mame/src/emu/video.cpp
Vas Crabb 8179a84458 Introduce u8/u16/u32/u64/s8/s16/s32/s64
* New abbreviated types are in osd and util namespaces, and also in global namespace for things that #include "emu.h"
* Get rid of import of cstdint types to global namespace (C99 does this anyway)
* Remove the cstdint types from everything in emu
* Get rid of U64/S64 macros
* Fix a bug in dps16 caused by incorrect use of macro
* Fix debugcon not checking for "do " prefix case-insensitively
* Fix a lot of messed up tabulation
* More constexpr
* Fix up many __names
2016-11-19 05:38:48 +11:00

1371 lines
43 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
video.cpp
Core MAME video routines.
***************************************************************************/
#include "emu.h"
#include "emuopts.h"
#include "png.h"
#include "debugger.h"
#include "ui/uimain.h"
#include "aviio.h"
#include "crsshair.h"
#include "rendersw.hxx"
#include "output.h"
#include "snap.lh"
#include "osdepend.h"
//**************************************************************************
// DEBUGGING
//**************************************************************************
#define LOG_THROTTLE (0)
//**************************************************************************
// GLOBAL VARIABLES
//**************************************************************************
// frameskipping tables
const bool video_manager::s_skiptable[FRAMESKIP_LEVELS][FRAMESKIP_LEVELS] =
{
{ false, false, false, false, false, false, false, false, false, false, false, false },
{ false, false, false, false, false, false, false, false, false, false, false, true },
{ false, false, false, false, false, true , false, false, false, false, false, true },
{ false, false, false, true , false, false, false, true , false, false, false, true },
{ false, false, true , false, false, true , false, false, true , false, false, true },
{ false, true , false, false, true , false, true , false, false, true , false, true },
{ false, true , false, true , false, true , false, true , false, true , false, true },
{ false, true , false, true , true , false, true , false, true , true , false, true },
{ false, true , true , false, true , true , false, true , true , false, true , true },
{ false, true , true , true , false, true , true , true , false, true , true , true },
{ false, true , true , true , true , true , false, true , true , true , true , true },
{ false, true , true , true , true , true , true , true , true , true , true , true }
};
//**************************************************************************
// VIDEO MANAGER
//**************************************************************************
static void video_notifier_callback(const char *outname, s32 value, void *param)
{
video_manager *vm = (video_manager *)param;
vm->set_output_changed();
}
//-------------------------------------------------
// video_manager - constructor
//-------------------------------------------------
video_manager::video_manager(running_machine &machine)
: m_machine(machine),
m_screenless_frame_timer(nullptr),
m_output_changed(false),
m_throttle_last_ticks(0),
m_throttle_realtime(attotime::zero),
m_throttle_emutime(attotime::zero),
m_throttle_history(0),
m_speed_last_realtime(0),
m_speed_last_emutime(attotime::zero),
m_speed_percent(1.0),
m_overall_real_seconds(0),
m_overall_real_ticks(0),
m_overall_emutime(attotime::zero),
m_overall_valid_counter(0),
m_throttled(machine.options().throttle()),
m_throttle_rate(1.0f),
m_fastforward(false),
m_seconds_to_run(machine.options().seconds_to_run()),
m_auto_frameskip(machine.options().auto_frameskip()),
m_speed(original_speed_setting()),
m_empty_skip_count(0),
m_frameskip_level(machine.options().frameskip()),
m_frameskip_counter(0),
m_frameskip_adjust(0),
m_skipping_this_frame(false),
m_average_oversleep(0),
m_snap_target(nullptr),
m_snap_native(true),
m_snap_width(0),
m_snap_height(0),
m_mng_frame_period(attotime::zero),
m_mng_next_frame_time(attotime::zero),
m_mng_frame(0),
m_avi_file(nullptr),
m_avi_frame_period(attotime::zero),
m_avi_next_frame_time(attotime::zero),
m_avi_frame(0),
m_dummy_recording(false),
m_timecode_enabled(false),
m_timecode_write(false),
m_timecode_text(""),
m_timecode_start(attotime::zero),
m_timecode_total(attotime::zero)
{
// request a callback upon exiting
machine.add_notifier(MACHINE_NOTIFY_EXIT, machine_notify_delegate(&video_manager::exit, this));
machine.save().register_postload(save_prepost_delegate(FUNC(video_manager::postload), this));
// extract initial execution state from global configuration settings
update_refresh_speed();
// create a render target for snapshots
const char *viewname = machine.options().snap_view();
m_snap_native = (machine.first_screen() != nullptr && (viewname[0] == 0 || strcmp(viewname, "native") == 0));
// the native target is hard-coded to our internal layout and has all options disabled
if (m_snap_native)
{
m_snap_target = machine.render().target_alloc(&layout_snap, RENDER_CREATE_SINGLE_FILE | RENDER_CREATE_HIDDEN);
m_snap_target->set_backdrops_enabled(false);
m_snap_target->set_overlays_enabled(false);
m_snap_target->set_bezels_enabled(false);
m_snap_target->set_cpanels_enabled(false);
m_snap_target->set_marquees_enabled(false);
m_snap_target->set_screen_overlay_enabled(false);
m_snap_target->set_zoom_to_screen(false);
}
// other targets select the specified view and turn off effects
else
{
m_snap_target = machine.render().target_alloc(nullptr, RENDER_CREATE_HIDDEN);
m_snap_target->set_view(m_snap_target->configured_view(viewname, 0, 1));
