mame/src/emu/rendutil.c
Aaron Giles 57cfaa163e Switched rgb_t to a class, replacing macros with methods. Mappings are
as follows:

   MAKE_RGB(r,g,b)     == rgb_t(r,g,b)
   MAKE_ARGB(a,r,g,b)  == rgb_t(a,r,g,b)
   RGB_ALPHA(data)     == data.a()
   RGB_RED(data)       == data.r()
   RGB_GREEN(data)     == data.g()
   RGB_BLUE(data)      == data.b()
   RGB_BLACK           == rgb_t::black
   RGB_WHITE           == rgb_t::white

Implicit conversions to/from UINT32 are built in as well as simple
addition, subtraction, and scaling (with clamping).

As a result of being a class, some stricter typing was needed in
a few places but overall not too much.
2014-02-19 06:07:32 +00:00

734 lines
21 KiB
C

/***************************************************************************
rendutil.c
Core rendering utilities.
Copyright Nicola Salmoria and the MAME Team.
Visit http://mamedev.org for licensing and usage restrictions.
***************************************************************************/
#include "emu.h"
#include "render.h"
#include "rendutil.h"
#include "png.h"
/***************************************************************************
FUNCTION PROTOTYPES
***************************************************************************/
/* utilities */
static void resample_argb_bitmap_average(UINT32 *dest, UINT32 drowpixels, UINT32 dwidth, UINT32 dheight, const UINT32 *source, UINT32 srowpixels, UINT32 swidth, UINT32 sheight, const render_color &color, UINT32 dx, UINT32 dy);
static void resample_argb_bitmap_bilinear(UINT32 *dest, UINT32 drowpixels, UINT32 dwidth, UINT32 dheight, const UINT32 *source, UINT32 srowpixels, UINT32 swidth, UINT32 sheight, const render_color &color, UINT32 dx, UINT32 dy);
static bool copy_png_to_bitmap(bitmap_argb32 &bitmap, const png_info *png);
static bool copy_png_alpha_to_bitmap(bitmap_argb32 &bitmap, const png_info *png);
/***************************************************************************
RENDER UTILITIES
***************************************************************************/
/*-------------------------------------------------
render_resample_argb_bitmap_hq - perform a high
quality resampling of a texture
-------------------------------------------------*/
void render_resample_argb_bitmap_hq(bitmap_argb32 &dest, bitmap_argb32 &source, const render_color &color)
{
if (dest.width() == 0 || dest.height() == 0)
return;
/* adjust the source base */
const UINT32 *sbase = &source.pix32(0);
/* determine the steppings */
UINT32 swidth = source.width();
UINT32 sheight = source.height();
UINT32 dwidth = dest.width();
UINT32 dheight = dest.height();
UINT32 dx = (swidth << 12) / dwidth;
UINT32 dy = (sheight << 12) / dheight;
/* if the source is higher res than the target, use full averaging */
if (dx > 0x1000 || dy > 0x1000)
resample_argb_bitmap_average(&dest.pix(0), dest.rowpixels(), dwidth, dheight, sbase, source.rowpixels(), swidth, sheight, color, dx, dy);
else
resample_argb_bitmap_bilinear(&dest.pix(0), dest.rowpixels(), dwidth, dheight, sbase, source.rowpixels(), swidth, sheight, color, dx, dy);
}
/*-------------------------------------------------
resample_argb_bitmap_average - resample a texture
by performing a true weighted average over
all contributing pixels
-------------------------------------------------*/
