mame/src/emu/video.cpp
Vas Crabb 97b6717027 (nw) Clean up the mess on master
This effectively reverts b380514764 and
c24473ddff, restoring the state at
598cd52272.

Before pushing, please check that what you're about to push is sane.
Check your local commit log and ensure there isn't anything out-of-place
before pushing to mainline.  When things like this happen, it wastes
everyone's time.  I really don't need this in a week when real work™ is
busting my balls and I'm behind where I want to be with preparing for
MAME release.
2019-03-26 11:13:37 +11:00

1572 lines
48 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
video.cpp
Core MAME video routines.
***************************************************************************/
#include "emu.h"
#include "emuopts.h"
#include "debugger.h"
#include "ui/uimain.h"
#include "crsshair.h"
#include "rendersw.hxx"
#include "output.h"
#include "aviio.h"
#include "png.h"
#include "xmlfile.h"
#include "osdepend.h"
//**************************************************************************
// DEBUGGING
//**************************************************************************
#define LOG_THROTTLE (0)
//**************************************************************************
// GLOBAL VARIABLES
//**************************************************************************
// frameskipping tables
const bool video_manager::s_skiptable[FRAMESKIP_LEVELS][FRAMESKIP_LEVELS] =
{
{ false, false, false, false, false, false, false, false, false, false, false, false },
{ false, false, false, false, false, false, false, false, false, false, false, true },
{ false, false, false, false, false, true , false, false, false, false, false, true },
{ false, false, false, true , false, false, false, true , false, false, false, true },
{ false, false, true , false, false, true , false, false, true , false, false, true },
{ false, true , false, false, true , false, true , false, false, true , false, true },
{ false, true , false, true , false, true , false, true , false, true , false, true },
{ false, true , false, true , true , false, true , false, true , true , false, true },
{ false, true , true , false, true , true , false, true , true , false, true , true },
{ false, true , true , true , false, true , true , true , false, true , true , true },
{ false, true , true , true , true , true , false, true , true , true , true , true },
{ false, true , true , true , true , true , true , true , true , true , true , true }
};
//**************************************************************************
// VIDEO MANAGER
//**************************************************************************
static void video_notifier_callback(const char *outname, s32 value, void *param)
{
video_manager *vm = (video_manager *)param;
vm->set_output_changed();
}
//-------------------------------------------------
// video_manager - constructor
//-------------------------------------------------
video_manager::video_manager(running_machine &machine)
: m_machine(machine)
, m_screenless_frame_timer(nullptr)
, m_output_changed(false)
, m_throttle_last_ticks(0)
, m_throttle_realtime(attotime::zero)
, m_throttle_emutime(attotime::zero)
, m_throttle_history(0)
, m_speed_last_realtime(0)
, m_speed_last_emutime(attotime::zero)
, m_speed_percent(1.0)
, m_overall_real_seconds(0)
, m_overall_real_ticks(0)
, m_overall_emutime(attotime::zero)
, m_overall_valid_counter(0)
, m_throttled(machine.options().throttle())
, m_throttle_rate(1.0f)
, m_fastforward(false)
, m_seconds_to_run(machine.options().seconds_to_run())
, m_auto_frameskip(machine.options().auto_frameskip())
, m_speed(original_speed_setting())
, m_empty_skip_count(0)
, m_frameskip_level(machine.options().frameskip())
, m_frameskip_counter(0)
, m_frameskip_adjust(0)
, m_skipping_this_frame(false)
, m_average_oversleep(0)
, m_snap_target(nullptr)
, m_snap_native(true)
, m_snap_width(0)
, m_snap_height(0)
, m_timecode_enabled(false)
, m_timecode_write(false)
, m_timecode_text("")
, m_timecode_start(attotime::zero)
, m_timecode_total(attotime::zero)
{
// request a callback upon exiting
machine.add_notifier(MACHINE_NOTIFY_EXIT, machine_notify_delegate(&video_manager::exit, this));
machine.save().register_postload(save_prepost_delegate(FUNC(video_manager::postload), this));
// extract initial execution state from global configuration settings
update_refresh_speed();
const unsigned screen_count(screen_device_iterator(machine.root_device()).count());
const bool no_screens(!screen_count);
// create a render target for snapshots
const char *viewname = machine.options().snap_view();
m_snap_native = !no_screens && (viewname[0] == 0 || strcmp(viewname, "native") == 0);
if (m_snap_native)
{
// the native target is hard-coded to our internal layout and has all options disabled
util::xml::file::ptr const root(util::xml::file::create());
if (!root)
throw emu_fatalerror("Couldn't create XML document??");
util::xml::data_node *const layoutnode(root->add_child("mamelayout", nullptr));
if (!layoutnode)
throw emu_fatalerror("Couldn't create XML node??");
layoutnode->set_attribute_int("version", 2);
for (unsigned i = 0; screen_count > i; ++i)
{
util::xml::data_node *const viewnode(layoutnode->add_child("view", nullptr));
if (!viewnode)
throw emu_fatalerror("Couldn't create XML node??");
viewnode->set_attribute("name", util::xml::normalize_string(util::string_format("s%1$u", i).c_str()));
util::xml::data_node *const screennode(viewnode->add_child("screen", nullptr));
if (!screennode)
throw emu_fatalerror("Couldn't create XML node??");
screennode->set_attribute_int("index", i);
util::xml::data_node *const boundsnode(screennode->add_child("bounds", nullptr));
if (!boundsnode)
throw emu_fatalerror("Couldn't create XML node??");
boundsnode->set_attribute_int("left", 0);
boundsnode->set_attribute_int("top", 0);
boundsnode->set_attribute_int("right", 1);
boundsnode->set_attribute_int("bottom", 1);
}
m_snap_target = machine.render().target_alloc(*root, RENDER_CREATE_SINGLE_FILE | RENDER_CREATE_HIDDEN);