m_snap_target->set_screen_overlay_enabled(false);
}
// extract snap resolution if present
if (sscanf(machine.options().snap_size(), "%dx%d", &m_snap_width, &m_snap_height) != 2)
m_snap_width = m_snap_height = 0;
// start recording movie if specified
const char *filename = machine.options().mng_write();
if (filename[0] != 0)
begin_recording(filename, MF_MNG);
filename = machine.options().avi_write();
if (filename[0] != 0)
begin_recording(filename, MF_AVI);
#ifdef MAME_DEBUG
m_dummy_recording = machine.options().dummy_write();
#endif
// if no screens, create a periodic timer to drive updates
if (machine.first_screen() == nullptr)
{
m_screenless_frame_timer = machine.scheduler().timer_alloc(timer_expired_delegate(FUNC(video_manager::screenless_update_callback), this));
m_screenless_frame_timer->adjust(screen_device::DEFAULT_FRAME_PERIOD, 0, screen_device::DEFAULT_FRAME_PERIOD);
machine.output().set_notifier(nullptr, video_notifier_callback, this);
}
}
//-------------------------------------------------
// set_frameskip - set the current actual
// frameskip (-1 means autoframeskip)
//-------------------------------------------------
void video_manager::set_frameskip(int frameskip)
{
// -1 means autoframeskip
if (frameskip == -1)
{
m_auto_frameskip = true;
m_frameskip_level = 0;
}
// any other level is a direct control
else if (frameskip >= 0 && frameskip <= MAX_FRAMESKIP)
{
m_auto_frameskip = false;
m_frameskip_level = frameskip;
}
}
//-------------------------------------------------
// frame_update - handle frameskipping and UI,
// plus updating the screen during normal
// operations
//-------------------------------------------------
void video_manager::frame_update(bool from_debugger)
{
// only render sound and video if we're in the running phase
int phase = machine().phase();
bool skipped_it = m_skipping_this_frame;
if (phase == MACHINE_PHASE_RUNNING && (!machine().paused() || machine().options().update_in_pause()))
{
bool anything_changed = finish_screen_updates();
// if none of the screens changed and we haven't skipped too many frames in a row,
// mark this frame as skipped to prevent throttling; this helps for games that
// don't update their screen at the monitor refresh rate
if (!anything_changed && !m_auto_frameskip && m_frameskip_level == 0 && m_empty_skip_count++ < 3)
skipped_it = true;
else
m_empty_skip_count = 0;
}
// draw the user interface
emulator_info::draw_user_interface(machine());
// if we're throttling, synchronize before rendering
attotime current_time = machine().time();
if (!from_debugger && !skipped_it && effective_throttle())
update_throttle(current_time);
// ask the OSD to update
g_profiler.start(PROFILER_BLIT);
machine().osd().update(!from_debugger && skipped_it);
g_profiler.stop();
emulator_info::periodic_check();
// perform tasks for this frame
if (!from_debugger)
machine().call_notifiers(MACHINE_NOTIFY_FRAME);
// update frameskipping
if (!from_debugger)
update_frameskip();
// update speed computations
if (!from_debugger && !skipped_it)
recompute_speed(current_time);
// call the end-of-frame callback
if (phase == MACHINE_PHASE_RUNNING)
{
// reset partial updates if we're paused or if the debugger is active
screen_device *const screen = machine().first_screen();
bool const debugger_enabled = machine().debug_flags & DEBUG_FLAG_ENABLED;
bool const within_instruction_hook = debugger_enabled && machine().debugger().within_instruction_hook();
if (screen && (machine().paused() || from_debugger || within_instruction_hook))
screen->reset_partial_updates();
}
}
//-------------------------------------------------
// speed_text - print the text to be displayed
// into a string buffer
//-------------------------------------------------
std::string video_manager::speed_text()
{
std::ostringstream str;
// if we're paused, just display Paused
bool paused = machine().paused();
if (paused)
str << "paused";
// if we're fast forwarding, just display Fast-forward
else if (m_fastforward)
str << "fast ";
// if we're auto frameskipping, display that plus the level
else if (effective_autoframeskip())
util::stream_format(str, "auto%2d/%d", effective_frameskip(), MAX_FRAMESKIP);
// otherwise, just display the frameskip plus the level
else
util::stream_format(str, "skip %d/%d", effective_frameskip(), MAX_FRAMESKIP);
// append the speed for all cases except paused
if (!paused)
util::stream_format(str, "%4d%%", (int)(100 * m_speed_percent + 0.5));
// display the number of partial updates as well
int partials = 0;
for (screen_device &screen : screen_device_iterator(machine().root_device()))
partials += screen.partial_updates();
if (partials > 1)
util::stream_format(str, "\n%d partial updates", partials);
return str.str();
}
//-------------------------------------------------
// save_snapshot - save a snapshot to the given
// file handle
//-------------------------------------------------
void video_manager::save_snapshot(screen_device *screen, emu_file &file)
{
// validate
assert(!m_snap_native || screen != nullptr);
// create the bitmap to pass in
create_snapshot_bitmap(screen);
// add two text entries describing the image
std::string text1 = std::string(emulator_info::get_appname()).append(" ").append(emulator_info::get_build_version());
std::string text2 = std::string(machine().system().manufacturer).append(" ").append(machine().system().description);
png_info pnginfo = { nullptr };
png_add_text(&pnginfo, "Software", text1.c_str());
png_add_text(&pnginfo, "System", text2.c_str());
// now do the actual work
