mame/src/emu/cpu/m68000/m68kcpu.h

1682 lines
59 KiB
C++

/* ======================================================================== */
/* ========================= LICENSING & COPYRIGHT ======================== */
/* ======================================================================== */
/*
* MUSASHI
* Version 4.50
*
* A portable Motorola M680x0 processor emulation engine.
* Copyright Karl Stenerud. All rights reserved.
*
* This code may be freely used for non-commercial purposes as long as this
* copyright notice remains unaltered in the source code and any binary files
* containing this code in compiled form.
*
* All other licensing terms must be negotiated with the author
* (Karl Stenerud).
*
* The latest version of this code can be obtained at:
* http://kstenerud.cjb.net
*/
#pragma once
#ifndef __M68KCPU_H__
#define __M68KCPU_H__
class m68000_base_device;
#include "m68000.h"
#include <limits.h>
/* ======================================================================== */
/* ==================== ARCHITECTURE-DEPENDANT DEFINES ==================== */
/* ======================================================================== */
/* Check for > 32bit sizes */
#define MAKE_INT_8(A) (INT8)(A)
#define MAKE_INT_16(A) (INT16)(A)
#define MAKE_INT_32(A) (INT32)(A)
/* ======================================================================== */
/* ============================ GENERAL DEFINES =========================== */
/* ======================================================================== */
/* Exception Vectors handled by emulation */
#define EXCEPTION_RESET 0
#define EXCEPTION_BUS_ERROR 2 /* This one is not emulated! */
#define EXCEPTION_ADDRESS_ERROR 3 /* This one is partially emulated (doesn't stack a proper frame yet) */
#define EXCEPTION_ILLEGAL_INSTRUCTION 4
#define EXCEPTION_ZERO_DIVIDE 5
#define EXCEPTION_CHK 6
#define EXCEPTION_TRAPV 7
#define EXCEPTION_PRIVILEGE_VIOLATION 8
#define EXCEPTION_TRACE 9
#define EXCEPTION_1010 10
#define EXCEPTION_1111 11
#define EXCEPTION_FORMAT_ERROR 14
#define EXCEPTION_UNINITIALIZED_INTERRUPT 15
#define EXCEPTION_SPURIOUS_INTERRUPT 24
#define EXCEPTION_INTERRUPT_AUTOVECTOR 24
#define EXCEPTION_TRAP_BASE 32
/* Function codes set by CPU during data/address bus activity */
#define FUNCTION_CODE_USER_DATA 1
#define FUNCTION_CODE_USER_PROGRAM 2
#define FUNCTION_CODE_SUPERVISOR_DATA 5
#define FUNCTION_CODE_SUPERVISOR_PROGRAM 6
#define FUNCTION_CODE_CPU_SPACE 7
/* CPU types for deciding what to emulate */
#define CPU_TYPE_000 (0x00000001)
#define CPU_TYPE_008 (0x00000002)
#define CPU_TYPE_010 (0x00000004)
#define CPU_TYPE_EC020 (0x00000008)
#define CPU_TYPE_020 (0x00000010)
#define CPU_TYPE_EC030 (0x00000020)
#define CPU_TYPE_030 (0x00000040)
#define CPU_TYPE_EC040 (0x00000080)
#define CPU_TYPE_LC040 (0x00000100)
#define CPU_TYPE_040 (0x00000200)
#define CPU_TYPE_SCC070 (0x00000400)
#define CPU_TYPE_68340 (0x00000800)
#define CPU_TYPE_COLDFIRE (0x00001000)
/* Different ways to stop the CPU */
#define STOP_LEVEL_STOP 1
#define STOP_LEVEL_HALT 2