m_snap_target->set_backdrops_enabled(false);
m_snap_target->set_overlays_enabled(false);
m_snap_target->set_bezels_enabled(false);
m_snap_target->set_cpanels_enabled(false);
m_snap_target->set_marquees_enabled(false);
m_snap_target->set_screen_overlay_enabled(false);
m_snap_target->set_zoom_to_screen(false);
}
else
{
// otherwise, non-default targets select the specified view and turn off effects
m_snap_target = machine.render().target_alloc(nullptr, RENDER_CREATE_HIDDEN);
m_snap_target->set_view(m_snap_target->configured_view(viewname, 0, 1));
m_snap_target->set_screen_overlay_enabled(false);
}
// extract snap resolution if present
if (sscanf(machine.options().snap_size(), "%dx%d", &m_snap_width, &m_snap_height) != 2)
m_snap_width = m_snap_height = 0;
// start recording movie if specified
const char *filename = machine.options().mng_write();
if (filename[0] != 0)
begin_recording(filename, MF_MNG);
filename = machine.options().avi_write();
if (filename[0] != 0)
begin_recording(filename, MF_AVI);
// if no screens, create a periodic timer to drive updates
if (no_screens)
{
m_screenless_frame_timer = machine.scheduler().timer_alloc(timer_expired_delegate(FUNC(video_manager::screenless_update_callback), this));
m_screenless_frame_timer->adjust(screen_device::DEFAULT_FRAME_PERIOD, 0, screen_device::DEFAULT_FRAME_PERIOD);
machine.output().set_notifier(nullptr, video_notifier_callback, this);
}
}
//-------------------------------------------------
// set_frameskip - set the current actual
// frameskip (-1 means autoframeskip)
//-------------------------------------------------
void video_manager::set_frameskip(int frameskip)
{
// -1 means autoframeskip
if (frameskip == -1)
{
m_auto_frameskip = true;
m_frameskip_level = 0;
}
// any other level is a direct control
else if (frameskip >= 0 && frameskip <= MAX_FRAMESKIP)
{
m_auto_frameskip = false;
m_frameskip_level = frameskip;
}
}
//-------------------------------------------------
// frame_update - handle frameskipping and UI,
// plus updating the screen during normal
// operations
//-------------------------------------------------
void video_manager::frame_update(bool from_debugger)
{
// only render sound and video if we're in the running phase
machine_phase const phase = machine().phase();
bool skipped_it = m_skipping_this_frame;
if (phase == machine_phase::RUNNING && (!machine().paused() || machine().options().update_in_pause()))
{
bool anything_changed = finish_screen_updates();
// if none of the screens changed and we haven't skipped too many frames in a row,
// mark this frame as skipped to prevent throttling; this helps for games that
// don't update their screen at the monitor refresh rate
if (!anything_changed && !m_auto_frameskip && m_frameskip_level == 0 && m_empty_skip_count++ < 3)
skipped_it = true;
else
m_empty_skip_count = 0;
}
// draw the user interface
emulator_info::draw_user_interface(machine());
// if we're throttling, synchronize before rendering
attotime current_time = machine().time();
if (!from_debugger && !skipped_it && effective_throttle())
update_throttle(current_time);
// ask the OSD to update
g_profiler.start(PROFILER_BLIT);
machine().osd().update(!from_debugger && skipped_it);
g_profiler.stop();
emulator_info::periodic_check();
// perform tasks for this frame
if (!from_debugger)
machine().call_notifiers(MACHINE_NOTIFY_FRAME);
// update frameskipping
if (!from_debugger)
update_frameskip();
// update speed computations
if (!from_debugger && !skipped_it)
recompute_speed(current_time);
// call the end-of-frame callback
if (phase == machine_phase::RUNNING)
{
// reset partial updates if we're paused or if the debugger is active
screen_device *const screen = screen_device_iterator(machine().root_device()).first();
bool const debugger_enabled = machine().debug_flags & DEBUG_FLAG_ENABLED;
bool const within_instruction_hook = debugger_enabled && machine().debugger().within_instruction_hook();
if (screen && (machine().paused() || from_debugger || within_instruction_hook))
screen->reset_partial_updates();
}
}
//-------------------------------------------------
// speed_text - print the text to be displayed
// into a string buffer
//-------------------------------------------------
std::string video_manager::speed_text()
{
std::ostringstream str;
// if we're paused, just display Paused
bool paused = machine().paused();
if (paused)
str << "paused";
// if we're fast forwarding, just display Fast-forward
else if (m_fastforward)
str << "fast ";
// if we're auto frameskipping, display that plus the level
else if (effective_autoframeskip())
util::stream_format(str, "auto%2d/%d", effective_frameskip(), MAX_FRAMESKIP);
// otherwise, just display the frameskip plus the level
else
util::stream_format(str, "skip %d/%d", effective_frameskip(), MAX_FRAMESKIP);
// append the speed for all cases except paused
if (!paused)
util::stream_format(str, "%4d%%", (int)(100 * m_speed_percent + 0.5));
// display the number of partial updates as well
int partials = 0;
for (screen_device &screen : screen_device_iterator(machine().root_device()))
partials += screen.partial_updates();
if (partials > 1)
util::stream_format(str, "\n%d partial updates", partials);
return str.str();
}
//-------------------------------------------------
// save_snapshot - save a snapshot to the given
// file handle
//-------------------------------------------------
void video_manager::save_snapshot(screen_device *screen, emu_file &file)
{
// validate
assert(!m_snap_native || screen != nullptr);
// create the bitmap to pass in
create_snapshot_bitmap(screen);
// add two text entries describing the image
std::string text1 = std::string(emulator_info::get_appname()).append(" ").append(emulator_info::get_build_version());
std::string text2 = std::string(machine().system().manufacturer).append(" ").append(machine().system().type.fullname());
png_info pnginfo;
pnginfo.add_text("Software", text1.c_str());