const rgb_t *palette = (screen != nullptr && screen->has_palette()) ? screen->palette().palette()->entry_list_adjusted() : nullptr;
int entries = (screen != nullptr && screen->has_palette()) ? screen->palette().entries() : 0;
png_error error = png_write_bitmap(file, &pnginfo, m_snap_bitmap, entries, palette);
if (error != PNGERR_NONE)
osd_printf_error("Error generating PNG for snapshot: png_error = %d\n", error);
// free any data allocated
png_free(&pnginfo);
}
//-------------------------------------------------
// save_active_screen_snapshots - save a
// snapshot of all active screens
//-------------------------------------------------
void video_manager::save_active_screen_snapshots()
{
// if we're native, then write one snapshot per visible screen
if (m_snap_native)
{
// write one snapshot per visible screen
for (screen_device &screen : screen_device_iterator(machine().root_device()))
if (machine().render().is_live(screen))
{
emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
osd_file::error filerr = open_next(file, "png");
if (filerr == osd_file::error::NONE)
save_snapshot(&screen, file);
}
}
// otherwise, just write a single snapshot
else
{
emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
osd_file::error filerr = open_next(file, "png");
if (filerr == osd_file::error::NONE)
save_snapshot(nullptr, file);
}
}
//-------------------------------------------------
// save_input_timecode - add a line of current
// timestamp to inp.timecode file
//-------------------------------------------------
void video_manager::save_input_timecode()
{
// if record timecode input is not active, do nothing
if (!m_timecode_enabled) {
return;
}
m_timecode_write = true;
}
std::string &video_manager::timecode_text(std::string &str)
{
attotime elapsed_time = machine().time() - m_timecode_start;
str = string_format(" %s%s%02d:%02d %s",
m_timecode_text,
m_timecode_text.empty() ? "" : " ",
(elapsed_time.m_seconds / 60) % 60,
elapsed_time.m_seconds % 60,
machine().paused() ? "[paused] " : "");
return str;
}
std::string &video_manager::timecode_total_text(std::string &str)
{
attotime elapsed_time = m_timecode_total;
if (machine().ui().show_timecode_counter()) {
elapsed_time += machine().time() - m_timecode_start;
}
str = string_format("TOTAL %02d:%02d ",
(elapsed_time.m_seconds / 60) % 60,
elapsed_time.m_seconds % 60);
return str;
}
//-------------------------------------------------
// begin_recording - begin recording of a movie
//-------------------------------------------------
void video_manager::begin_recording(const char *name, movie_format format)
{
// create a snapshot bitmap so we know what the target size is
create_snapshot_bitmap(nullptr);
// start up an AVI recording
if (format == MF_AVI)
{
// stop any existing recording
end_recording(format);
// reset the state
m_avi_frame = 0;
m_avi_next_frame_time = machine().time();
// build up information about this new movie
screen_device *screen = machine().first_screen();
avi_file::movie_info info;
info.video_format = 0;
info.video_timescale = 1000 * ((screen != nullptr) ? ATTOSECONDS_TO_HZ(screen->frame_period().attoseconds()) : screen_device::DEFAULT_FRAME_RATE);
info.video_sampletime = 1000;
info.video_numsamples = 0;
info.video_width = m_snap_bitmap.width();
info.video_height = m_snap_bitmap.height();
info.video_depth = 24;
info.audio_format = 0;
info.audio_timescale = machine().sample_rate();
info.audio_sampletime = 1;
info.audio_numsamples = 0;
info.audio_channels = 2;
info.audio_samplebits = 16;
info.audio_samplerate = machine().sample_rate();
// create a new temporary movie file
osd_file::error filerr;
std::string fullpath;
{
emu_file tempfile(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
if (name != nullptr)
filerr = tempfile.open(name);
else
filerr = open_next(tempfile, "avi");
// if we succeeded, make a copy of the name and create the real file over top
if (filerr == osd_file::error::NONE)
fullpath = tempfile.fullpath();
}
if (filerr == osd_file::error::NONE)
{
// compute the frame time
m_avi_frame_period = attotime::from_seconds(1000) / info.video_timescale;
// create the file and free the string
avi_file::error avierr = avi_file::create(fullpath, info, m_avi_file);
if (avierr != avi_file::error::NONE)
{
osd_printf_error("Error creating AVI: %s\n", avi_file::error_string(avierr));
return end_recording(format);
}
}
}
// start up a MNG recording
else if (format == MF_MNG)
{
// stop any existing recording
end_recording(format);
// reset the state
m_mng_frame = 0;
m_mng_next_frame_time = machine().time();
// create a new movie file and start recording
m_mng_file = std::make_unique<emu_file>(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
osd_file::error filerr;
if (name != nullptr)
filerr = m_mng_file->open(name);
else
filerr = open_next(*m_mng_file, "mng");
if (filerr == osd_file::error::NONE)
{
// start the capture
screen_device *screen = machine().first_screen();
int rate = (screen != nullptr) ? ATTOSECONDS_TO_HZ(screen->frame_period().attoseconds()) : screen_device::DEFAULT_FRAME_RATE;
png_error pngerr = mng_capture_start(*m_mng_file, m_snap_bitmap, rate);
if (pngerr != PNGERR_NONE)
{
osd_printf_error("Error capturing MNG, png_error=%d\n", pngerr);
return end_recording(format);
}
// compute the frame time
m_mng_frame_period = attotime::from_hz(rate);
}
else
{
osd_printf_error("Error creating MNG, osd_file::error=%d\n", int(filerr));
m_mng_file.reset();
}
}
}
//-------------------------------------------------
// end_recording - stop recording of a movie
//-------------------------------------------------