/* Used for 68000 address error processing */
#define INSTRUCTION_YES 0
#define INSTRUCTION_NO 0x08
#define MODE_READ 0x10
#define MODE_WRITE 0
#define RUN_MODE_NORMAL 0
#define RUN_MODE_BERR_AERR_RESET 1
#define M68K_CACR_IBE 0x10 // Instruction Burst Enable
#define M68K_CACR_CI 0x08 // Clear Instruction Cache
#define M68K_CACR_CEI 0x04 // Clear Entry in Instruction Cache
#define M68K_CACR_FI 0x02 // Freeze Instruction Cache
#define M68K_CACR_EI 0x01 // Enable Instruction Cache
/* ======================================================================== */
/* ================================ MACROS ================================ */
/* ======================================================================== */
/* ---------------------------- General Macros ---------------------------- */
/* Bit Isolation Macros */
#define BIT_0(A) ((A) & 0x00000001)
#define BIT_1(A) ((A) & 0x00000002)
#define BIT_2(A) ((A) & 0x00000004)
#define BIT_3(A) ((A) & 0x00000008)
#define BIT_4(A) ((A) & 0x00000010)
#define BIT_5(A) ((A) & 0x00000020)
#define BIT_6(A) ((A) & 0x00000040)
#define BIT_7(A) ((A) & 0x00000080)
#define BIT_8(A) ((A) & 0x00000100)
#define BIT_9(A) ((A) & 0x00000200)
#define BIT_A(A) ((A) & 0x00000400)
#define BIT_B(A) ((A) & 0x00000800)
#define BIT_C(A) ((A) & 0x00001000)
#define BIT_D(A) ((A) & 0x00002000)
#define BIT_E(A) ((A) & 0x00004000)
#define BIT_F(A) ((A) & 0x00008000)
#define BIT_10(A) ((A) & 0x00010000)
#define BIT_11(A) ((A) & 0x00020000)
#define BIT_12(A) ((A) & 0x00040000)
#define BIT_13(A) ((A) & 0x00080000)
#define BIT_14(A) ((A) & 0x00100000)
#define BIT_15(A) ((A) & 0x00200000)
#define BIT_16(A) ((A) & 0x00400000)
#define BIT_17(A) ((A) & 0x00800000)
#define BIT_18(A) ((A) & 0x01000000)
#define BIT_19(A) ((A) & 0x02000000)
#define BIT_1A(A) ((A) & 0x04000000)
#define BIT_1B(A) ((A) & 0x08000000)
#define BIT_1C(A) ((A) & 0x10000000)
#define BIT_1D(A) ((A) & 0x20000000)
#define BIT_1E(A) ((A) & 0x40000000)
#define BIT_1F(A) ((A) & 0x80000000)
/* Get the most significant bit for specific sizes */
#define GET_MSB_8(A) ((A) & 0x80)
#define GET_MSB_9(A) ((A) & 0x100)
#define GET_MSB_16(A) ((A) & 0x8000)
#define GET_MSB_17(A) ((A) & 0x10000)
#define GET_MSB_32(A) ((A) & 0x80000000)
#define GET_MSB_33(A) ((A) & U64(0x100000000))
/* Isolate nibbles */
#define LOW_NIBBLE(A) ((A) & 0x0f)
#define HIGH_NIBBLE(A) ((A) & 0xf0)
/* These are used to isolate 8, 16, and 32 bit sizes */
#define MASK_OUT_ABOVE_2(A) ((A) & 3)
#define MASK_OUT_ABOVE_8(A) ((A) & 0xff)
#define MASK_OUT_ABOVE_16(A) ((A) & 0xffff)
#define MASK_OUT_BELOW_2(A) ((A) & ~3)
#define MASK_OUT_BELOW_8(A) ((A) & ~0xff)
#define MASK_OUT_BELOW_16(A) ((A) & ~0xffff)
/* No need to mask if we are 32 bit */
#define MASK_OUT_ABOVE_32(A) ((A) & U64(0xffffffff))
#define MASK_OUT_BELOW_32(A) ((A) & ~U64(0xffffffff))
/* Shift & Rotate Macros. */
#define LSL(A, C) ((A) << (C))
#define LSR(A, C) ((A) >> (C))
/* We have to do this because the morons at ANSI decided that shifts
* by >= data size are undefined.
