mame/src/emu/emupal.cpp
Vas Crabb 8179a84458 Introduce u8/u16/u32/u64/s8/s16/s32/s64
* New abbreviated types are in osd and util namespaces, and also in global namespace for things that #include "emu.h"
* Get rid of import of cstdint types to global namespace (C99 does this anyway)
* Remove the cstdint types from everything in emu
* Get rid of U64/S64 macros
* Fix a bug in dps16 caused by incorrect use of macro
* Fix debugcon not checking for "do " prefix case-insensitively
* Fix a lot of messed up tabulation
* More constexpr
* Fix up many __names
2016-11-19 05:38:48 +11:00

967 lines
26 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
emupal.c
Palette device.
***************************************************************************/
#include "emu.h"
#define VERBOSE 0
//**************************************************************************
// DEVICE DEFINITIONS
//**************************************************************************
const device_type PALETTE = &device_creator<palette_device>;
palette_device::palette_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock)
: device_t(mconfig, PALETTE, "palette", tag, owner, clock, "palette", __FILE__),
m_entries(0),
m_indirect_entries(0),
m_enable_shadows(0),
m_enable_hilights(0),
m_membits(0),
m_membits_supplied(false),
m_endianness(),
m_endianness_supplied(false),
m_raw_to_rgb(raw_to_rgb_converter()),
m_palette(nullptr),
m_pens(nullptr),
m_format(),
m_shadow_table(nullptr),
m_shadow_group(0),
m_hilight_group(0),
m_white_pen(0),
m_black_pen(0),
m_init(palette_init_delegate())
{
}
//**************************************************************************
// INITIALIZATION AND CONFIGURATION
//**************************************************************************
void palette_device::static_set_init(device_t &device, palette_init_delegate init)
{
downcast<palette_device &>(device).m_init = init;
}
void palette_device::static_set_format(device_t &device, raw_to_rgb_converter raw_to_rgb)
{
downcast<palette_device &>(device).m_raw_to_rgb = raw_to_rgb;
}
void palette_device::static_set_membits(device_t &device, int membits)
{
palette_device &palette = downcast<palette_device &>(device);
palette.m_membits = membits;
palette.m_membits_supplied = true;
}
void palette_device::static_set_endianness(device_t &device, endianness_t endianness)
{
palette_device &palette = downcast<palette_device &>(device);
palette.m_endianness = endianness;
palette.m_endianness_supplied = true;
}
void palette_device::static_set_entries(device_t &device, int entries)
{
downcast<palette_device &>(device).m_entries = entries;
}
void palette_device::static_set_indirect_entries(device_t &device, int entries)
{
downcast<palette_device &>(device).m_indirect_entries = entries;
}
void palette_device::static_enable_shadows(device_t &device)
{
downcast<palette_device &>(device).m_enable_shadows = true;
}
void palette_device::static_enable_hilights(device_t &device)
{
downcast<palette_device &>(device).m_enable_hilights = true;
}
//**************************************************************************
// INDIRECTION (AKA COLORTABLES)
//**************************************************************************
//-------------------------------------------------
// set_indirect_color - set an indirect color
//-------------------------------------------------
void palette_device::set_indirect_color(int index, rgb_t rgb)
{
// make sure we are in range
assert(index < m_indirect_entries);
// alpha doesn't matter
rgb.set_a(255);
// update if it has changed
if (m_indirect_colors[index] != rgb)
{
m_indirect_colors[index] = rgb;
// update the palette for any colortable entries that reference it
for (u32 pen = 0; pen < m_indirect_pens.size(); pen++)
if (m_indirect_pens[pen] == index)