void video_manager::end_recording(movie_format format)
{
if (format == MF_AVI)
{
// close the file if it exists
if (m_avi_file)
{
m_avi_file.reset();
// reset the state
m_avi_frame = 0;
}
}
else if (format == MF_MNG)
{
// close the file if it exists
if (m_mng_file != nullptr)
{
mng_capture_stop(*m_mng_file);
m_mng_file.reset();
// reset the state
m_mng_frame = 0;
}
}
}
//-------------------------------------------------
// add_sound_to_recording - add sound to a movie
// recording
//-------------------------------------------------
void video_manager::add_sound_to_recording(const s16 *sound, int numsamples)
{
// only record if we have a file
if (m_avi_file != nullptr)
{
g_profiler.start(PROFILER_MOVIE_REC);
// write the next frame
avi_file::error avierr = m_avi_file->append_sound_samples(0, sound + 0, numsamples, 1);
if (avierr == avi_file::error::NONE)
avierr = m_avi_file->append_sound_samples(1, sound + 1, numsamples, 1);
if (avierr != avi_file::error::NONE)
end_recording(MF_AVI);
g_profiler.stop();
}
}
//-------------------------------------------------
// video_exit - close down the video system
//-------------------------------------------------
void video_manager::exit()
{
// stop recording any movie
end_recording(MF_AVI);
end_recording(MF_MNG);
// free the snapshot target
machine().render().target_free(m_snap_target);
m_snap_bitmap.reset();
// print a final result if we have at least 2 seconds' worth of data
if (!emulator_info::standalone() && m_overall_emutime.seconds() >= 1)
{
osd_ticks_t tps = osd_ticks_per_second();
double final_real_time = (double)m_overall_real_seconds + (double)m_overall_real_ticks / (double)tps;
double final_emu_time = m_overall_emutime.as_double();
osd_printf_info("Average speed: %.2f%% (%d seconds)\n", 100 * final_emu_time / final_real_time, (m_overall_emutime + attotime(0, ATTOSECONDS_PER_SECOND / 2)).seconds());
}
}
//-------------------------------------------------
// screenless_update_callback - update generator
// when there are no screens to drive it
//-------------------------------------------------
void video_manager::screenless_update_callback(void *ptr, int param)
{
// force an update
frame_update(false);
}
//-------------------------------------------------
// postload - callback for resetting things after
// state has been loaded
//-------------------------------------------------
void video_manager::postload()
{
m_avi_next_frame_time = machine().time();
m_mng_next_frame_time = machine().time();
}
//-------------------------------------------------
// effective_autoframeskip - return the effective
// autoframeskip value, accounting for fast
// forward
//-------------------------------------------------
inline bool video_manager::effective_autoframeskip() const
{
// if we're fast forwarding or paused, autoframeskip is disabled
if (m_fastforward || machine().paused())
return false;
// otherwise, it's up to the user
return m_auto_frameskip;
}
//-------------------------------------------------
// effective_frameskip - return the effective
// frameskip value, accounting for fast
// forward
//-------------------------------------------------
inline int video_manager::effective_frameskip() const
{
// if we're fast forwarding, use the maximum frameskip
if (m_fastforward)
return FRAMESKIP_LEVELS - 1;
// otherwise, it's up to the user
return m_frameskip_level;
}
//-------------------------------------------------
// effective_throttle - return the effective
// throttle value, accounting for fast
// forward and user interface
//-------------------------------------------------
inline bool video_manager::effective_throttle() const
{
// if we're paused, or if the UI is active, we always throttle
if (machine().paused()) //|| machine().ui().is_menu_active())
return true;
// if we're fast forwarding, we don't throttle
if (m_fastforward)
return false;
// otherwise, it's up to the user
return throttled();
}
//-------------------------------------------------
// original_speed_setting - return the original
// speed setting
//-------------------------------------------------
inline int video_manager::original_speed_setting() const
{
return machine().options().speed() * 1000.0f + 0.5f;
}
//-------------------------------------------------
// finish_screen_updates - finish updating all
// the screens
//-------------------------------------------------
bool video_manager::finish_screen_updates()
{
// finish updating the screens
screen_device_iterator iter(machine().root_device());
for (screen_device &screen : iter)
screen.update_partial(screen.visible_area().max_y);
// now add the quads for all the screens
bool anything_changed = m_output_changed;
m_output_changed = false;
for (screen_device &screen : iter)
if (screen.update_quads())
anything_changed = true;
// draw HUD from LUA callback (if any)
anything_changed |= emulator_info::frame_hook();
// update our movie recording and burn-in state
if (!machine().paused())
{
record_frame();
// iterate over screens and update the burnin for the ones that care
for (screen_device &screen : iter)
screen.update_burnin();
}
// draw any crosshairs
for (screen_device &screen : iter)
machine().crosshair().render(screen);
return anything_changed;
}
//-------------------------------------------------
// update_throttle - throttle to the game's
// natural speed
//-------------------------------------------------
void video_manager::update_throttle(attotime emutime)
{
/*
Throttling theory:
This routine is called periodically with an up-to-date emulated time.