*/
#define LSR_32(A, C) ((C) < 32 ? (A) >> (C) : 0)
#define LSL_32(A, C) ((C) < 32 ? (A) << (C) : 0)
#define LSL_32_64(A, C) ((A) << (C))
#define LSR_32_64(A, C) ((A) >> (C))
#define ROL_33_64(A, C) (LSL_32_64(A, C) | LSR_32_64(A, 33-(C)))
#define ROR_33_64(A, C) (LSR_32_64(A, C) | LSL_32_64(A, 33-(C)))
#define ROL_8(A, C) MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C)))
#define ROL_9(A, C) (LSL(A, C) | LSR(A, 9-(C)))
#define ROL_16(A, C) MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C)))
#define ROL_17(A, C) (LSL(A, C) | LSR(A, 17-(C)))
#define ROL_32(A, C) MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C)))
#define ROL_33(A, C) (LSL_32(A, C) | LSR_32(A, 33-(C)))
#define ROR_8(A, C) MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C)))
#define ROR_9(A, C) (LSR(A, C) | LSL(A, 9-(C)))
#define ROR_16(A, C) MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C)))
#define ROR_17(A, C) (LSR(A, C) | LSL(A, 17-(C)))
#define ROR_32(A, C) MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C)))
#define ROR_33(A, C) (LSR_32(A, C) | LSL_32(A, 33-(C)))
/* ------------------------------ CPU Access ------------------------------ */
/* Access the CPU registers */
#define REG_DA(M) (M)->dar /* easy access to data and address regs */
#define REG_D(M) (M)->dar
#define REG_A(M) ((M)->dar+8)
#define REG_PPC(M) (M)->ppc
#define REG_PC(M) (M)->pc
#define REG_SP_BASE(M) (M)->sp
#define REG_USP(M) (M)->sp[0]
#define REG_ISP(M) (M)->sp[4]
#define REG_MSP(M) (M)->sp[6]
#define REG_SP(M) (M)->dar[15]
#define REG_FP(M) (M)->fpr
#define REG_FPCR(M) (M)->fpcr
#define REG_FPSR(M) (M)->fpsr
#define REG_FPIAR(M) (M)->fpiar
/* ----------------------------- Configuration ---------------------------- */
/* These defines are dependant on the configuration defines in m68kconf.h */
/* Disable certain comparisons if we're not using all CPU types */
#define CPU_TYPE_IS_COLDFIRE(A) ((A) & (CPU_TYPE_COLDFIRE))
#define CPU_TYPE_IS_040_PLUS(A) ((A) & (CPU_TYPE_040 | CPU_TYPE_EC040))
#define CPU_TYPE_IS_040_LESS(A) 1
#define CPU_TYPE_IS_030_PLUS(A) ((A) & (CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040))
#define CPU_TYPE_IS_030_LESS(A) 1
#define CPU_TYPE_IS_020_PLUS(A) ((A) & (CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_68340 | CPU_TYPE_COLDFIRE))
#define CPU_TYPE_IS_020_LESS(A) 1
#define CPU_TYPE_IS_020_VARIANT(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_68340))
#define CPU_TYPE_IS_EC020_PLUS(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_68340 | CPU_TYPE_COLDFIRE))
#define CPU_TYPE_IS_EC020_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_EC020))
#define CPU_TYPE_IS_010(A) ((A) == CPU_TYPE_010)
#define CPU_TYPE_IS_010_PLUS(A) ((A) & (CPU_TYPE_010 | CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_EC030 | CPU_TYPE_030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_68340 | CPU_TYPE_COLDFIRE))
#define CPU_TYPE_IS_010_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010))
#define CPU_TYPE_IS_000(A) ((A) == CPU_TYPE_000 || (A) == CPU_TYPE_008)
/* Initiates trace checking before each instruction (t1) */
#define m68ki_trace_t1(m68k) m68k->tracing = m68k->t1_flag
/* adds t0 to trace checking if we encounter change of flow */
#define m68ki_trace_t0(m68k) m68k->tracing |= m68k->t0_flag
/* Clear all tracing */
#define m68ki_clear_trace(m68k) m68k->tracing = 0
/* Cause a trace exception if we are tracing */
#define m68ki_exception_if_trace(m68k) if(m68k->tracing) m68ki_exception_trace(m68k)
/* -------------------------- EA / Operand Access ------------------------- */