pnginfo.add_text("System", text2.c_str());
// now do the actual work
const rgb_t *palette = (screen != nullptr && screen->has_palette()) ? screen->palette().palette()->entry_list_adjusted() : nullptr;
int entries = (screen != nullptr && screen->has_palette()) ? screen->palette().entries() : 0;
png_error error = png_write_bitmap(file, &pnginfo, m_snap_bitmap, entries, palette);
if (error != PNGERR_NONE)
osd_printf_error("Error generating PNG for snapshot: png_error = %d\n", error);
}
//-------------------------------------------------
// save_active_screen_snapshots - save a
// snapshot of all active screens
//-------------------------------------------------
void video_manager::save_active_screen_snapshots()
{
// if we're native, then write one snapshot per visible screen
if (m_snap_native)
{
// write one snapshot per visible screen
for (screen_device &screen : screen_device_iterator(machine().root_device()))
if (machine().render().is_live(screen))
{
emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
osd_file::error filerr = open_next(file, "png");
if (filerr == osd_file::error::NONE)
save_snapshot(&screen, file);
}
}
// otherwise, just write a single snapshot
else
{
emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
osd_file::error filerr = open_next(file, "png");
if (filerr == osd_file::error::NONE)
save_snapshot(nullptr, file);
}
}
//-------------------------------------------------
// save_input_timecode - add a line of current
// timestamp to inp.timecode file
//-------------------------------------------------
void video_manager::save_input_timecode()
{
// if record timecode input is not active, do nothing
if (!m_timecode_enabled) {
return;
}
m_timecode_write = true;
}
std::string &video_manager::timecode_text(std::string &str)
{
attotime elapsed_time = machine().time() - m_timecode_start;
str = string_format(" %s%s%02d:%02d %s",
m_timecode_text,
m_timecode_text.empty() ? "" : " ",
(elapsed_time.m_seconds / 60) % 60,
elapsed_time.m_seconds % 60,
machine().paused() ? "[paused] " : "");
return str;
}
std::string &video_manager::timecode_total_text(std::string &str)
{
attotime elapsed_time = m_timecode_total;
if (machine().ui().show_timecode_counter()) {
elapsed_time += machine().time() - m_timecode_start;
}
str = string_format("TOTAL %02d:%02d ",
(elapsed_time.m_seconds / 60) % 60,
elapsed_time.m_seconds % 60);
return str;
}
//-------------------------------------------------
// begin_recording_mng - begin recording a MNG
//-------------------------------------------------
void video_manager::begin_recording_mng(const char *name, uint32_t index, screen_device *screen)
{
// stop any existing recording
end_recording_mng(index);
mng_info_t &info = m_mngs[index];
// reset the state
info.m_mng_frame = 0;
info.m_mng_next_frame_time = machine().time();
// create a new movie file and start recording
info.m_mng_file = std::make_unique<emu_file>(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
osd_file::error filerr;
if (name != nullptr)
{
std::string full_name(name);
if (index > 0)
{
char name_buf[256] = { 0 };
snprintf(name_buf, 256, "%s%d", name, index);
full_name = name_buf;
}
filerr = info.m_mng_file->open(full_name.c_str());
}
else
{
filerr = open_next(*info.m_mng_file, "mng");
}
if (filerr == osd_file::error::NONE)
{
// start the capture
int rate = int(screen->frame_period().as_hz());
png_error pngerr = mng_capture_start(*info.m_mng_file, m_snap_bitmap, rate);
if (pngerr != PNGERR_NONE)
{
osd_printf_error("Error capturing MNG, png_error=%d\n", pngerr);
return end_recording_mng(index);
}
// compute the frame time
info.m_mng_frame_period = attotime::from_hz(rate);
}
else
{
osd_printf_error("Error creating MNG, osd_file::error=%d\n", int(filerr));
info.m_mng_file.reset();
}
}
//-------------------------------------------------
// begin_recording_avi - begin recording an AVI
//-------------------------------------------------
void video_manager::begin_recording_avi(const char *name, uint32_t index, screen_device *screen)
{
// stop any existing recording
end_recording_avi(index);
avi_info_t &avi_info = m_avis[index];
// reset the state
avi_info.m_avi_frame = 0;
avi_info.m_avi_next_frame_time = machine().time();
// build up information about this new movie
avi_file::movie_info info;
info.video_format = 0;
info.video_timescale = 1000 * screen->frame_period().as_hz();
info.video_sampletime = 1000;
info.video_numsamples = 0;
info.video_width = m_snap_bitmap.width();
info.video_height = m_snap_bitmap.height();
info.video_depth = 24;
info.audio_format = 0;
info.audio_timescale = machine().sample_rate();
info.audio_sampletime = 1;
info.audio_numsamples = 0;
info.audio_channels = 2;
info.audio_samplebits = 16;
info.audio_samplerate = machine().sample_rate();
// create a new temporary movie file
osd_file::error filerr;
std::string fullpath;
{
emu_file tempfile(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
if (name != nullptr)
{
std::string full_name(name);
if (index > 0)
{
char name_buf[256] = { 0 };
snprintf(name_buf, 256, "%s%d", name, index);
full_name = name_buf;
}
filerr = tempfile.open(full_name.c_str());
}
else
{
filerr = open_next(tempfile, "avi");
}
// if we succeeded, make a copy of the name and create the real file over top
if (filerr == osd_file::error::NONE)
fullpath = tempfile.fullpath();
}
if (filerr == osd_file::error::NONE)
{
// compute the frame time
avi_info.m_avi_frame_period = attotime::from_seconds(1000) / info.video_timescale;
// create the file and free the string
avi_file::error avierr = avi_file::create(fullpath, info, avi_info.m_avi_file);
if (avierr != avi_file::error::NONE)
{
osd_printf_error("Error creating AVI: %s\n", avi_file::error_string(avierr));
return end_recording_avi(index);
}
}
}
//-------------------------------------------------
// begin_recording - begin recording of a movie
//-------------------------------------------------
void video_manager::begin_recording(const char *name, movie_format format)
{