The idea is to synchronize real time with emulated time. We do this
by "throttling", or waiting for real time to catch up with emulated
time.
In an ideal world, it will take less real time to emulate and render
each frame than the emulated time, so we need to slow things down to
get both times in sync.
There are many complications to this model:
* some games run too slow, so each frame we get further and
further behind real time; our only choice here is to not
throttle
* some games have very uneven frame rates; one frame will take
a long time to emulate, and the next frame may be very fast
* we run on top of multitasking OSes; sometimes execution time
is taken away from us, and this means we may not get enough
time to emulate one frame
* we may be paused, and emulated time may not be marching
forward
* emulated time could jump due to resetting the machine or
restoring from a saved state
*/
static const u8 popcount[256] =
{
0,1,1,2,1,2,2,3, 1,2,2,3,2,3,3,4, 1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6,
1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7,
1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7,
2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7, 4,5,5,6,5,6,6,7, 5,6,6,7,6,7,7,8
};
// outer scope so we can break out in case of a resync
while (1)
{
// apply speed factor to emu time
if (m_speed != 0 && m_speed != 1000)
{
// multiply emutime by 1000, then divide by the global speed factor
emutime = (emutime * 1000) / m_speed;
}
// compute conversion factors up front
osd_ticks_t ticks_per_second = osd_ticks_per_second();
attoseconds_t attoseconds_per_tick = ATTOSECONDS_PER_SECOND / ticks_per_second * m_throttle_rate;
// if we're paused, emutime will not advance; instead, we subtract a fixed
// amount of time (1/60th of a second) from the emulated time that was passed in,
// and explicitly reset our tracked real and emulated timers to that value ...
// this means we pretend that the last update was exactly 1/60th of a second
// ago, and was in sync in both real and emulated time
if (machine().paused())
{
m_throttle_emutime = emutime - attotime(0, ATTOSECONDS_PER_SECOND / PAUSED_REFRESH_RATE);
m_throttle_realtime = m_throttle_emutime;
}
// attempt to detect anomalies in the emulated time by subtracting the previously
// reported value from our current value; this should be a small value somewhere
// between 0 and 1/10th of a second ... anything outside of this range is obviously
// wrong and requires a resync
attoseconds_t emu_delta_attoseconds = (emutime - m_throttle_emutime).as_attoseconds();
if (emu_delta_attoseconds < 0 || emu_delta_attoseconds > ATTOSECONDS_PER_SECOND / 10)
{
if (LOG_THROTTLE)
machine().logerror("Resync due to weird emutime delta: %s\n", attotime(0, emu_delta_attoseconds).as_string(18));
break;
}
// now determine the current real time in OSD-specified ticks; we have to be careful
// here because counters can wrap, so we only use the difference between the last
// read value and the current value in our computations
osd_ticks_t diff_ticks = osd_ticks() - m_throttle_last_ticks;
m_throttle_last_ticks += diff_ticks;
// if it has been more than a full second of real time since the last call to this
// function, we just need to resynchronize
if (diff_ticks >= ticks_per_second)
{
if (LOG_THROTTLE)
machine().logerror("Resync due to real time advancing by more than 1 second\n");
break;
}
// convert this value into attoseconds for easier comparison
attoseconds_t real_delta_attoseconds = diff_ticks * attoseconds_per_tick;
// now update our real and emulated timers with the current values
m_throttle_emutime = emutime;
m_throttle_realtime += attotime(0, real_delta_attoseconds);
// keep a history of whether or not emulated time beat real time over the last few
// updates; this can be used for future heuristics
m_throttle_history = (m_throttle_history << 1) | (emu_delta_attoseconds > real_delta_attoseconds);
// determine how far ahead real time is versus emulated time; note that we use the
// accumulated times for this instead of the deltas for the current update because
// we want to track time over a longer duration than a single update
attoseconds_t real_is_ahead_attoseconds = (m_throttle_emutime - m_throttle_realtime).as_attoseconds();
// if we're more than 1/10th of a second out, or if we are behind at all and emulation
// is taking longer than the real frame, we just need to resync
if (real_is_ahead_attoseconds < -ATTOSECONDS_PER_SECOND / 10 ||
(real_is_ahead_attoseconds < 0 && popcount[m_throttle_history & 0xff] < 6))
{
if (LOG_THROTTLE)
machine().logerror("Resync due to being behind: %s (history=%08X)\n", attotime(0, -real_is_ahead_attoseconds).as_string(18), m_throttle_history);
break;
}
// if we're behind, it's time to just get out
if (real_is_ahead_attoseconds < 0)
return;
// compute the target real time, in ticks, where we want to be