/*
* The general instruction format follows this pattern:
* .... XXX. .... .YYY
* where XXX is register X and YYY is register Y
*/
/* Data Register Isolation */
#define DX(M) (REG_D(M)[((M)->ir >> 9) & 7])
#define DY(M) (REG_D(M)[(M)->ir & 7])
/* Address Register Isolation */
#define AX(M) (REG_A(M)[((M)->ir >> 9) & 7])
#define AY(M) (REG_A(M)[(M)->ir & 7])
/* Effective Address Calculations */
#define EA_AY_AI_8(M) AY(M) /* address register indirect */
#define EA_AY_AI_16(M) EA_AY_AI_8(M)
#define EA_AY_AI_32(M) EA_AY_AI_8(M)
#define EA_AY_PI_8(M) (AY(M)++) /* postincrement (size = byte) */
#define EA_AY_PI_16(M) ((AY(M)+=2)-2) /* postincrement (size = word) */
#define EA_AY_PI_32(M) ((AY(M)+=4)-4) /* postincrement (size = long) */
#define EA_AY_PD_8(M) (--AY(M)) /* predecrement (size = byte) */
#define EA_AY_PD_16(M) (AY(M)-=2) /* predecrement (size = word) */
#define EA_AY_PD_32(M) (AY(M)-=4) /* predecrement (size = long) */
#define EA_AY_DI_8(M) (AY(M)+MAKE_INT_16(m68ki_read_imm_16(M))) /* displacement */
#define EA_AY_DI_16(M) EA_AY_DI_8(M)
#define EA_AY_DI_32(M) EA_AY_DI_8(M)
#define EA_AY_IX_8(M) m68ki_get_ea_ix(M, AY(M)) /* indirect + index */
#define EA_AY_IX_16(M) EA_AY_IX_8(M)
#define EA_AY_IX_32(M) EA_AY_IX_8(M)
#define EA_AX_AI_8(M) AX(M)
#define EA_AX_AI_16(M) EA_AX_AI_8(M)
#define EA_AX_AI_32(M) EA_AX_AI_8(M)
#define EA_AX_PI_8(M) (AX(M)++)
#define EA_AX_PI_16(M) ((AX(M)+=2)-2)
#define EA_AX_PI_32(M) ((AX(M)+=4)-4)
#define EA_AX_PD_8(M) (--AX(M))
#define EA_AX_PD_16(M) (AX(M)-=2)
#define EA_AX_PD_32(M) (AX(M)-=4)
#define EA_AX_DI_8(M) (AX(M)+MAKE_INT_16(m68ki_read_imm_16(M)))
#define EA_AX_DI_16(M) EA_AX_DI_8(M)
#define EA_AX_DI_32(M) EA_AX_DI_8(M)
#define EA_AX_IX_8(M) m68ki_get_ea_ix(M, AX(M))
#define EA_AX_IX_16(M) EA_AX_IX_8(M)
#define EA_AX_IX_32(M) EA_AX_IX_8(M)
#define EA_A7_PI_8(m68k) ((REG_A(m68k)[7]+=2)-2)
#define EA_A7_PD_8(m68k) (REG_A(m68k)[7]-=2)
#define EA_AW_8(m68k) MAKE_INT_16(m68ki_read_imm_16(m68k)) /* absolute word */
#define EA_AW_16(m68k) EA_AW_8(m68k)
#define EA_AW_32(m68k) EA_AW_8(m68k)
#define EA_AL_8(m68k) m68ki_read_imm_32(m68k) /* absolute long */
#define EA_AL_16(m68k) EA_AL_8(m68k)
#define EA_AL_32(m68k) EA_AL_8(m68k)
#define EA_PCDI_8(m68k) m68ki_get_ea_pcdi(m68k) /* pc indirect + displacement */
#define EA_PCDI_16(m68k) EA_PCDI_8(m68k)
#define EA_PCDI_32(m68k) EA_PCDI_8(m68k)
#define EA_PCIX_8(m68k) m68ki_get_ea_pcix(m68k) /* pc indirect + index */
#define EA_PCIX_16(m68k) EA_PCIX_8(m68k)
#define EA_PCIX_32(m68k) EA_PCIX_8(m68k)
#define OPER_I_8(m68k) m68ki_read_imm_8(m68k)
#define OPER_I_16(m68k) m68ki_read_imm_16(m68k)
#define OPER_I_32(m68k) m68ki_read_imm_32(m68k)
/* --------------------------- Status Register ---------------------------- */
/* Flag Calculation Macros */
#define CFLAG_8(A) (A)
#define CFLAG_16(A) ((A)>>8)
#define CFLAG_ADD_32(S, D, R) (((S & D) | (~R & (S | D)))>>23)
#define CFLAG_SUB_32(S, D, R) (((S & R) | (~D & (S | R)))>>23)
#define VFLAG_ADD_8(S, D, R) ((S^R) & (D^R))
#define VFLAG_ADD_16(S, D, R) (((S^R) & (D^R))>>8)
#define VFLAG_ADD_32(S, D, R) (((S^R) & (D^R))>>24)
#define VFLAG_SUB_8(S, D, R) ((S^D) & (R^D))
#define VFLAG_SUB_16(S, D, R) (((S^D) & (R^D))>>8)
#define VFLAG_SUB_32(S, D, R) (((S^D) & (R^D))>>24)
#define NFLAG_8(A) (A)
#define NFLAG_16(A) ((A)>>8)
#define NFLAG_32(A) ((A)>>24)
#define NFLAG_64(A) ((A)>>56)
#define ZFLAG_8(A) MASK_OUT_ABOVE_8(A)
#define ZFLAG_16(A) MASK_OUT_ABOVE_16(A)
#define ZFLAG_32(A) MASK_OUT_ABOVE_32(A)
/* Flag values */
#define NFLAG_SET 0x80
#define NFLAG_CLEAR 0
#define CFLAG_SET 0x100