m_palette->entry_set_color(pen, rgb);
}
}
//-------------------------------------------------
// set_pen_indirect - set an indirect pen index
//-------------------------------------------------
void palette_device::set_pen_indirect(pen_t pen, indirect_pen_t index)
{
// make sure we are in range
assert(pen < m_entries && index < m_indirect_entries);
m_indirect_pens[pen] = index;
m_palette->entry_set_color(pen, m_indirect_colors[index]);
}
//-------------------------------------------------
// transpen_mask - return a mask of pens that
// whose indirect values match the given
// transcolor
//-------------------------------------------------
u32 palette_device::transpen_mask(gfx_element &gfx, u32 color, indirect_pen_t transcolor)
{
u32 entry = gfx.colorbase() + (color % gfx.colors()) * gfx.granularity();
// make sure we are in range
assert(entry < m_indirect_pens.size());
assert(gfx.depth() <= 32);
// either gfx->color_depth entries or as many as we can get up until the end
int count = std::min(size_t(gfx.depth()), m_indirect_pens.size() - entry);
// set a bit anywhere the transcolor matches
u32 mask = 0;
for (int bit = 0; bit < count; bit++)
if (m_indirect_pens[entry++] == transcolor)
mask |= 1 << bit;
// return the final mask
return mask;
}
//**************************************************************************
// SHADOW TABLE CONFIGURATION
//**************************************************************************
//-------------------------------------------------
// palette_set_shadow_mode(mode)
//
// mode: 0 = use preset 0 (default shadow)
// 1 = use preset 1 (default highlight)
// 2 = use preset 2 *
// 3 = use preset 3 *
//
// * Preset 2 & 3 work independently under 32bpp,
// supporting up to four different types of
// shadows at one time. They mirror preset 1 & 2
// in lower depth settings to maintain
// compatibility.
//
//
// set_shadow_dRGB32(mode, dr, dg, db, noclip)
//
// mode: 0 to 3 (which preset to configure)
//
// dr: -255 to 255 ( red displacement )
// dg: -255 to 255 ( green displacement )
// db: -255 to 255 ( blue displacement )
//
// noclip: 0 = resultant RGB clipped at 0x00/0xff
// 1 = resultant RGB wraparound 0x00/0xff
//
//
// * Color shadows only work under 32bpp.
// This function has no effect in lower color
// depths where
//
// set_shadow_factor() or
// set_highlight_factor()
//
// should be used instead.
//
// * 32-bit shadows are lossy. Even with zero RGB
// displacements the affected area will still look
// slightly darkened.
//
// Drivers should ensure all shadow pens in
// gfx_drawmode_table[] are set to DRAWMODE_NONE
// when RGB displacements are zero to avoid the
// darkening effect.
//-------------------------------------------------
//-------------------------------------------------
// set_shadow_dRGB32 - configure delta RGB values
// for 1 of 4 shadow tables
//-------------------------------------------------
void palette_device::set_shadow_dRGB32(int mode, int dr, int dg, int db, bool noclip)
{
shadow_table_data &stable = m_shadow_tables[mode];
// only applies to RGB direct modes
assert(m_format != BITMAP_FORMAT_IND16);
assert(stable.base != nullptr);
// clamp the deltas (why?)
if (dr < -0xff) dr = -0xff; else if (dr > 0xff) dr = 0xff;
if (dg < -0xff) dg = -0xff; else if (dg > 0xff) dg = 0xff;
if (db < -0xff) db = -0xff; else if (db > 0xff) db = 0xff;
// early exit if nothing changed
if (dr == stable.dr && dg == stable.dg && db == stable.db && noclip == stable.noclip)
return;
stable.dr = dr;
stable.dg = dg;
stable.db = db;
stable.noclip = noclip;
if (VERBOSE)
popmessage("shadow %d recalc %d %d %d %02x", mode, dr, dg, db, noclip);
// regenerate the table
for (int i = 0; i < 32768; i++)
{
int r = pal5bit(i >> 10) + dr;
int g = pal5bit(i >> 5) + dg;
int b = pal5bit(i >> 0) + db;