static void resample_argb_bitmap_average(UINT32 *dest, UINT32 drowpixels, UINT32 dwidth, UINT32 dheight, const UINT32 *source, UINT32 srowpixels, UINT32 swidth, UINT32 sheight, const render_color &color, UINT32 dx, UINT32 dy)
{
UINT64 sumscale = (UINT64)dx * (UINT64)dy;
UINT32 r, g, b, a;
UINT32 x, y;
/* precompute premultiplied R/G/B/A factors */
r = color.r * color.a * 256.0;
g = color.g * color.a * 256.0;
b = color.b * color.a * 256.0;
a = color.a * 256.0;
/* loop over the target vertically */
for (y = 0; y < dheight; y++)
{
UINT32 starty = y * dy;
/* loop over the target horizontally */
for (x = 0; x < dwidth; x++)
{
UINT64 sumr = 0, sumg = 0, sumb = 0, suma = 0;
UINT32 startx = x * dx;
UINT32 xchunk, ychunk;
UINT32 curx, cury;
UINT32 yremaining = dy;
/* accumulate all source pixels that contribute to this pixel */
for (cury = starty; yremaining; cury += ychunk)
{
UINT32 xremaining = dx;
/* determine the Y contribution, clamping to the amount remaining */
ychunk = 0x1000 - (cury & 0xfff);
if (ychunk > yremaining)
ychunk = yremaining;
yremaining -= ychunk;
/* loop over all source pixels in the X direction */
for (curx = startx; xremaining; curx += xchunk)
{
UINT32 factor;
/* determine the X contribution, clamping to the amount remaining */
xchunk = 0x1000 - (curx & 0xfff);
if (xchunk > xremaining)
xchunk = xremaining;
xremaining -= xchunk;
/* total contribution = x * y */
factor = xchunk * ychunk;
/* fetch the source pixel */
rgb_t pix = source[(cury >> 12) * srowpixels + (curx >> 12)];
/* accumulate the RGBA values */
sumr += factor * pix.r();
sumg += factor * pix.g();
sumb += factor * pix.b();
suma += factor * pix.a();
}
}
/* apply scaling */
suma = (suma / sumscale) * a / 256;
sumr = (sumr / sumscale) * r / 256;
sumg = (sumg / sumscale) * g / 256;
sumb = (sumb / sumscale) * b / 256;
/* if we're translucent, add in the destination pixel contribution */
if (a < 256)
{
rgb_t dpix = dest[y * drowpixels + x];
suma += dpix.a() * (256 - a);
sumr += dpix.r() * (256 - a);
sumg += dpix.g() * (256 - a);
sumb += dpix.b() * (256 - a);
}
/* store the target pixel, dividing the RGBA values by the overall scale factor */
dest[y * drowpixels + x] = rgb_t(suma, sumr, sumg, sumb);
}
}
}
/*-------------------------------------------------
resample_argb_bitmap_bilinear - perform texture
sampling via a bilinear filter
-------------------------------------------------*/
static void resample_argb_bitmap_bilinear(UINT32 *dest, UINT32 drowpixels, UINT32 dwidth, UINT32 dheight, const UINT32 *source, UINT32 srowpixels, UINT32 swidth, UINT32 sheight, const render_color &color, UINT32 dx, UINT32 dy)
{
UINT32 maxx = swidth << 12, maxy = sheight << 12;
UINT32 r, g, b, a;
UINT32 x, y;
/* precompute premultiplied R/G/B/A factors */
r = color.r * color.a * 256.0;
g = color.g * color.a * 256.0;
b = color.b * color.a * 256.0;
a = color.a * 256.0;
/* loop over the target vertically */
for (y = 0; y < dheight; y++)
{
UINT32 starty = y * dy;
/* loop over the target horizontally */
for (x = 0; x < dwidth; x++)
{
UINT32 startx = x * dx;
rgb_t pix0, pix1, pix2, pix3;
UINT32 sumr, sumg, sumb, suma;
UINT32 nextx, nexty;
UINT32 curx, cury;
UINT32 factor;
/* adjust start to the center; note that this math will tend to produce */
/* negative results on the first pixel, which is why we clamp below */
curx = startx + dx / 2 - 0x800;
cury = starty + dy / 2 - 0x800;
/* compute the neighboring pixel */
nextx = curx + 0x1000;
nexty = cury + 0x1000;