// create a snapshot bitmap so we know what the target size is
screen_device_iterator iterator = screen_device_iterator(machine().root_device());
screen_device_iterator::auto_iterator iter = iterator.begin();
const uint32_t count = (uint32_t)iterator.count();
switch (format)
{
case MF_AVI:
if (m_avis.empty())
m_avis.resize(count);
if (m_snap_native)
{
for (uint32_t index = 0; index < count; index++, iter++)
{
create_snapshot_bitmap(iter.current());
begin_recording_avi(name, index, iter.current());
}
}
else
{
create_snapshot_bitmap(nullptr);
begin_recording_avi(name, 0, iter.current());
}
break;
case MF_MNG:
if (m_mngs.empty())
m_mngs.resize(count);
if (m_snap_native)
{
for (uint32_t index = 0; index < count; index++, iter++)
{
create_snapshot_bitmap(iter.current());
begin_recording_mng(name, index, iter.current());
}
}
else
{
create_snapshot_bitmap(nullptr);
begin_recording_mng(name, 0, iter.current());
}
break;
default:
osd_printf_error("Unknown movie format: %d\n", format);
break;
}
}
//--------------------------------------------------
// end_recording_avi - stop recording an AVI movie
//--------------------------------------------------
void video_manager::end_recording_avi(uint32_t index)
{
avi_info_t &info = m_avis[index];
if (info.m_avi_file)
{
info.m_avi_file.reset();
// reset the state
info.m_avi_frame = 0;
}
}
//--------------------------------------------------
// end_recording_mng - stop recording a MNG movie
//--------------------------------------------------
void video_manager::end_recording_mng(uint32_t index)
{
mng_info_t &info = m_mngs[index];
if (info.m_mng_file != nullptr)
{
mng_capture_stop(*info.m_mng_file);
info.m_mng_file.reset();
// reset the state
info.m_mng_frame = 0;
}
}
//-------------------------------------------------
// add_sound_to_recording - add sound to a movie
// recording
//-------------------------------------------------
void video_manager::add_sound_to_recording(const s16 *sound, int numsamples)
{
for (uint32_t index = 0; index < m_avis.size(); index++)
{
add_sound_to_avi_recording(sound, numsamples, index);
if (!m_snap_native)
break;
}
}
//-------------------------------------------------
// add_sound_to_avi_recording - add sound to an
// AVI recording for a given screen
//-------------------------------------------------
void video_manager::add_sound_to_avi_recording(const s16 *sound, int numsamples, uint32_t index)
{
avi_info_t &info = m_avis[index];
// only record if we have a file
if (info.m_avi_file != nullptr)
{
g_profiler.start(PROFILER_MOVIE_REC);
// write the next frame
avi_file::error avierr = info.m_avi_file->append_sound_samples(0, sound + 0, numsamples, 1);
if (avierr == avi_file::error::NONE)
avierr = info.m_avi_file->append_sound_samples(1, sound + 1, numsamples, 1);
if (avierr != avi_file::error::NONE)
end_recording_avi(index);
g_profiler.stop();
}
}
//-------------------------------------------------
// video_exit - close down the video system
//-------------------------------------------------
void video_manager::exit()
{
// stop recording any movie
for (uint32_t index = 0; index < (std::max)(m_mngs.size(), m_avis.size()); index++)
{
if (index < m_avis.size())
end_recording_avi(index);
if (index < m_mngs.size())
end_recording_mng(index);
if (!m_snap_native)
break;
}
// free the snapshot target
machine().render().target_free(m_snap_target);
m_snap_bitmap.reset();
// print a final result if we have at least 2 seconds' worth of data
if (!emulator_info::standalone() && m_overall_emutime.seconds() >= 1)
{
osd_ticks_t tps = osd_ticks_per_second();
double final_real_time = (double)m_overall_real_seconds + (double)m_overall_real_ticks / (double)tps;
double final_emu_time = m_overall_emutime.as_double();
osd_printf_info("Average speed: %.2f%% (%d seconds)\n", 100 * final_emu_time / final_real_time, (m_overall_emutime + attotime(0, ATTOSECONDS_PER_SECOND / 2)).seconds());
}
}
//-------------------------------------------------
// screenless_update_callback - update generator
// when there are no screens to drive it
//-------------------------------------------------
void video_manager::screenless_update_callback(void *ptr, int param)
{
// force an update
frame_update(false);
}
//-------------------------------------------------
// postload - callback for resetting things after
// state has been loaded
//-------------------------------------------------
void video_manager::postload()
{
for (uint32_t index = 0; index < (std::max)(m_mngs.size(), m_avis.size()); index++)
{
if (index < m_avis.size())
m_avis[index].m_avi_next_frame_time = machine().time();
if (index < m_mngs.size())
m_mngs[index].m_mng_next_frame_time = machine().time();
if (!m_snap_native)
break;
}
}
//-------------------------------------------------
// is_recording - returns whether or not any
// screen is currently recording
//-------------------------------------------------
bool video_manager::is_recording() const
{
for (mng_info_t const &mng : m_mngs)
{
if (mng.m_mng_file)
return true;
else if (!m_snap_native)
break;
}
for (avi_info_t const &avi : m_avis)
{
if (avi.m_avi_file)
return true;
else if (!m_snap_native)
break;
}
return false;
}
//-------------------------------------------------
// effective_autoframeskip - return the effective
// autoframeskip value, accounting for fast
// forward
//-------------------------------------------------
inline bool video_manager::effective_autoframeskip() const
{
// if we're fast forwarding or paused, autoframeskip is disabled
if (m_fastforward || machine().paused())
return false;
// otherwise, it's up to the user
return m_auto_frameskip;
}
//-------------------------------------------------
// effective_frameskip - return the effective
// frameskip value, accounting for fast
// forward
//-------------------------------------------------
inline int video_manager::effective_frameskip() const
{
// if we're fast forwarding, use the maximum frameskip
if (m_fastforward)
return FRAMESKIP_LEVELS - 1;
// otherwise, it's up to the user