// apply clipping
if (!noclip)
{
r = rgb_t::clamp(r);
g = rgb_t::clamp(g);
b = rgb_t::clamp(b);
}
rgb_t final = rgb_t(r, g, b);
// store either 16 or 32 bit
if (m_format == BITMAP_FORMAT_RGB32)
stable.base[i] = final;
else
stable.base[i] = final.as_rgb15();
}
}
//**************************************************************************
// GENERIC WRITE HANDLERS
//**************************************************************************
//-------------------------------------------------
// update_for_write - given a write of a given
// length to a given byte offset, update all
// potentially modified palette entries
//-------------------------------------------------
inline void palette_device::update_for_write(offs_t byte_offset, int bytes_modified, bool indirect)
{
assert((m_indirect_entries != 0) == indirect);
// determine how many entries were modified
int bpe = m_paletteram.bytes_per_entry();
assert(bpe != 0);
int count = (bytes_modified + bpe - 1) / bpe;
// for each entry modified, fetch the palette data and set the pen color or indirect color
offs_t base = byte_offset / bpe;
for (int index = 0; index < count; index++)
{
if (indirect)
set_indirect_color(base + index, m_raw_to_rgb(read_entry(base + index)));
else
m_palette->entry_set_color(base + index, m_raw_to_rgb(read_entry(base + index)));
}
}
//-------------------------------------------------
// write - write a byte to the base paletteram
//-------------------------------------------------
WRITE8_MEMBER(palette_device::write)
{
m_paletteram.write8(offset, data);
update_for_write(offset, 1);
}
WRITE16_MEMBER(palette_device::write)
{
m_paletteram.write16(offset, data, mem_mask);
update_for_write(offset * 2, 2);
}
WRITE32_MEMBER(palette_device::write)
{
m_paletteram.write32(offset, data, mem_mask);
update_for_write(offset * 4, 4);
}
READ8_MEMBER(palette_device::read)
{
return m_paletteram.read8(offset);
}
READ16_MEMBER(palette_device::read)
{
return m_paletteram.read16(offset);
}
READ32_MEMBER(palette_device::read)
{
return m_paletteram.read32(offset);
}
//-------------------------------------------------
// write_ext - write a byte to the extended
// paletteram
//-------------------------------------------------
WRITE8_MEMBER(palette_device::write_ext)
{
m_paletteram_ext.write8(offset, data);
update_for_write(offset, 1);
}
WRITE16_MEMBER(palette_device::write_ext)
{
m_paletteram_ext.write16(offset, data, mem_mask);
update_for_write(offset * 2, 2);
}
//-------------------------------------------------
// write_indirect - write a byte to the base
// paletteram, updating indirect colors
//-------------------------------------------------
WRITE8_MEMBER(palette_device::write_indirect)
{
m_paletteram.write8(offset, data);
update_for_write(offset, 1, true);
}
//-------------------------------------------------
// write_ext - write a byte to the extended
// paletteram, updating indirect colors
//-------------------------------------------------
WRITE8_MEMBER(palette_device::write_indirect_ext)
{
m_paletteram_ext.write8(offset, data);
update_for_write(offset, 1, true);
}
//**************************************************************************
// DEVICE MANAGEMENT
//**************************************************************************
//-------------------------------------------------
// device_start - start up the device
//-------------------------------------------------
void palette_device::device_start()
{
// bind the init function
m_init.bind_relative_to(*owner());
// find the memory, if present
const memory_share *share = memshare(tag());
if (share != nullptr)
{
// find the extended (split) memory, if present
std::string tag_ext = std::string(tag()).append("_ext");
const memory_share *share_ext = memshare(tag_ext.c_str());
// make sure we have specified a format