/* fetch the four relevant pixels */
pix0 = pix1 = pix2 = pix3 = 0;
if ((INT32)cury >= 0 && cury < maxy && (INT32)curx >= 0 && curx < maxx)
pix0 = source[(cury >> 12) * srowpixels + (curx >> 12)];
if ((INT32)cury >= 0 && cury < maxy && (INT32)nextx >= 0 && nextx < maxx)
pix1 = source[(cury >> 12) * srowpixels + (nextx >> 12)];
if ((INT32)nexty >= 0 && nexty < maxy && (INT32)curx >= 0 && curx < maxx)
pix2 = source[(nexty >> 12) * srowpixels + (curx >> 12)];
if ((INT32)nexty >= 0 && nexty < maxy && (INT32)nextx >= 0 && nextx < maxx)
pix3 = source[(nexty >> 12) * srowpixels + (nextx >> 12)];
/* compute the x/y scaling factors */
curx &= 0xfff;
cury &= 0xfff;
/* contributions from pixel 0 (top,left) */
factor = (0x1000 - curx) * (0x1000 - cury);
sumr = factor * pix0.r();
sumg = factor * pix0.g();
sumb = factor * pix0.b();
suma = factor * pix0.a();
/* contributions from pixel 1 (top,right) */
factor = curx * (0x1000 - cury);
sumr += factor * pix1.r();
sumg += factor * pix1.g();
sumb += factor * pix1.b();
suma += factor * pix1.a();
/* contributions from pixel 2 (bottom,left) */
factor = (0x1000 - curx) * cury;
sumr += factor * pix2.r();
sumg += factor * pix2.g();
sumb += factor * pix2.b();
suma += factor * pix2.a();
/* contributions from pixel 3 (bottom,right) */
factor = curx * cury;
sumr += factor * pix3.r();
sumg += factor * pix3.g();
sumb += factor * pix3.b();
suma += factor * pix3.a();
/* apply scaling */
suma = (suma >> 24) * a / 256;
sumr = (sumr >> 24) * r / 256;
sumg = (sumg >> 24) * g / 256;
sumb = (sumb >> 24) * b / 256;
/* if we're translucent, add in the destination pixel contribution */
if (a < 256)
{
rgb_t dpix = dest[y * drowpixels + x];
suma += dpix.a() * (256 - a);
sumr += dpix.r() * (256 - a);
sumg += dpix.g() * (256 - a);
sumb += dpix.b() * (256 - a);
}
/* store the target pixel, dividing the RGBA values by the overall scale factor */
dest[y * drowpixels + x] = rgb_t(suma, sumr, sumg, sumb);
}
}
}
/*-------------------------------------------------
render_clip_line - clip a line to a rectangle
-------------------------------------------------*/
int render_clip_line(render_bounds *bounds, const render_bounds *clip)
{
/* loop until we get a final result */
while (1)
{
UINT8 code0 = 0, code1 = 0;
UINT8 thiscode;
float x, y;
/* compute Cohen Sutherland bits for first coordinate */
if (bounds->y0 > clip->y1)
code0 |= 1;
if (bounds->y0 < clip->y0)
code0 |= 2;
if (bounds->x0 > clip->x1)
code0 |= 4;
if (bounds->x0 < clip->x0)
code0 |= 8;
/* compute Cohen Sutherland bits for second coordinate */
if (bounds->y1 > clip->y1)
code1 |= 1;
if (bounds->y1 < clip->y0)
code1 |= 2;
if (bounds->x1 > clip->x1)
code1 |= 4;
if (bounds->x1 < clip->x0)
code1 |= 8;
/* trivial accept: just return FALSE */
if ((code0 | code1) == 0)
return FALSE;
/* trivial reject: just return TRUE */
if ((code0 & code1) != 0)
return TRUE;
/* fix one of the OOB cases */
thiscode = code0 ? code0 : code1;
/* off the bottom */
if (thiscode & 1)
{
x = bounds->x0 + (bounds->x1 - bounds->x0) * (clip->y1 - bounds->y0) / (bounds->y1 - bounds->y0);
y = clip->y1;
}
/* off the top */
else if (thiscode & 2)
{
x = bounds->x0 + (bounds->x1 - bounds->x0) * (clip->y0 - bounds->y0) / (bounds->y1 - bounds->y0);
y = clip->y0;
}
/* off the right */
else if (thiscode & 4)
{
y = bounds->y0 + (bounds->y1 - bounds->y0) * (clip->x1 - bounds->x0) / (bounds->x1 - bounds->x0);