#define CFLAG_CLEAR 0
#define XFLAG_SET 0x100
#define XFLAG_CLEAR 0
#define VFLAG_SET 0x80
#define VFLAG_CLEAR 0
#define ZFLAG_SET 0
#define ZFLAG_CLEAR 0xffffffff
#define SFLAG_SET 4
#define SFLAG_CLEAR 0
#define MFLAG_SET 2
#define MFLAG_CLEAR 0
/* Turn flag values into 1 or 0 */
#define XFLAG_AS_1(M) (((M)->x_flag>>8)&1)
#define NFLAG_AS_1(M) (((M)->n_flag>>7)&1)
#define VFLAG_AS_1(M) (((M)->v_flag>>7)&1)
#define ZFLAG_AS_1(M) (!(M)->not_z_flag)
#define CFLAG_AS_1(M) (((M)->c_flag>>8)&1)
/* Conditions */
#define COND_CS(M) ((M)->c_flag&0x100)
#define COND_CC(M) (!COND_CS(M))
#define COND_VS(M) ((M)->v_flag&0x80)
#define COND_VC(M) (!COND_VS(M))
#define COND_NE(M) (M)->not_z_flag
#define COND_EQ(M) (!COND_NE(M))
#define COND_MI(M) ((M)->n_flag&0x80)
#define COND_PL(M) (!COND_MI(M))
#define COND_LT(M) (((M)->n_flag^(M)->v_flag)&0x80)
#define COND_GE(M) (!COND_LT(M))
#define COND_HI(M) (COND_CC(M) && COND_NE(M))
#define COND_LS(M) (COND_CS(M) || COND_EQ(M))
#define COND_GT(M) (COND_GE(M) && COND_NE(M))
#define COND_LE(M) (COND_LT(M) || COND_EQ(M))
/* Reversed conditions */
#define COND_NOT_CS(M) COND_CC(M)
#define COND_NOT_CC(M) COND_CS(M)
#define COND_NOT_VS(M) COND_VC(M)
#define COND_NOT_VC(M) COND_VS(M)
#define COND_NOT_NE(M) COND_EQ(M)
#define COND_NOT_EQ(M) COND_NE(M)
#define COND_NOT_MI(M) COND_PL(M)
#define COND_NOT_PL(M) COND_MI(M)
#define COND_NOT_LT(M) COND_GE(M)
#define COND_NOT_GE(M) COND_LT(M)
#define COND_NOT_HI(M) COND_LS(M)
#define COND_NOT_LS(M) COND_HI(M)
#define COND_NOT_GT(M) COND_LE(M)
#define COND_NOT_LE(M) COND_GT(M)
/* Not real conditions, but here for convenience */
#define COND_XS(M) ((M)->x_flag&0x100)
#define COND_XC(M) (!COND_XS)
/* Get the condition code register */
#define m68ki_get_ccr(M) ((COND_XS(M) >> 4) | \
(COND_MI(M) >> 4) | \
(COND_EQ(M) << 2) | \
(COND_VS(M) >> 6) | \
(COND_CS(M) >> 8))
/* Get the status register */
#define m68ki_get_sr(M) ((M)->t1_flag | \
(M)->t0_flag | \
((M)->s_flag << 11) | \
((M)->m_flag << 11) | \
(M)->int_mask | \
m68ki_get_ccr(M))
/* ----------------------------- Read / Write ----------------------------- */
/* Read from the current address space */
#define m68ki_read_8(M, A) m68ki_read_8_fc (M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA)
#define m68ki_read_16(M, A) m68ki_read_16_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA)
#define m68ki_read_32(M, A) m68ki_read_32_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA)
/* Write to the current data space */
#define m68ki_write_8(M, A, V) m68ki_write_8_fc (M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA, V)
#define m68ki_write_16(M, A, V) m68ki_write_16_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA, V)
#define m68ki_write_32(M, A, V) m68ki_write_32_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA, V)
#define m68ki_write_32_pd(M, A, V) m68ki_write_32_pd_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA, V)
/* map read immediate 8 to read immediate 16 */
#define m68ki_read_imm_8(M) MASK_OUT_ABOVE_8(m68ki_read_imm_16(M))
/* Map PC-relative reads */
#define m68ki_read_pcrel_8(M, A) m68k_read_pcrelative_8(M, A)
#define m68ki_read_pcrel_16(M, A) m68k_read_pcrelative_16(M, A)
#define m68ki_read_pcrel_32(M, A) m68k_read_pcrelative_32(M, A)
/* Read from the program space */
#define m68ki_read_program_8(M, A) m68ki_read_8_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_PROGRAM)
#define m68ki_read_program_16(M, A) m68ki_read_16_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_PROGRAM)
#define m68ki_read_program_32(M, A) m68ki_read_32_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_PROGRAM)