assert_always(m_raw_to_rgb.bytes_per_entry() > 0, "Palette has memory share but no format specified");
// determine bytes per entry and configure
int bytes_per_entry = m_raw_to_rgb.bytes_per_entry();
if (share_ext == nullptr)
m_paletteram.set(*share, bytes_per_entry);
else
{
m_paletteram.set(*share, bytes_per_entry / 2);
m_paletteram_ext.set(*share_ext, bytes_per_entry / 2);
}
// override membits if provided
if (m_membits_supplied)
{
// forcing width only makes sense when narrower than the native bus width
assert_always(m_membits < share->bitwidth(), "Improper use of MCFG_PALETTE_MEMBITS");
m_paletteram.set_membits(m_membits);
if (share_ext != nullptr)
m_paletteram_ext.set_membits(m_membits);
}
// override endianness if provided
if (m_endianness_supplied)
{
// forcing endianness only makes sense when the RAM is narrower than the palette format and not split
assert_always((share_ext == nullptr && m_paletteram.membits() / 8 < bytes_per_entry), "Improper use of MCFG_PALETTE_ENDIANNESS");
m_paletteram.set_endianness(m_endianness);
}
}
// reset all our data
screen_device *device = machine().first_screen();
m_format = (device != nullptr) ? device->format() : BITMAP_FORMAT_INVALID;
// allocate the palette
if (m_entries > 0)
{
allocate_palette();
allocate_color_tables();
allocate_shadow_tables();
// allocate indirection tables
if (m_indirect_entries > 0)
{
m_indirect_colors.resize(m_indirect_entries);
for (int color = 0; color < m_indirect_entries; color++)
{
// alpha = 0 ensures change is detected the first time set_indirect_color() is called
m_indirect_colors[color] = rgb_t::transparent();
}
m_indirect_pens.resize(m_entries);
for (int pen = 0; pen < m_entries; pen++)
m_indirect_pens[pen] = pen % m_indirect_entries;
}
}
// call the initialization helper if present
if (!m_init.isnull())
m_init(*this);
// set up save/restore of the palette
m_save_pen.resize(m_palette->num_colors());
m_save_contrast.resize(m_palette->num_colors());
save_item(NAME(m_save_pen));
save_item(NAME(m_save_contrast));
// save indirection tables if we have them
if (m_indirect_entries > 0)
{
save_item(NAME(m_indirect_colors));
save_item(NAME(m_indirect_pens));
}
}
//**************************************************************************
// INTERNAL FUNCTIONS
//**************************************************************************
//-------------------------------------------------
// device_pre_save - prepare the save arrays
// for saving
//-------------------------------------------------
void palette_device::device_pre_save()
{
// fill the save arrays with updated pen and brightness information
int numcolors = m_palette->num_colors();
for (int index = 0; index < numcolors; index++)
{
m_save_pen[index] = pen_color(index);
m_save_contrast[index] = pen_contrast(index);
}
}
//-------------------------------------------------
// device_post_load - called after restore to
// actually update the palette
//-------------------------------------------------
void palette_device::device_post_load()
{
// reset the pen and brightness for each entry
int numcolors = m_palette->num_colors();
for (int index = 0; index < numcolors; index++)
{
set_pen_color(index, m_save_pen[index]);
set_pen_contrast(index, m_save_contrast[index]);
}
}
//-------------------------------------------------
// device_stop - final cleanup
//-------------------------------------------------
void palette_device::device_stop()
{
// dereference the palette
if (m_palette != nullptr)
m_palette->deref();
}
//-------------------------------------------------
// device_validity_check - validate device
// configuration
//-------------------------------------------------
void palette_device::device_validity_check(validity_checker &valid) const
{
}