x = clip->x1;
}
/* off the left */
else
{
y = bounds->y0 + (bounds->y1 - bounds->y0) * (clip->x0 - bounds->x0) / (bounds->x1 - bounds->x0);
x = clip->x0;
}
/* fix the appropriate coordinate */
if (thiscode == code0)
{
bounds->x0 = x;
bounds->y0 = y;
}
else
{
bounds->x1 = x;
bounds->y1 = y;
}
}
}
/*-------------------------------------------------
render_clip_quad - clip a quad to a rectangle
-------------------------------------------------*/
int render_clip_quad(render_bounds *bounds, const render_bounds *clip, render_quad_texuv *texcoords)
{
/* ensure our assumptions about the bounds are correct */
assert(bounds->x0 <= bounds->x1);
assert(bounds->y0 <= bounds->y1);
/* trivial reject */
if (bounds->y1 < clip->y0)
return TRUE;
if (bounds->y0 > clip->y1)
return TRUE;
if (bounds->x1 < clip->x0)
return TRUE;
if (bounds->x0 > clip->x1)
return TRUE;
/* clip top (x0,y0)-(x1,y1) */
if (bounds->y0 < clip->y0)
{
float frac = (clip->y0 - bounds->y0) / (bounds->y1 - bounds->y0);
bounds->y0 = clip->y0;
if (texcoords != NULL)
{
texcoords->tl.u += (texcoords->bl.u - texcoords->tl.u) * frac;
texcoords->tl.v += (texcoords->bl.v - texcoords->tl.v) * frac;
texcoords->tr.u += (texcoords->br.u - texcoords->tr.u) * frac;
texcoords->tr.v += (texcoords->br.v - texcoords->tr.v) * frac;
}
}
/* clip bottom (x3,y3)-(x2,y2) */
if (bounds->y1 > clip->y1)
{
float frac = (bounds->y1 - clip->y1) / (bounds->y1 - bounds->y0);
bounds->y1 = clip->y1;
if (texcoords != NULL)
{
texcoords->bl.u -= (texcoords->bl.u - texcoords->tl.u) * frac;
texcoords->bl.v -= (texcoords->bl.v - texcoords->tl.v) * frac;
texcoords->br.u -= (texcoords->br.u - texcoords->tr.u) * frac;
texcoords->br.v -= (texcoords->br.v - texcoords->tr.v) * frac;
}
}
/* clip left (x0,y0)-(x3,y3) */
if (bounds->x0 < clip->x0)
{
float frac = (clip->x0 - bounds->x0) / (bounds->x1 - bounds->x0);
bounds->x0 = clip->x0;
if (texcoords != NULL)
{
texcoords->tl.u += (texcoords->tr.u - texcoords->tl.u) * frac;
texcoords->tl.v += (texcoords->tr.v - texcoords->tl.v) * frac;
texcoords->bl.u += (texcoords->br.u - texcoords->bl.u) * frac;
texcoords->bl.v += (texcoords->br.v - texcoords->bl.v) * frac;
}
}
/* clip right (x1,y1)-(x2,y2) */
if (bounds->x1 > clip->x1)
{
float frac = (bounds->x1 - clip->x1) / (bounds->x1 - bounds->x0);
bounds->x1 = clip->x1;
if (texcoords != NULL)
{
texcoords->tr.u -= (texcoords->tr.u - texcoords->tl.u) * frac;
texcoords->tr.v -= (texcoords->tr.v - texcoords->tl.v) * frac;
texcoords->br.u -= (texcoords->br.u - texcoords->bl.u) * frac;
texcoords->br.v -= (texcoords->br.v - texcoords->bl.v) * frac;
}
}
return FALSE;
}
/*-------------------------------------------------
render_line_to_quad - convert a line and a
width to four points
-------------------------------------------------*/
void render_line_to_quad(const render_bounds *bounds, float width, render_bounds *bounds0, render_bounds *bounds1)
{
render_bounds modbounds = *bounds;
float unitx, unity;
/*
High-level logic -- due to math optimizations, this info is lost below.
Imagine a thick line of width (w), drawn from (p0) to (p1), with a unit
vector (u) indicating the direction from (p0) to (p1).
B C
+---------------- ... ------------------+
| ^ |
| | |
| | |
* (p0) ------------> (w)| * (p1)
| (u) | |
| | |
| v |
+---------------- ... ------------------+
A D
To convert this into a quad, we need to compute the four points A, B, C
and D.