/* Read from the data space */
#define m68ki_read_data_8(M, A) m68ki_read_8_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA)
#define m68ki_read_data_16(M, A) m68ki_read_16_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA)
#define m68ki_read_data_32(M, A) m68ki_read_32_fc(M, A, (M)->s_flag | FUNCTION_CODE_USER_DATA)
/* ======================================================================== */
/* =============================== PROTOTYPES ============================= */
/* ======================================================================== */
union fp_reg
{
UINT64 i;
double f;
};
class m68000_base_device_ops
{
public:
#define OPCODE_PROTOTYPES
#include "m68kops.h"
#undef OPCODE_PROTOTYPES
};
extern const UINT8 m68ki_shift_8_table[];
extern const UINT16 m68ki_shift_16_table[];
extern const UINT32 m68ki_shift_32_table[];
extern const UINT8 m68ki_exception_cycle_table[][256];
extern const UINT8 m68ki_ea_idx_cycle_table[];
/* Read data immediately after the program counter */
INLINE UINT32 m68ki_read_imm_16(m68000_base_device *m68k);
INLINE UINT32 m68ki_read_imm_32(m68000_base_device *m68k);
/* Read data with specific function code */
INLINE UINT32 m68ki_read_8_fc (m68000_base_device *m68k, UINT32 address, UINT32 fc);
INLINE UINT32 m68ki_read_16_fc (m68000_base_device *m68k, UINT32 address, UINT32 fc);
INLINE UINT32 m68ki_read_32_fc (m68000_base_device *m68k, UINT32 address, UINT32 fc);
/* Write data with specific function code */
INLINE void m68ki_write_8_fc (m68000_base_device *m68k, UINT32 address, UINT32 fc, UINT32 value);
INLINE void m68ki_write_16_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc, UINT32 value);
INLINE void m68ki_write_32_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc, UINT32 value);
INLINE void m68ki_write_32_pd_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc, UINT32 value);
/* Indexed and PC-relative ea fetching */
INLINE UINT32 m68ki_get_ea_pcdi(m68000_base_device *m68k);
INLINE UINT32 m68ki_get_ea_pcix(m68000_base_device *m68k);
INLINE UINT32 m68ki_get_ea_ix(m68000_base_device *m68k, UINT32 An);
/* Operand fetching */
INLINE UINT32 OPER_AY_AI_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_AI_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_AI_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_PI_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_PI_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_PI_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_PD_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_PD_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_PD_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_DI_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_DI_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_DI_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_IX_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_IX_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AY_IX_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_AI_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_AI_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_AI_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_PI_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_PI_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_PI_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_PD_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_PD_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_PD_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_DI_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_DI_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_DI_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_IX_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_IX_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AX_IX_32(m68000_base_device *m68k);