return m_frameskip_level;
}
//-------------------------------------------------
// effective_throttle - return the effective
// throttle value, accounting for fast
// forward and user interface
//-------------------------------------------------
inline bool video_manager::effective_throttle() const
{
// if we're paused, or if the UI is active, we always throttle
if (machine().paused()) //|| machine().ui().is_menu_active())
return true;
// if we're fast forwarding, we don't throttle
if (m_fastforward)
return false;
// otherwise, it's up to the user
return throttled();
}
//-------------------------------------------------
// original_speed_setting - return the original
// speed setting
//-------------------------------------------------
inline int video_manager::original_speed_setting() const
{
return machine().options().speed() * 1000.0f + 0.5f;
}
//-------------------------------------------------
// finish_screen_updates - finish updating all
// the screens
//-------------------------------------------------
bool video_manager::finish_screen_updates()
{
// finish updating the screens
screen_device_iterator iter(machine().root_device());
bool has_screen = false;
for (screen_device &screen : iter)
{
screen.update_partial(screen.visible_area().max_y);
has_screen = true;
}
bool anything_changed = !has_screen || m_output_changed;
m_output_changed = false;
// now add the quads for all the screens
for (screen_device &screen : iter)
if (screen.update_quads())
anything_changed = true;
// draw HUD from LUA callback (if any)
anything_changed |= emulator_info::frame_hook();
// update our movie recording and burn-in state
if (!machine().paused())
{
record_frame();
// iterate over screens and update the burnin for the ones that care
for (screen_device &screen : iter)
screen.update_burnin();
}
// draw any crosshairs
for (screen_device &screen : iter)
machine().crosshair().render(screen);
return anything_changed;
}
//-------------------------------------------------
// update_throttle - throttle to the game's
// natural speed
//-------------------------------------------------
void video_manager::update_throttle(attotime emutime)
{
/*
Throttling theory:
This routine is called periodically with an up-to-date emulated time.
The idea is to synchronize real time with emulated time. We do this
by "throttling", or waiting for real time to catch up with emulated
time.
In an ideal world, it will take less real time to emulate and render
each frame than the emulated time, so we need to slow things down to
get both times in sync.
There are many complications to this model:
* some games run too slow, so each frame we get further and
further behind real time; our only choice here is to not
throttle
* some games have very uneven frame rates; one frame will take
a long time to emulate, and the next frame may be very fast
* we run on top of multitasking OSes; sometimes execution time
is taken away from us, and this means we may not get enough
time to emulate one frame
* we may be paused, and emulated time may not be marching
forward
* emulated time could jump due to resetting the machine or
restoring from a saved state
*/
static const u8 popcount[256] =
{
0,1,1,2,1,2,2,3, 1,2,2,3,2,3,3,4, 1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6,
1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7,
1,2,2,3,2,3,3,4, 2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7,
2,3,3,4,3,4,4,5, 3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7, 4,5,5,6,5,6,6,7, 5,6,6,7,6,7,7,8
};
// outer scope so we can break out in case of a resync
while (1)
{
// apply speed factor to emu time
if (m_speed != 0 && m_speed != 1000)
{
// multiply emutime by 1000, then divide by the global speed factor
emutime = (emutime * 1000) / m_speed;
}
// compute conversion factors up front
osd_ticks_t ticks_per_second = osd_ticks_per_second();
attoseconds_t attoseconds_per_tick = ATTOSECONDS_PER_SECOND / ticks_per_second * m_throttle_rate;
// if we're paused, emutime will not advance; instead, we subtract a fixed
// amount of time (1/60th of a second) from the emulated time that was passed in,
// and explicitly reset our tracked real and emulated timers to that value ...
// this means we pretend that the last update was exactly 1/60th of a second
// ago, and was in sync in both real and emulated time
if (machine().paused())
{
m_throttle_emutime = emutime - attotime(0, ATTOSECONDS_PER_SECOND / PAUSED_REFRESH_RATE);
m_throttle_realtime = m_throttle_emutime;
}
// attempt to detect anomalies in the emulated time by subtracting the previously
// reported value from our current value; this should be a small value somewhere
// between 0 and 1/10th of a second ... anything outside of this range is obviously
// wrong and requires a resync
attoseconds_t emu_delta_attoseconds = (emutime - m_throttle_emutime).as_attoseconds();
if (emu_delta_attoseconds < 0 || emu_delta_attoseconds > ATTOSECONDS_PER_SECOND / 10)
{
if (LOG_THROTTLE)
machine().logerror("Resync due to weird emutime delta: %s\n", attotime(0, emu_delta_attoseconds).as_string(18));
break;
}
// now determine the current real time in OSD-specified ticks; we have to be careful
// here because counters can wrap, so we only use the difference between the last
// read value and the current value in our computations
osd_ticks_t diff_ticks = osd_ticks() - m_throttle_last_ticks;
m_throttle_last_ticks += diff_ticks;
// if it has been more than a full second of real time since the last call to this
// function, we just need to resynchronize
if (diff_ticks >= ticks_per_second)
{
if (LOG_THROTTLE)
machine().logerror("Resync due to real time advancing by more than 1 second\n");
break;
}
// convert this value into attoseconds for easier comparison
attoseconds_t real_delta_attoseconds = diff_ticks * attoseconds_per_tick;
// now update our real and emulated timers with the current values
m_throttle_emutime = emutime;
m_throttle_realtime += attotime(0, real_delta_attoseconds);