Starting with point A. We first multiply the unit vector by 0.5w and then
rotate the result 90 degrees. Thus, we have:
A.x = p0.x + 0.5 * w * u.x * cos(90) - 0.5 * w * u.y * sin(90)
A.y = p0.y + 0.5 * w * u.x * sin(90) + 0.5 * w * u.y * cos(90)
Conveniently, sin(90) = 1, and cos(90) = 0, so this simplifies to:
A.x = p0.x - 0.5 * w * u.y
A.y = p0.y + 0.5 * w * u.x
Working clockwise around the polygon, the same fallout happens all around as
we rotate the unit vector by -90 (B), -90 (C), and 90 (D) degrees:
B.x = p0.x + 0.5 * w * u.y
B.y = p0.y - 0.5 * w * u.x
C.x = p1.x - 0.5 * w * u.y
C.y = p1.y + 0.5 * w * u.x
D.x = p1.x + 0.5 * w * u.y
D.y = p1.y - 0.5 * w * u.x
*/
/* we only care about the half-width */
width *= 0.5f;
/* compute a vector from point 0 to point 1 */
unitx = modbounds.x1 - modbounds.x0;
unity = modbounds.y1 - modbounds.y0;
/* points just use a +1/+1 unit vector; this gives a nice diamond pattern */
if (unitx == 0 && unity == 0)
{
unitx = unity = 0.70710678f * width;
modbounds.x0 -= 0.5f * unitx;
modbounds.y0 -= 0.5f * unity;
modbounds.x1 += 0.5f * unitx;
modbounds.y1 += 0.5f * unity;
}
/* lines need to be divided by their length */
else
{
/* prescale unitx and unity by the half-width */
float invlength = width / sqrt(unitx * unitx + unity * unity);
unitx *= invlength;
unity *= invlength;
}
/* rotate the unit vector by 90 degrees and add to point 0 */
bounds0->x0 = modbounds.x0 - unity;
bounds0->y0 = modbounds.y0 + unitx;
/* rotate the unit vector by -90 degrees and add to point 0 */
bounds0->x1 = modbounds.x0 + unity;
bounds0->y1 = modbounds.y0 - unitx;
/* rotate the unit vector by 90 degrees and add to point 1 */
bounds1->x0 = modbounds.x1 - unity;
bounds1->y0 = modbounds.y1 + unitx;
/* rotate the unit vector by -09 degrees and add to point 1 */
bounds1->x1 = modbounds.x1 + unity;
bounds1->y1 = modbounds.y1 - unitx;
}
/*-------------------------------------------------
render_load_png - load a PNG file into a
bitmap
-------------------------------------------------*/
bool render_load_png(bitmap_argb32 &bitmap, emu_file &file, const char *dirname, const char *filename, bool load_as_alpha_to_existing)
{
// deallocate if we're not overlaying alpha
if (!load_as_alpha_to_existing)
bitmap.reset();
// open the file
astring fname;
if (dirname == NULL)
fname.cpy(filename);
else
fname.cpy(dirname).cat(PATH_SEPARATOR).cat(filename);
file_error filerr = file.open(fname);
if (filerr != FILERR_NONE)
return false;
// read the PNG data
png_info png;
png_error result = png_read_file(file, &png);
file.close();
if (result != PNGERR_NONE)
return false;
// verify we can handle this PNG
if (png.bit_depth > 8)
{
logerror("%s: Unsupported bit depth %d (8 bit max)\n", filename, png.bit_depth);
png_free(&png);
return false;
}
if (png.interlace_method != 0)
{
logerror("%s: Interlace unsupported\n", filename);
png_free(&png);
return false;
}
if (png.color_type != 0 && png.color_type != 3 && png.color_type != 2 && png.color_type != 6)
{
logerror("%s: Unsupported color type %d\n", filename, png.color_type);
png_free(&png);
return false;
}
// if less than 8 bits, upsample
png_expand_buffer_8bit(&png);
// non-alpha case
bool hasalpha = false;
if (!load_as_alpha_to_existing)
{
bitmap.allocate(png.width, png.height);
hasalpha = copy_png_to_bitmap(bitmap, &png);
}
// alpha case
else if (png.width == bitmap.width() && png.height == bitmap.height())
hasalpha = copy_png_alpha_to_bitmap(bitmap, &png);