INLINE UINT32 OPER_A7_PI_8(m68000_base_device *m68k);
INLINE UINT32 OPER_A7_PD_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AW_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AW_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AW_32(m68000_base_device *m68k);
INLINE UINT32 OPER_AL_8(m68000_base_device *m68k);
INLINE UINT32 OPER_AL_16(m68000_base_device *m68k);
INLINE UINT32 OPER_AL_32(m68000_base_device *m68k);
INLINE UINT32 OPER_PCDI_8(m68000_base_device *m68k);
INLINE UINT32 OPER_PCDI_16(m68000_base_device *m68k);
INLINE UINT32 OPER_PCDI_32(m68000_base_device *m68k);
INLINE UINT32 OPER_PCIX_8(m68000_base_device *m68k);
INLINE UINT32 OPER_PCIX_16(m68000_base_device *m68k);
INLINE UINT32 OPER_PCIX_32(m68000_base_device *m68k);
/* Stack operations */
INLINE void m68ki_push_16(m68000_base_device *m68k, UINT32 value);
INLINE void m68ki_push_32(m68000_base_device *m68k, UINT32 value);
INLINE UINT32 m68ki_pull_16(m68000_base_device *m68k);
INLINE UINT32 m68ki_pull_32(m68000_base_device *m68k);
/* Program flow operations */
INLINE void m68ki_jump(m68000_base_device *m68k, UINT32 new_pc);
INLINE void m68ki_jump_vector(m68000_base_device *m68k, UINT32 vector);
INLINE void m68ki_branch_8(m68000_base_device *m68k, UINT32 offset);
INLINE void m68ki_branch_16(m68000_base_device *m68k, UINT32 offset);
INLINE void m68ki_branch_32(m68000_base_device *m68k, UINT32 offset);
/* Status register operations. */
INLINE void m68ki_set_s_flag(m68000_base_device *m68k, UINT32 value); /* Only bit 2 of value should be set (i.e. 4 or 0) */
INLINE void m68ki_set_sm_flag(m68000_base_device *m68k, UINT32 value); /* only bits 1 and 2 of value should be set */
INLINE void m68ki_set_ccr(m68000_base_device *m68k, UINT32 value); /* set the condition code register */
INLINE void m68ki_set_sr(m68000_base_device *m68k, UINT32 value); /* set the status register */
INLINE void m68ki_set_sr_noint(m68000_base_device *m68k, UINT32 value); /* set the status register */
/* Exception processing */
INLINE UINT32 m68ki_init_exception(m68000_base_device *m68k); /* Initial exception processing */
INLINE void m68ki_stack_frame_3word(m68000_base_device *m68k, UINT32 pc, UINT32 sr); /* Stack various frame types */
INLINE void m68ki_stack_frame_buserr(m68000_base_device *m68k, UINT32 sr);
INLINE void m68ki_stack_frame_0000(m68000_base_device *m68k, UINT32 pc, UINT32 sr, UINT32 vector);
INLINE void m68ki_stack_frame_0001(m68000_base_device *m68k, UINT32 pc, UINT32 sr, UINT32 vector);
INLINE void m68ki_stack_frame_0010(m68000_base_device *m68k, UINT32 sr, UINT32 vector);
INLINE void m68ki_stack_frame_1000(m68000_base_device *m68k, UINT32 pc, UINT32 sr, UINT32 vector);
INLINE void m68ki_stack_frame_1010(m68000_base_device *m68k, UINT32 sr, UINT32 vector, UINT32 pc, UINT32 fault_address);
INLINE void m68ki_stack_frame_1011(m68000_base_device *m68k, UINT32 sr, UINT32 vector, UINT32 pc, UINT32 fault_address);
INLINE void m68ki_stack_frame_0111(m68000_base_device *m68k, UINT32 sr, UINT32 vector, UINT32 pc, UINT32 fault_address, bool in_mmu);
INLINE void m68ki_exception_trap(m68000_base_device *m68k, UINT32 vector);
INLINE void m68ki_exception_trapN(m68000_base_device *m68k, UINT32 vector);
INLINE void m68ki_exception_trace(m68000_base_device *m68k);