osd_ticks_t target_ticks = m_throttle_last_ticks + real_is_ahead_attoseconds / attoseconds_per_tick;
// throttle until we read the target, and update real time to match the final time
diff_ticks = throttle_until_ticks(target_ticks) - m_throttle_last_ticks;
m_throttle_last_ticks += diff_ticks;
m_throttle_realtime += attotime(0, diff_ticks * attoseconds_per_tick);
return;
}
// reset realtime and emutime to the same value
m_throttle_realtime = m_throttle_emutime = emutime;
}
//-------------------------------------------------
// throttle_until_ticks - spin until the
// specified target time, calling the OSD code
// to sleep if possible
//-------------------------------------------------
osd_ticks_t video_manager::throttle_until_ticks(osd_ticks_t target_ticks)
{
// we're allowed to sleep via the OSD code only if we're configured to do so
// and we're not frameskipping due to autoframeskip, or if we're paused
bool allowed_to_sleep = false;
if (machine().options().sleep() && (!effective_autoframeskip() || effective_frameskip() == 0))
allowed_to_sleep = true;
if (machine().paused())
allowed_to_sleep = true;
// loop until we reach our target
g_profiler.start(PROFILER_IDLE);
osd_ticks_t minimum_sleep = osd_ticks_per_second() / 1000;
osd_ticks_t current_ticks = osd_ticks();
while (current_ticks < target_ticks)
{
// compute how much time to sleep for, taking into account the average oversleep
osd_ticks_t delta = (target_ticks - current_ticks) * 1000 / (1000 + m_average_oversleep);
// see if we can sleep
bool slept = false;
if (allowed_to_sleep && delta >= minimum_sleep)
{
osd_sleep(delta);
slept = true;
}
// read the new value
osd_ticks_t new_ticks = osd_ticks();
// keep some metrics on the sleeping patterns of the OSD layer
if (slept)
{
// if we overslept, keep an average of the amount
osd_ticks_t actual_ticks = new_ticks - current_ticks;
if (actual_ticks > delta)
{
// take 90% of the previous average plus 10% of the new value
osd_ticks_t oversleep_milliticks = 1000 * (actual_ticks - delta) / delta;
m_average_oversleep = (m_average_oversleep * 99 + oversleep_milliticks) / 100;
if (LOG_THROTTLE)
machine().logerror("Slept for %d ticks, got %d ticks, avgover = %d\n", (int)delta, (int)actual_ticks, (int)m_average_oversleep);
}
}
current_ticks = new_ticks;
}
g_profiler.stop();
return current_ticks;
}
//-------------------------------------------------
// update_frameskip - update frameskipping
// counters and periodically update autoframeskip
//-------------------------------------------------
void video_manager::update_frameskip()
{
// if we're throttling and autoframeskip is on, adjust
if (effective_throttle() && effective_autoframeskip() && m_frameskip_counter == 0)
{
// calibrate the "adjusted speed" based on the target
double adjusted_speed_percent = m_speed_percent / (double) m_throttle_rate;
// if we're too fast, attempt to increase the frameskip
double speed = m_speed * 0.001;
if (adjusted_speed_percent >= 0.995 * speed)
{
// but only after 3 consecutive frames where we are too fast
if (++m_frameskip_adjust >= 3)
{
m_frameskip_adjust = 0;
if (m_frameskip_level > 0)
m_frameskip_level--;
}
}
// if we're too slow, attempt to increase the frameskip
else
{
// if below 80% speed, be more aggressive
if (adjusted_speed_percent < 0.80 * speed)
m_frameskip_adjust -= (0.90 * speed - m_speed_percent) / 0.05;
// if we're close, only force it up to frameskip 8
else if (m_frameskip_level < 8)
m_frameskip_adjust--;
// perform the adjustment
while (m_frameskip_adjust <= -2)
{
m_frameskip_adjust += 2;
if (m_frameskip_level < MAX_FRAMESKIP)
m_frameskip_level++;
}
}
}
// increment the frameskip counter and determine if we will skip the next frame
m_frameskip_counter = (m_frameskip_counter + 1) % FRAMESKIP_LEVELS;
m_skipping_this_frame = s_skiptable[effective_frameskip()][m_frameskip_counter];
}
//-------------------------------------------------
// update_refresh_speed - update the m_speed
// based on the maximum refresh rate supported
//-------------------------------------------------
void video_manager::update_refresh_speed()
{
// only do this if the refreshspeed option is used
if (machine().options().refresh_speed())
{
double minrefresh = machine().render().max_update_rate();
if (minrefresh != 0)
{
// find the screen with the shortest frame period (max refresh rate)
// note that we first check the token since this can get called before all screens are created
attoseconds_t min_frame_period = ATTOSECONDS_PER_SECOND;
for (screen_device &screen : screen_device_iterator(machine().root_device()))
{
attoseconds_t period = screen.frame_period().attoseconds();
if (period != 0)
min_frame_period = std::min(min_frame_period, period);
}
// compute a target speed as an integral percentage
// note that we lop 0.25Hz off of the minrefresh when doing the computation to allow for
// the fact that most refresh rates are not accurate to 10 digits...