// keep a history of whether or not emulated time beat real time over the last few
// updates; this can be used for future heuristics
m_throttle_history = (m_throttle_history << 1) | (emu_delta_attoseconds > real_delta_attoseconds);
// determine how far ahead real time is versus emulated time; note that we use the
// accumulated times for this instead of the deltas for the current update because
// we want to track time over a longer duration than a single update
attoseconds_t real_is_ahead_attoseconds = (m_throttle_emutime - m_throttle_realtime).as_attoseconds();
// if we're more than 1/10th of a second out, or if we are behind at all and emulation
// is taking longer than the real frame, we just need to resync
if (real_is_ahead_attoseconds < -ATTOSECONDS_PER_SECOND / 10 ||
(real_is_ahead_attoseconds < 0 && popcount[m_throttle_history & 0xff] < 6))
{
if (LOG_THROTTLE)
machine().logerror("Resync due to being behind: %s (history=%08X)\n", attotime(0, -real_is_ahead_attoseconds).as_string(18), m_throttle_history);
break;
}
// if we're behind, it's time to just get out
if (real_is_ahead_attoseconds < 0)
return;
// compute the target real time, in ticks, where we want to be
osd_ticks_t target_ticks = m_throttle_last_ticks + real_is_ahead_attoseconds / attoseconds_per_tick;
// throttle until we read the target, and update real time to match the final time
diff_ticks = throttle_until_ticks(target_ticks) - m_throttle_last_ticks;
m_throttle_last_ticks += diff_ticks;
m_throttle_realtime += attotime(0, diff_ticks * attoseconds_per_tick);
return;
}
// reset realtime and emutime to the same value
m_throttle_realtime = m_throttle_emutime = emutime;
}
//-------------------------------------------------
// throttle_until_ticks - spin until the
// specified target time, calling the OSD code
// to sleep if possible
//-------------------------------------------------
osd_ticks_t video_manager::throttle_until_ticks(osd_ticks_t target_ticks)
{
// we're allowed to sleep via the OSD code only if we're configured to do so
// and we're not frameskipping due to autoframeskip, or if we're paused
bool const allowed_to_sleep = (machine().options().sleep() && (!effective_autoframeskip() || effective_frameskip() == 0)) || machine().paused();
// loop until we reach our target
g_profiler.start(PROFILER_IDLE);
osd_ticks_t current_ticks = osd_ticks();
while (current_ticks < target_ticks)
{
// compute how much time to sleep for, taking into account the average oversleep
osd_ticks_t delta = target_ticks - current_ticks;
if (delta > m_average_oversleep / 1000)
delta -= m_average_oversleep / 1000;
else
delta = 0;
// see if we can sleep
bool const slept = allowed_to_sleep && delta;
if (slept)
osd_sleep(delta);
// read the new value
osd_ticks_t const new_ticks = osd_ticks();
// keep some metrics on the sleeping patterns of the OSD layer
if (slept)
{
// if we overslept, keep an average of the amount
osd_ticks_t const actual_ticks = new_ticks - current_ticks;
if (actual_ticks > delta)
{
// take 99% of the previous average plus 1% of the new value
osd_ticks_t const oversleep_milliticks = 1000 * (actual_ticks - delta);
m_average_oversleep = (m_average_oversleep * 99 + oversleep_milliticks) / 100;
if (LOG_THROTTLE)
machine().logerror("Slept for %d ticks, got %d ticks, avgover = %d\n", (int)delta, (int)actual_ticks, (int)m_average_oversleep);
}
}
current_ticks = new_ticks;
}
g_profiler.stop();
return current_ticks;
}
//-------------------------------------------------
// update_frameskip - update frameskipping
// counters and periodically update autoframeskip
//-------------------------------------------------
void video_manager::update_frameskip()
{
// if we're throttling and autoframeskip is on, adjust
if (effective_throttle() && effective_autoframeskip() && m_frameskip_counter == 0)
{
// calibrate the "adjusted speed" based on the target
double adjusted_speed_percent = m_speed_percent / (double) m_throttle_rate;
// if we're too fast, attempt to increase the frameskip
double speed = m_speed * 0.001;
if (adjusted_speed_percent >= 0.995 * speed)
{
// but only after 3 consecutive frames where we are too fast
if (++m_frameskip_adjust >= 3)
{
m_frameskip_adjust = 0;
if (m_frameskip_level > 0)
m_frameskip_level--;
}
}
// if we're too slow, attempt to increase the frameskip
else
{
// if below 80% speed, be more aggressive
if (adjusted_speed_percent < 0.80 * speed)
m_frameskip_adjust -= (0.90 * speed - m_speed_percent) / 0.05;
// if we're close, only force it up to frameskip 8
else if (m_frameskip_level < 8)
m_frameskip_adjust--;
// perform the adjustment
while (m_frameskip_adjust <= -2)
{
m_frameskip_adjust += 2;
if (m_frameskip_level < MAX_FRAMESKIP)
m_frameskip_level++;
}
}
}
// increment the frameskip counter and determine if we will skip the next frame
m_frameskip_counter = (m_frameskip_counter + 1) % FRAMESKIP_LEVELS;
m_skipping_this_frame = s_skiptable[effective_frameskip()][m_frameskip_counter];
}
//-------------------------------------------------
// update_refresh_speed - update the m_speed
// based on the maximum refresh rate supported
//-------------------------------------------------
void video_manager::update_refresh_speed()
{
// only do this if the refreshspeed option is used
if (machine().options().refresh_speed())
{
double minrefresh = machine().render().max_update_rate();
if (minrefresh != 0)
{
// find the screen with the shortest frame period (max refresh rate)
// note that we first check the token since this can get called before all screens are created
attoseconds_t min_frame_period = ATTOSECONDS_PER_SECOND;
for (screen_device &screen : screen_device_iterator(machine().root_device()))
{
attoseconds_t period = screen.frame_period().attoseconds();
if (period != 0)
min_frame_period = std::min(min_frame_period, period);
}
// compute a target speed as an integral percentage
// note that we lop 0.25Hz off of the minrefresh when doing the computation to allow for
// the fact that most refresh rates are not accurate to 10 digits...