// free PNG data
png_free(&png);
return hasalpha;
}
/*-------------------------------------------------
copy_png_to_bitmap - copy the PNG data to a
bitmap
-------------------------------------------------*/
static bool copy_png_to_bitmap(bitmap_argb32 &bitmap, const png_info *png)
{
UINT8 accumalpha = 0xff;
UINT8 *src;
int x, y;
/* handle 8bpp palettized case */
if (png->color_type == 3)
{
/* loop over width/height */
src = png->image;
for (y = 0; y < png->height; y++)
for (x = 0; x < png->width; x++, src++)
{
/* determine alpha and expand to 32bpp */
UINT8 alpha = (*src < png->num_trans) ? png->trans[*src] : 0xff;
accumalpha &= alpha;
bitmap.pix32(y, x) = rgb_t(alpha, png->palette[*src * 3], png->palette[*src * 3 + 1], png->palette[*src * 3 + 2]);
}
}
/* handle 8bpp grayscale case */
else if (png->color_type == 0)
{
/* loop over width/height */
src = png->image;
for (y = 0; y < png->height; y++)
for (x = 0; x < png->width; x++, src++)
bitmap.pix32(y, x) = rgb_t(0xff, *src, *src, *src);
}
/* handle 32bpp non-alpha case */
else if (png->color_type == 2)
{
/* loop over width/height */
src = png->image;
for (y = 0; y < png->height; y++)
for (x = 0; x < png->width; x++, src += 3)
bitmap.pix32(y, x) = rgb_t(0xff, src[0], src[1], src[2]);
}
/* handle 32bpp alpha case */
else
{
/* loop over width/height */
src = png->image;
for (y = 0; y < png->height; y++)
for (x = 0; x < png->width; x++, src += 4)
{
accumalpha &= src[3];
bitmap.pix32(y, x) = rgb_t(src[3], src[0], src[1], src[2]);
}
}
/* set the hasalpha flag */
return (accumalpha != 0xff);
}
/*-------------------------------------------------
copy_png_alpha_to_bitmap - copy the PNG data
to the alpha channel of a bitmap
-------------------------------------------------*/
static bool copy_png_alpha_to_bitmap(bitmap_argb32 &bitmap, const png_info *png)
{
UINT8 accumalpha = 0xff;
UINT8 *src;
int x, y;
/* handle 8bpp palettized case */
if (png->color_type == 3)
{
/* loop over width/height */
src = png->image;
for (y = 0; y < png->height; y++)
for (x = 0; x < png->width; x++, src++)
{
rgb_t pixel = bitmap.pix32(y, x);
UINT8 alpha = rgb_t(png->palette[*src * 3], png->palette[*src * 3 + 1], png->palette[*src * 3 + 2]).brightness();
accumalpha &= alpha;
bitmap.pix32(y, x) = rgb_t(alpha, pixel.r(), pixel.g(), pixel.b());
}
}
/* handle 8bpp grayscale case */
else if (png->color_type == 0)
{
/* loop over width/height */
src = png->image;
for (y = 0; y < png->height; y++)
for (x = 0; x < png->width; x++, src++)
{
rgb_t pixel = bitmap.pix32(y, x);
accumalpha &= *src;
bitmap.pix32(y, x) = rgb_t(*src, pixel.r(), pixel.g(), pixel.b());
}
}
/* handle 32bpp non-alpha case */
else if (png->color_type == 2)
{
/* loop over width/height */
src = png->image;
for (y = 0; y < png->height; y++)
for (x = 0; x < png->width; x++, src += 3)
{
rgb_t pixel = bitmap.pix32(y, x);
UINT8 alpha = rgb_t(src[0], src[1], src[2]).brightness();
accumalpha &= alpha;
bitmap.pix32(y, x) = rgb_t(alpha, pixel.r(), pixel.g(), pixel.b());
}
}
/* handle 32bpp alpha case */
else
{
/* loop over width/height */
src = png->image;
for (y = 0; y < png->height; y++)
for (x = 0; x < png->width; x++, src += 4)
{
rgb_t pixel = bitmap.pix32(y, x);
UINT8 alpha = rgb_t(src[0], src[1], src[2]).brightness();
accumalpha &= alpha;
bitmap.pix32(y, x) = rgb_t(alpha, pixel.r(), pixel.g(), pixel.b());
}
}
/* set the hasalpha flag */
return (accumalpha != 0xff);
}