u32 target_speed = floor((minrefresh - 0.25) * 1000.0 / ATTOSECONDS_TO_HZ(min_frame_period));
u32 original_speed = original_speed_setting();
target_speed = std::min(target_speed, original_speed);
// if we changed, log that verbosely
if (target_speed != m_speed)
{
osd_printf_verbose("Adjusting target speed to %.1f%% (hw=%.2fHz, game=%.2fHz, adjusted=%.2fHz)\n", target_speed / 10.0, minrefresh, ATTOSECONDS_TO_HZ(min_frame_period), ATTOSECONDS_TO_HZ(min_frame_period * 1000.0 / target_speed));
m_speed = target_speed;
}
}
}
}
//-------------------------------------------------
// recompute_speed - recompute the current
// overall speed; we assume this is called only
// if we did not skip a frame
//-------------------------------------------------
void video_manager::recompute_speed(const attotime &emutime)
{
// if we don't have a starting time yet, or if we're paused, reset our starting point
if (m_speed_last_realtime == 0 || machine().paused())
{
m_speed_last_realtime = osd_ticks();
m_speed_last_emutime = emutime;
}
// if it has been more than the update interval, update the time
attotime delta_emutime = emutime - m_speed_last_emutime;
if (delta_emutime > attotime(0, ATTOSECONDS_PER_SPEED_UPDATE))
{
// convert from ticks to attoseconds
osd_ticks_t realtime = osd_ticks();
osd_ticks_t delta_realtime = realtime - m_speed_last_realtime;
osd_ticks_t tps = osd_ticks_per_second();
m_speed_percent = delta_emutime.as_double() * (double)tps / (double)delta_realtime;
// remember the last times
m_speed_last_realtime = realtime;
m_speed_last_emutime = emutime;
// if we're throttled, this time period counts for overall speed; otherwise, we reset the counter
if (!m_fastforward)
m_overall_valid_counter++;
else
m_overall_valid_counter = 0;
// if we've had at least 4 consecutive valid periods, accumulate stats
if (m_overall_valid_counter >= 4)
{
m_overall_real_ticks += delta_realtime;
while (m_overall_real_ticks >= tps)
{
m_overall_real_ticks -= tps;
m_overall_real_seconds++;
}
m_overall_emutime += delta_emutime;
}
}
// if we're past the "time-to-execute" requested, signal an exit
if (m_seconds_to_run != 0 && emutime.seconds() >= m_seconds_to_run)
{
// create a final screenshot
emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
osd_file::error filerr = file.open(machine().basename(), PATH_SEPARATOR "final.png");
if (filerr == osd_file::error::NONE)
save_snapshot(nullptr, file);
//printf("Scheduled exit at %f\n", emutime.as_double());
// schedule our demise
machine().schedule_exit();
}
}
//-------------------------------------------------
// create_snapshot_bitmap - creates a
// bitmap containing the screenshot for the
// given screen
//-------------------------------------------------
typedef software_renderer<u32, 0,0,0, 16,8,0, false, true> snap_renderer_bilinear;
typedef software_renderer<u32, 0,0,0, 16,8,0, false, false> snap_renderer;
void video_manager::create_snapshot_bitmap(screen_device *screen)
{
// select the appropriate view in our dummy target
if (m_snap_native && screen != nullptr)
{
screen_device_iterator iter(machine().root_device());
int view_index = iter.indexof(*screen);
assert(view_index != -1);
m_snap_target->set_view(view_index);
}
// get the minimum width/height and set it on the target
s32 width = m_snap_width;
s32 height = m_snap_height;
if (width == 0 || height == 0)
m_snap_target->compute_minimum_size(width, height);
m_snap_target->set_bounds(width, height);
// if we don't have a bitmap, or if it's not the right size, allocate a new one
if (!m_snap_bitmap.valid() || width != m_snap_bitmap.width() || height != m_snap_bitmap.height())
m_snap_bitmap.allocate(width, height);
// render the screen there
render_primitive_list &primlist = m_snap_target->get_primitives();
primlist.acquire_lock();
if (machine().options().snap_bilinear())
snap_renderer_bilinear::draw_primitives(primlist, &m_snap_bitmap.pix32(0), width, height, m_snap_bitmap.rowpixels());
else
snap_renderer::draw_primitives(primlist, &m_snap_bitmap.pix32(0), width, height, m_snap_bitmap.rowpixels());
primlist.release_lock();
}
//-------------------------------------------------
// open_next - open the next non-existing file of
// type filetype according to our numbering
// scheme
//-------------------------------------------------
osd_file::error video_manager::open_next(emu_file &file, const char *extension)
{
u32 origflags = file.openflags();
// handle defaults
const char *snapname = machine().options().snap_name();
if (snapname == nullptr || snapname[0] == 0)
snapname = "%g/%i";
std::string snapstr(snapname);
// strip any extension in the provided name
int index = snapstr.find_last_of('.');
if (index != -1)
snapstr = snapstr.substr(0, index);
// handle %d in the template (for image devices)
std::string snapdev("%d_");
int pos = snapstr.find(snapdev);
if (pos != -1)
{
// if more %d are found, revert to default and ignore them all