u32 target_speed = floor((minrefresh - 0.25) * 1000.0 / ATTOSECONDS_TO_HZ(min_frame_period));
u32 original_speed = original_speed_setting();
target_speed = std::min(target_speed, original_speed);
// if we changed, log that verbosely
if (target_speed != m_speed)
{
osd_printf_verbose("Adjusting target speed to %.1f%% (hw=%.2fHz, game=%.2fHz, adjusted=%.2fHz)\n", target_speed / 10.0, minrefresh, ATTOSECONDS_TO_HZ(min_frame_period), ATTOSECONDS_TO_HZ(min_frame_period * 1000.0 / target_speed));
m_speed = target_speed;
}
}
}
}
//-------------------------------------------------
// recompute_speed - recompute the current
// overall speed; we assume this is called only
// if we did not skip a frame
//-------------------------------------------------
void video_manager::recompute_speed(const attotime &emutime)
{
// if we don't have a starting time yet, or if we're paused, reset our starting point
if (m_speed_last_realtime == 0 || machine().paused())
{
m_speed_last_realtime = osd_ticks();
m_speed_last_emutime = emutime;
}
// if it has been more than the update interval, update the time
attotime delta_emutime = emutime - m_speed_last_emutime;
if (delta_emutime > attotime(0, ATTOSECONDS_PER_SPEED_UPDATE))
{
// convert from ticks to attoseconds
osd_ticks_t realtime = osd_ticks();
osd_ticks_t delta_realtime = realtime - m_speed_last_realtime;
osd_ticks_t tps = osd_ticks_per_second();
m_speed_percent = delta_emutime.as_double() * (double)tps / (double)delta_realtime;
// remember the last times
m_speed_last_realtime = realtime;
m_speed_last_emutime = emutime;
// if we're throttled, this time period counts for overall speed; otherwise, we reset the counter
if (!m_fastforward)
m_overall_valid_counter++;
else
m_overall_valid_counter = 0;
// if we've had at least 4 consecutive valid periods, accumulate stats
if (m_overall_valid_counter >= 4)
{
m_overall_real_ticks += delta_realtime;
while (m_overall_real_ticks >= tps)
{
m_overall_real_ticks -= tps;
m_overall_real_seconds++;
}
m_overall_emutime += delta_emutime;
}
}
// if we're past the "time-to-execute" requested, signal an exit
if (m_seconds_to_run != 0 && emutime.seconds() >= m_seconds_to_run)
{
// create a final screenshot
emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
osd_file::error filerr = file.open(machine().basename(), PATH_SEPARATOR "final.png");
if (filerr == osd_file::error::NONE)
save_snapshot(nullptr, file);
//printf("Scheduled exit at %f\n", emutime.as_double());
// schedule our demise
machine().schedule_exit();
}
}
//-------------------------------------------------
// create_snapshot_bitmap - creates a
// bitmap containing the screenshot for the
// given screen
//-------------------------------------------------
typedef software_renderer<u32, 0,0,0, 16,8,0, false, true> snap_renderer_bilinear;
typedef software_renderer<u32, 0,0,0, 16,8,0, false, false> snap_renderer;
void video_manager::create_snapshot_bitmap(screen_device *screen)
{
// select the appropriate view in our dummy target
if (m_snap_native && screen != nullptr)
{
screen_device_iterator iter(machine().root_device());
int view_index = iter.indexof(*screen);
assert(view_index != -1);
m_snap_target->set_view(view_index);
}
// get the minimum width/height and set it on the target
s32 width = m_snap_width;
s32 height = m_snap_height;
if (width == 0 || height == 0)
m_snap_target->compute_minimum_size(width, height);
m_snap_target->set_bounds(width, height);
// if we don't have a bitmap, or if it's not the right size, allocate a new one
if (!m_snap_bitmap.valid() || width != m_snap_bitmap.width() || height != m_snap_bitmap.height())
m_snap_bitmap.allocate(width, height);
// render the screen there
render_primitive_list &primlist = m_snap_target->get_primitives();
primlist.acquire_lock();
if (machine().options().snap_bilinear())
snap_renderer_bilinear::draw_primitives(primlist, &m_snap_bitmap.pix32(0), width, height, m_snap_bitmap.rowpixels());
else
snap_renderer::draw_primitives(primlist, &m_snap_bitmap.pix32(0), width, height, m_snap_bitmap.rowpixels());
primlist.release_lock();
}
//-------------------------------------------------
// open_next - open the next non-existing file of
// type filetype according to our numbering
// scheme
//-------------------------------------------------
osd_file::error video_manager::open_next(emu_file &file, const char *extension, uint32_t added_index)
{
u32 origflags = file.openflags();
// handle defaults
const char *snapname = machine().options().snap_name();
if (snapname == nullptr || snapname[0] == 0)
snapname = "%g/%i";
std::string snapstr(snapname);
// strip any extension in the provided name
int index = snapstr.find_last_of('.');
if (index != -1)
snapstr = snapstr.substr(0, index);
// handle %d in the template (for image devices)
std::string snapdev("%d_");
int pos = snapstr.find(snapdev);
if (pos != -1)
{
// if more %d are found, revert to default and ignore them all
if (snapstr.find(snapdev.c_str(), pos + 3) != -1)
snapstr.assign("%g/%i");
// else if there is a single %d, try to create the correct snapname
else
{
int name_found = 0;
// find length of the device name
int end1 = snapstr.find("/", pos + 3);
int end2 = snapstr.find("%", pos + 3);
int end;
if ((end1 != -1) && (end2 != -1))
end = std::min(end1, end2);
else if (end1 != -1)
end = end1;
else if (end2 != -1)
end = end2;
else
end = snapstr.length();
if (end - pos < 3)
fatalerror("Something very wrong is going on!!!\n");
// copy the device name to an std::string
std::string snapdevname;
snapdevname.assign(snapstr.substr(pos + 3, end - pos - 3));