//-------------------------------------------------
// allocate_palette - allocate and configure the
// palette object itself
//-------------------------------------------------
void palette_device::allocate_palette()
{
// determine the number of groups we need
int numgroups = 1;
if (m_enable_shadows)
m_shadow_group = numgroups++;
if (m_enable_hilights)
m_hilight_group = numgroups++;
assert_always(m_entries * numgroups <= 65536, "Palette has more than 65536 colors.");
// allocate a palette object containing all the colors and groups
m_palette = palette_t::alloc(m_entries, numgroups);
// configure the groups
if (m_shadow_group != 0)
set_shadow_factor(float(PALETTE_DEFAULT_SHADOW_FACTOR));
if (m_hilight_group != 0)
set_highlight_factor(float(PALETTE_DEFAULT_HIGHLIGHT_FACTOR));
// set the initial colors to a standard rainbow
for (int index = 0; index < m_entries; index++)
set_pen_color(index, rgbexpand<1,1,1>(index, 0, 1, 2));
// switch off the color mode
switch (m_format)
{
// 16-bit paletteized case
case BITMAP_FORMAT_IND16:
m_black_pen = m_palette->black_entry();
m_white_pen = m_palette->white_entry();
if (m_black_pen >= 65536)
m_black_pen = 0;
if (m_white_pen >= 65536)
m_white_pen = 65535;
break;
// 32-bit direct case
case BITMAP_FORMAT_RGB32:
m_black_pen = rgb_t::black();
m_white_pen = rgb_t::white();
break;
// screenless case
case BITMAP_FORMAT_INVALID:
default:
break;
}
}
//-------------------------------------------------
// allocate_color_tables - allocate memory for
// pen and color tables
//-------------------------------------------------
void palette_device::allocate_color_tables()
{
int total_colors = m_palette->num_colors() * m_palette->num_groups();
// allocate memory for the pen table
switch (m_format)
{
case BITMAP_FORMAT_IND16:
// create a dummy 1:1 mapping
{
m_pen_array.resize(total_colors + 2);
pen_t *pentable = &m_pen_array[0];
m_pens = &m_pen_array[0];
for (int i = 0; i < total_colors + 2; i++)
pentable[i] = i;
}
break;
case BITMAP_FORMAT_RGB32:
m_pens = reinterpret_cast<const pen_t *>(m_palette->entry_list_adjusted());
break;
default:
m_pens = nullptr;
break;
}
}
//-------------------------------------------------
// allocate_shadow_tables - allocate memory for
// shadow tables
//-------------------------------------------------
void palette_device::allocate_shadow_tables()
{
// if we have shadows, allocate shadow tables
if (m_enable_shadows)
{
m_shadow_array.resize(65536);
// palettized mode gets a single 64k table in slots 0 and 2
if (m_format == BITMAP_FORMAT_IND16)
{
m_shadow_tables[0].base = m_shadow_tables[2].base = &m_shadow_array[0];
for (int i = 0; i < 65536; i++)
m_shadow_array[i] = (i < m_entries) ? (i + m_entries) : i;
}
// RGB mode gets two 32k tables in slots 0 and 2
else
{
m_shadow_tables[0].base = &m_shadow_array[0];
m_shadow_tables[2].base = &m_shadow_array[32768];
configure_rgb_shadows(0, float(PALETTE_DEFAULT_SHADOW_FACTOR));
}
}
// if we have hilights, allocate shadow tables
if (m_enable_hilights)
{
m_hilight_array.resize(65536);
// palettized mode gets a single 64k table in slots 1 and 3
if (m_format == BITMAP_FORMAT_IND16)
{
m_shadow_tables[1].base = m_shadow_tables[3].base = &m_hilight_array[0];
for (int i = 0; i < 65536; i++)
m_hilight_array[i] = (i < m_entries) ? (i + 2 * m_entries) : i;
}
// RGB mode gets two 32k tables in slots 1 and 3
else
{
m_shadow_tables[1].base = &m_hilight_array[0];
m_shadow_tables[3].base = &m_hilight_array[32768];
configure_rgb_shadows(1, float(PALETTE_DEFAULT_HIGHLIGHT_FACTOR));
}
}
// set the default table
m_shadow_table = m_shadow_tables[0].base;
}
//-------------------------------------------------
// configure_rgb_shadows - configure shadows
// for the RGB tables
//-------------------------------------------------
void palette_device::configure_rgb_shadows(int mode, float factor)