if (snapstr.find(snapdev.c_str(), pos + 3) != -1)
snapstr.assign("%g/%i");
// else if there is a single %d, try to create the correct snapname
else
{
int name_found = 0;
// find length of the device name
int end1 = snapstr.find("/", pos + 3);
int end2 = snapstr.find("%", pos + 3);
int end;
if ((end1 != -1) && (end2 != -1))
end = std::min(end1, end2);
else if (end1 != -1)
end = end1;
else if (end2 != -1)
end = end2;
else
end = snapstr.length();
if (end - pos < 3)
fatalerror("Something very wrong is going on!!!\n");
// copy the device name to an std::string
std::string snapdevname;
snapdevname.assign(snapstr.substr(pos + 3, end - pos - 3));
//printf("check template: %s\n", snapdevname.c_str());
// verify that there is such a device for this system
for (device_image_interface &image : image_interface_iterator(machine().root_device()))
{
// get the device name
std::string tempdevname(image.brief_instance_name());
//printf("check device: %s\n", tempdevname.c_str());
if (snapdevname.compare(tempdevname) == 0)
{
// verify that such a device has an image mounted
if (image.basename() != nullptr)
{
std::string filename(image.basename());
// strip extension
filename = filename.substr(0, filename.find_last_of('.'));
// setup snapname and remove the %d_
strreplace(snapstr, snapdevname.c_str(), filename.c_str());
snapstr.erase(pos, 3);
//printf("check image: %s\n", filename.c_str());
name_found = 1;
}
}
}
// or fallback to default
if (name_found == 0)
snapstr.assign("%g/%i");
}
}
// add our own extension
snapstr.append(".").append(extension);
// substitute path and gamename up front
strreplace(snapstr, "/", PATH_SEPARATOR);
strreplace(snapstr, "%g", machine().basename());
// determine if the template has an index; if not, we always use the same name
std::string fname;
if (snapstr.find("%i") == -1)
fname.assign(snapstr);
// otherwise, we scan for the next available filename
else
{
// try until we succeed
file.set_openflags(OPEN_FLAG_READ);
for (int seq = 0; ; seq++)
{
// build up the filename
fname.assign(snapstr);
strreplace(fname, "%i", string_format("%04d", seq).c_str());
// try to open the file; stop when we fail
osd_file::error filerr = file.open(fname.c_str());
if (filerr != osd_file::error::NONE)
break;
}
}
// create the final file
file.set_openflags(origflags);
return file.open(fname.c_str());
}
//-------------------------------------------------
// record_frame - record a frame of a movie
//-------------------------------------------------
void video_manager::record_frame()
{
// ignore if nothing to do
if (m_mng_file == nullptr && m_avi_file == nullptr && !m_dummy_recording)
return;
// start the profiler and get the current time
g_profiler.start(PROFILER_MOVIE_REC);
attotime curtime = machine().time();
// create the bitmap
create_snapshot_bitmap(nullptr);
// handle an AVI recording
if (m_avi_file != nullptr)
{
// loop until we hit the right time
while (m_avi_next_frame_time <= curtime)
{
// write the next frame
avi_file::error avierr = m_avi_file->append_video_frame(m_snap_bitmap);
if (avierr != avi_file::error::NONE)
{
g_profiler.stop();
end_recording(MF_AVI);
break;
}
// advance time
m_avi_next_frame_time += m_avi_frame_period;
m_avi_frame++;
}
}
// handle a MNG recording
if (m_mng_file != nullptr)
{
// loop until we hit the right time
while (m_mng_next_frame_time <= curtime)
{
// set up the text fields in the movie info
png_info pnginfo = { nullptr };
if (m_mng_frame == 0)
{
std::string text1 = std::string(emulator_info::get_appname()).append(" ").append(emulator_info::get_build_version());
std::string text2 = std::string(machine().system().manufacturer).append(" ").append(machine().system().description);
png_add_text(&pnginfo, "Software", text1.c_str());
png_add_text(&pnginfo, "System", text2.c_str());
}
// write the next frame
screen_device *screen = machine().first_screen();
const rgb_t *palette = (screen != nullptr && screen->has_palette()) ? screen->palette().palette()->entry_list_adjusted() : nullptr;
int entries = (screen != nullptr && screen->has_palette()) ? screen->palette().entries() : 0;
png_error error = mng_capture_frame(*m_mng_file, &pnginfo, m_snap_bitmap, entries, palette);
png_free(&pnginfo);
if (error != PNGERR_NONE)
{
g_profiler.stop();
end_recording(MF_MNG);
break;
}
// advance time
m_mng_next_frame_time += m_mng_frame_period;
m_mng_frame++;
}
}
g_profiler.stop();
}
//-------------------------------------------------
// toggle_throttle
//-------------------------------------------------
void video_manager::toggle_throttle()
{
set_throttled(!throttled());
}
//-------------------------------------------------
// toggle_record_movie
//-------------------------------------------------
void video_manager::toggle_record_movie()
{
if (!is_recording())
{
begin_recording(nullptr, MF_MNG);
machine().popmessage("REC START");
}
else
{
end_recording(MF_MNG);
machine().popmessage("REC STOP");
}
}