//printf("check template: %s\n", snapdevname.c_str());
// verify that there is such a device for this system
for (device_image_interface &image : image_interface_iterator(machine().root_device()))
{
// get the device name
std::string tempdevname(image.brief_instance_name());
//printf("check device: %s\n", tempdevname.c_str());
if (snapdevname.compare(tempdevname) == 0)
{
// verify that such a device has an image mounted
if (image.basename() != nullptr)
{
std::string filename(image.basename());
// strip extension
filename = filename.substr(0, filename.find_last_of('.'));
// setup snapname and remove the %d_
strreplace(snapstr, snapdevname.c_str(), filename.c_str());
snapstr.erase(pos, 3);
//printf("check image: %s\n", filename.c_str());
name_found = 1;
}
}
}
// or fallback to default
if (name_found == 0)
snapstr.assign("%g/%i");
}
}
// add our own extension
snapstr.append(".").append(extension);
// substitute path and gamename up front
strreplace(snapstr, "/", PATH_SEPARATOR);
strreplace(snapstr, "%g", machine().basename());
// determine if the template has an index; if not, we always use the same name
std::string fname;
if (snapstr.find("%i") == -1)
fname.assign(snapstr);
// otherwise, we scan for the next available filename
else
{
// try until we succeed
file.set_openflags(OPEN_FLAG_WRITE);
for (int seq = 0; ; seq++)
{
// build up the filename
fname.assign(snapstr);
strreplace(fname, "%i", string_format("%04d", seq).c_str());
// try to open the file; stop when we fail
osd_file::error filerr = file.open(fname.c_str());
if (filerr == osd_file::error::NOT_FOUND)
{
break;
}
}
}
// create the final file
file.set_openflags(origflags);
return file.open(fname.c_str());
}
//-------------------------------------------------
// record_frame - record a frame of a movie
//-------------------------------------------------
void video_manager::record_frame()
{
// ignore if nothing to do
if (!is_recording())
return;
// start the profiler and get the current time
g_profiler.start(PROFILER_MOVIE_REC);
attotime curtime = machine().time();
screen_device_iterator device_iterator = screen_device_iterator(machine().root_device());
screen_device_iterator::auto_iterator iter = device_iterator.begin();
for (uint32_t index = 0; index < (std::max)(m_mngs.size(), m_avis.size()); index++, iter++)
{
// create the bitmap
create_snapshot_bitmap(iter.current());
// handle an AVI recording
if ((index < m_avis.size()) && m_avis[index].m_avi_file)
{
avi_info_t &avi_info = m_avis[index];
// loop until we hit the right time
while (avi_info.m_avi_next_frame_time <= curtime)
{
// write the next frame
avi_file::error avierr = avi_info.m_avi_file->append_video_frame(m_snap_bitmap);
if (avierr != avi_file::error::NONE)
{
g_profiler.stop(); // FIXME: double exit if this happens?
end_recording_avi(index);
break;
}
// advance time
avi_info.m_avi_next_frame_time += avi_info.m_avi_frame_period;
avi_info.m_avi_frame++;
}
}
// handle a MNG recording
if ((index < m_mngs.size()) && m_mngs[index].m_mng_file)
{
mng_info_t &mng_info = m_mngs[index];
// loop until we hit the right time
while (mng_info.m_mng_next_frame_time <= curtime)
{
// set up the text fields in the movie info
png_info pnginfo;
if (mng_info.m_mng_frame == 0)
{
std::string text1 = std::string(emulator_info::get_appname()).append(" ").append(emulator_info::get_build_version());
std::string text2 = std::string(machine().system().manufacturer).append(" ").append(machine().system().type.fullname());
pnginfo.add_text("Software", text1.c_str());
pnginfo.add_text("System", text2.c_str());
}
// write the next frame
screen_device *screen = iter.current();
const rgb_t *palette = (screen != nullptr && screen->has_palette()) ? screen->palette().palette()->entry_list_adjusted() : nullptr;
int entries = (screen != nullptr && screen->has_palette()) ? screen->palette().entries() : 0;
png_error error = mng_capture_frame(*mng_info.m_mng_file, pnginfo, m_snap_bitmap, entries, palette);
if (error != PNGERR_NONE)
{
g_profiler.stop(); // FIXME: double exit if this happens?
end_recording_mng(index);
break;
}
// advance time
mng_info.m_mng_next_frame_time += mng_info.m_mng_frame_period;
mng_info.m_mng_frame++;
}
}
if (!m_snap_native)
{
break;
}
}
g_profiler.stop();
}
//-------------------------------------------------
// toggle_throttle
//-------------------------------------------------
void video_manager::toggle_throttle()
{
set_throttled(!throttled());
}
//-------------------------------------------------
// toggle_record_movie
//-------------------------------------------------
void video_manager::toggle_record_movie(movie_format format)
{
if (!is_recording())
{
begin_recording(nullptr, format);
machine().popmessage("REC START (%s)", format == MF_MNG ? "MNG" : "AVI");
}
else
{
end_recording(format);
machine().popmessage("REC STOP (%s)", format == MF_MNG ? "MNG" : "AVI");
}
}
void video_manager::end_recording(movie_format format)
{
screen_device_iterator device_iterator = screen_device_iterator(machine().root_device());
screen_device_iterator::auto_iterator iter = device_iterator.begin();
const uint32_t count = (uint32_t)device_iterator.count();
switch (format)
{
case MF_AVI:
for (uint32_t index = 0; index < count; index++, iter++)
{
end_recording_avi(index);
if (!m_snap_native)
{
break;
}
}
break;
case MF_MNG:
for (uint32_t index = 0; index < count; index++, iter++)
{
end_recording_mng(index);
if (!m_snap_native)
{
break;
}
}
break;
default:
osd_printf_error("Unknown movie format: %d\n", format);
break;
}
}