{
// only applies to RGB direct modes
assert(m_format != BITMAP_FORMAT_IND16);
// verify the shadow table
assert(mode >= 0 && mode < ARRAY_LENGTH(m_shadow_tables));
shadow_table_data &stable = m_shadow_tables[mode];
assert(stable.base != nullptr);
// regenerate the table
int ifactor = int(factor * 256.0f);
for (int rgb555 = 0; rgb555 < 32768; rgb555++)
{
u8 const r = rgb_t::clamp((pal5bit(rgb555 >> 10) * ifactor) >> 8);
u8 const g = rgb_t::clamp((pal5bit(rgb555 >> 5) * ifactor) >> 8);
u8 const b = rgb_t::clamp((pal5bit(rgb555 >> 0) * ifactor) >> 8);
// store either 16 or 32 bit
rgb_t final = rgb_t(r, g, b);
if (m_format == BITMAP_FORMAT_RGB32)
stable.base[rgb555] = final;
else
stable.base[rgb555] = final.as_rgb15();
}
}
//**************************************************************************
// COMMON PALETTE INITIALIZATION
//**************************************************************************
/*-------------------------------------------------
black - completely black palette
-------------------------------------------------*/
void palette_device::palette_init_all_black(palette_device &palette)
{
for (int i = 0; i < palette.entries(); i++)
{
palette.set_pen_color(i, rgb_t::black());
}
}
/*-------------------------------------------------
monochrome - 2-color black & white
-------------------------------------------------*/
void palette_device::palette_init_monochrome(palette_device &palette)
{
palette.set_pen_color(0, rgb_t::black());
palette.set_pen_color(1, rgb_t::white());
}
/*-------------------------------------------------
monochrome_inverted - 2-color white & black
-------------------------------------------------*/
void palette_device::palette_init_monochrome_inverted(palette_device &palette)
{
palette.set_pen_color(0, rgb_t::white());
palette.set_pen_color(1, rgb_t::black());
}
/*-------------------------------------------------
monochrome_highlight - 3-color
-------------------------------------------------*/
void palette_device::palette_init_monochrome_highlight(palette_device &palette)
{
palette.set_pen_color(0, rgb_t::black());
palette.set_pen_color(1, rgb_t(0xc0, 0xc0, 0xc0));
palette.set_pen_color(2, rgb_t::white());
}
/*-------------------------------------------------
3bit_rgb - 8-color rgb
-------------------------------------------------*/
void palette_device::palette_init_3bit_rgb(palette_device &palette)
{
for (int i = 0; i < 8; i++)
palette.set_pen_color(i, rgb_t(pal1bit(i >> 0), pal1bit(i >> 1), pal1bit(i >> 2)));
}
/*-------------------------------------------------
3bit_rbg - 8-color rgb
-------------------------------------------------*/
void palette_device::palette_init_3bit_rbg(palette_device &palette)
{
for (int i = 0; i < 8; i++)
palette.set_pen_color(i, rgb_t(pal1bit(i >> 0), pal1bit(i >> 2), pal1bit(i >> 1)));
}
/*-------------------------------------------------
3bit_brg - 8-color rgb
-------------------------------------------------*/
void palette_device::palette_init_3bit_brg(palette_device &palette)
{
for (int i = 0; i < 8; i++)
palette.set_pen_color(i, rgb_t(pal1bit(i >> 1), pal1bit(i >> 2), pal1bit(i >> 0)));
}
/*-------------------------------------------------
3bit_grb - 8-color rgb
-------------------------------------------------*/
void palette_device::palette_init_3bit_grb(palette_device &palette)
{
for (int i = 0; i < 8; i++)
palette.set_pen_color(i, rgb_t(pal1bit(i >> 1), pal1bit(i >> 0), pal1bit(i >> 2)));
}
/*-------------------------------------------------
3bit_gbr - 8-color rgb
-------------------------------------------------*/
void palette_device::palette_init_3bit_gbr(palette_device &palette)
{
for (int i = 0; i < 8; i++)
palette.set_pen_color(i, rgb_t(pal1bit(i >> 2), pal1bit(i >> 0), pal1bit(i >> 1)));
}
