reset()
{
}
//-------------------------------------------------
// machine_reset - default implementation which
// calls to the legacy machine_reset function
//-------------------------------------------------
void driver_device::machine_reset()
{
if (m_callbacks[CB_MACHINE_RESET] != NULL)
(*m_callbacks[CB_MACHINE_RESET])(machine());
}
//-------------------------------------------------
// sound_reset - default implementation which
// calls to the legacy sound_reset function
//-------------------------------------------------
void driver_device::sound_reset()
{
if (m_callbacks[CB_SOUND_RESET] != NULL)
(*m_callbacks[CB_SOUND_RESET])(machine());
}
//-------------------------------------------------
// video_reset - default implementation which
// calls to the legacy video_reset function
//-------------------------------------------------
void driver_device::video_reset()
{
if (m_callbacks[CB_VIDEO_RESET] != NULL)
(*m_callbacks[CB_VIDEO_RESET])(machine());
}
//-------------------------------------------------
// device_rom_region - return a pointer to the
// game's ROMs
//-------------------------------------------------
const rom_entry *driver_device::device_rom_region() const
{
return m_system->rom;
}
//-------------------------------------------------
// device_input_ports - return a pointer to the
// game's input ports
//-------------------------------------------------
ioport_constructor driver_device::device_input_ports() const
{
return m_system->ipt;
}
//-------------------------------------------------
// device_start - device override which calls
// the various helpers
//-------------------------------------------------
void driver_device::device_start()
{
// reschedule ourselves to be last
device_iterator iter(*this);
for (device_t *test = iter.first(); test != NULL; test = iter.next())
if (test != this && !test->started())
throw device_missing_dependencies();
// call the game-specific init
if (m_system->driver_init != NULL)
(*m_system->driver_init)(machine());
// finish image devices init process
image_postdevice_init(machine());
// call palette_init if present
if (m_palette_init != NULL)
(*m_palette_init)(machine(), machine().region("proms")->base());
// start the various pieces
driver_start();
machine_start();
sound_start();
video_start();
}
//-------------------------------------------------
// device_reset - device override which calls
// the various helpers
//-------------------------------------------------
void driver_device::device_reset()
{
// reset each piece
driver_reset();
machine_reset();
sound_reset();
video_reset();
}
//**************************************************************************
// SYSTEM TIME
//**************************************************************************
//-------------------------------------------------
// system_time - constructor
//-------------------------------------------------
system_time::system_time()
{
set(0);
}
//-------------------------------------------------
// set - fills out a system_time structure
//-------------------------------------------------
void system_time::set(time_t t)
{
time = t;
local_time.set(*localtime(&t));
utc_time.set(*gmtime(&t));
}
//-------------------------------------------------
// get_tm_time - converts a tm struction to a
// MAME mame_system_tm structure
//-------------------------------------------------
void system_time::full_time::set(struct tm &t)
{
second = t.tm_sec;
minute = t.tm_min;
hour = t.tm_hour;
mday = t.tm_mday;
month = t.tm_mon;
year = t.tm_year + 1900;
weekday = t.tm_wday;
day = t.tm_yday;
is_dst = t.tm_isdst;
}