/*-------------------------------------------------
3bit_bgr - 8-color rgb
-------------------------------------------------*/
void palette_device::palette_init_3bit_bgr(palette_device &palette)
{
for (int i = 0; i < 8; i++)
palette.set_pen_color(i, rgb_t(pal1bit(i >> 2), pal1bit(i >> 1), pal1bit(i >> 0)));
}
/*-------------------------------------------------
RRRR_GGGG_BBBB - standard 4-4-4 palette,
assuming the commonly used resistor values:
bit 3 -- 220 ohm resistor -- RED/GREEN/BLUE
-- 470 ohm resistor -- RED/GREEN/BLUE
-- 1 kohm resistor -- RED/GREEN/BLUE
bit 0 -- 2.2kohm resistor -- RED/GREEN/BLUE
-------------------------------------------------*/
void palette_device::palette_init_RRRRGGGGBBBB_proms(palette_device &palette)
{
const u8 *color_prom = machine().root_device().memregion("proms")->base();
int i;
for (i = 0; i < palette.entries(); i++)
{
int bit0,bit1,bit2,bit3,r,g,b;
// red component
bit0 = (color_prom[i] >> 0) & 0x01;
bit1 = (color_prom[i] >> 1) & 0x01;
bit2 = (color_prom[i] >> 2) & 0x01;
bit3 = (color_prom[i] >> 3) & 0x01;
r = 0x0e * bit0 + 0x1f * bit1 + 0x43 * bit2 + 0x8f * bit3;
// green component
bit0 = (color_prom[i + palette.entries()] >> 0) & 0x01;
bit1 = (color_prom[i + palette.entries()] >> 1) & 0x01;
bit2 = (color_prom[i + palette.entries()] >> 2) & 0x01;
bit3 = (color_prom[i + palette.entries()] >> 3) & 0x01;
g = 0x0e * bit0 + 0x1f * bit1 + 0x43 * bit2 + 0x8f * bit3;
// blue component
bit0 = (color_prom[i + 2*palette.entries()] >> 0) & 0x01;
bit1 = (color_prom[i + 2*palette.entries()] >> 1) & 0x01;
bit2 = (color_prom[i + 2*palette.entries()] >> 2) & 0x01;
bit3 = (color_prom[i + 2*palette.entries()] >> 3) & 0x01;
b = 0x0e * bit0 + 0x1f * bit1 + 0x43 * bit2 + 0x8f * bit3;
palette.set_pen_color(i,rgb_t(r,g,b));
}
}
/*-------------------------------------------------
RRRRR_GGGGG_BBBBB/BBBBB_GGGGG_RRRRR -
standard 5-5-5 palette for games using a
15-bit color space
-------------------------------------------------*/
void palette_device::palette_init_RRRRRGGGGGBBBBB(palette_device &palette)
{
int i;
for (i = 0; i < 0x8000; i++)
palette.set_pen_color(i, rgbexpand<5,5,5>(i, 10, 5, 0));
}
void palette_device::palette_init_BBBBBGGGGGRRRRR(palette_device &palette)
{
int i;
for (i = 0; i < 0x8000; i++)
palette.set_pen_color(i, rgbexpand<5,5,5>(i, 0, 5, 10));
}
/*-------------------------------------------------
RRRRR_GGGGGG_BBBBB -
standard 5-6-5 palette for games using a
16-bit color space
-------------------------------------------------*/
void palette_device::palette_init_RRRRRGGGGGGBBBBB(palette_device &palette)
{
int i;
for (i = 0; i < 0x10000; i++)
palette.set_pen_color(i, rgbexpand<5,6,5>(i, 11, 5, 0));
}
rgb_t raw_to_rgb_converter::IRRRRRGGGGGBBBBB_decoder(u32 raw)
{
u8 const i = (raw >> 15) & 1;
u8 const r = pal6bit(((raw >> 9) & 0x3e) | i);
u8 const g = pal6bit(((raw >> 4) & 0x3e) | i);
u8 const b = pal6bit(((raw << 1) & 0x3e) | i);
return rgb_t(r, g, b);
}
rgb_t raw_to_rgb_converter::RRRRGGGGBBBBRGBx_decoder(u32 raw)
{
u8 const r = pal5bit(((raw >> 11) & 0x1e) | ((raw >> 3) & 0x01));
u8 const g = pal5bit(((raw >> 7) & 0x1e) | ((raw >> 2) & 0x01));
u8 const b = pal5bit(((raw >> 3) & 0x1e) | ((raw >> 1) & 0x01));
return rgb_t(r, g, b);
}
rgb_t raw_to_rgb_converter::xRGBRRRRGGGGBBBB_bit0_decoder(u32 raw)
{
u8 const r = pal5bit(((raw >> 7) & 0x1e) | ((raw >> 14) & 0x01));
u8 const g = pal5bit(((raw >> 3) & 0x1e) | ((raw >> 13) & 0x01));
u8 const b = pal5bit(((raw << 1) & 0x1e) | ((raw >> 12) & 0x01));
return rgb_t(r, g, b);
}
rgb_t raw_to_rgb_converter::xRGBRRRRGGGGBBBB_bit4_decoder(u32 raw)
{
u8 const r = pal5bit(((raw >> 8) & 0x0f) | ((raw >> 10) & 0x10));
u8 const g = pal5bit(((raw >> 4) & 0x0f) | ((raw >> 9) & 0x10));
u8 const b = pal5bit(((raw >> 0) & 0x0f) | ((raw >> 8) & 0x10));
return rgb_t(r, g, b);
}