INLINE void m68ki_exception_privilege_violation(m68000_base_device *m68k);
INLINE void m68ki_exception_1010(m68000_base_device *m68k);
INLINE void m68ki_exception_1111(m68000_base_device *m68k);
INLINE void m68ki_exception_illegal(m68000_base_device *m68k);
INLINE void m68ki_exception_format_error(m68000_base_device *m68k);
INLINE void m68ki_exception_address_error(m68000_base_device *m68k);
INLINE void m68ki_check_interrupts(m68000_base_device *m68k); /* ASG: check for interrupts */
/* quick disassembly (used for logging) */
char* m68ki_disassemble_quick(unsigned int pc, unsigned int cpu_type);
/* ======================================================================== */
/* =========================== UTILITY FUNCTIONS ========================== */
/* ======================================================================== */
INLINE unsigned int m68k_read_immediate_32(m68000_base_device *m68k, unsigned int address)
{
return (m68k->/*memory.*/readimm16(address) << 16) | m68k->/*memory.*/readimm16(address + 2);
}
INLINE unsigned int m68k_read_pcrelative_8(m68000_base_device *m68k, unsigned int address)
{
if (address >= m68k->encrypted_start && address < m68k->encrypted_end)
return ((m68k->/*memory.*/readimm16(address&~1)>>(8*(1-(address & 1))))&0xff);
return m68k->/*memory.*/read8(address);
}
INLINE unsigned int m68k_read_pcrelative_16(m68000_base_device *m68k, unsigned int address)
{
if (address >= m68k->encrypted_start && address < m68k->encrypted_end)
return m68k->/*memory.*/readimm16(address);
return m68k->/*memory.*/read16(address);
}
INLINE unsigned int m68k_read_pcrelative_32(m68000_base_device *m68k, unsigned int address)
{
if (address >= m68k->encrypted_start && address < m68k->encrypted_end)
return m68k_read_immediate_32(m68k, address);
return m68k->/*memory.*/read32(address);
}
/* Special call to simulate undocumented 68k behavior when move.l with a
* predecrement destination mode is executed.
* A real 68k first writes the high word to [address+2], and then writes the
* low word to [address].
*/
INLINE void m68kx_write_memory_32_pd(m68000_base_device *m68k, unsigned int address, unsigned int value)
{
m68k->/*memory.*/write16(address+2, value>>16);
m68k->/*memory.*/write16(address, value&0xffff);
}
/* ---------------------------- Read Immediate ---------------------------- */
// clear the instruction cache
INLINE void m68ki_ic_clear(m68000_base_device *m68k)
{
int i;
for (i=0; i< M68K_IC_SIZE; i++) {
m68k->ic_address[i] = ~0;
}
}
// read immediate word using the instruction cache
INLINE UINT32 m68ki_ic_readimm16(m68000_base_device *m68k, UINT32 address)
{
/* if(CPU_TYPE_IS_EC020_PLUS(m68k->cpu_type) && (m68k->cacr & M68K_CACR_EI))
{
UINT32 ic_offset = (address >> 1) % M68K_IC_SIZE;
if (m68k->ic_address[ic_offset] == address)
{
return m68k->ic_data[ic_offset];
}
else
{
UINT32 data = m68k->memory.readimm16(address);
if (!m68k->mmu_tmp_buserror_occurred)
{
m68k->ic_data[ic_offset] = data;
m68k->ic_address[ic_offset] = address;
}
return data;
}
}
else*/
{
return m68k->/*memory.*/readimm16(address);
}
// this can't happen, but Apple GCC insists
// return 0;
}
/* Handles all immediate reads, does address error check, function code setting,
* and prefetching if they are enabled in m68kconf.h
*/
INLINE UINT32 m68ki_read_imm_16(m68000_base_device *m68k)
{
UINT32 result;
m68k->mmu_tmp_fc = m68k->s_flag | FUNCTION_CODE_USER_PROGRAM;
m68k->mmu_tmp_rw = 1;
m68ki_check_address_error(m68k, REG_PC(m68k), MODE_READ, m68k->s_flag | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
if(REG_PC(m68k) != m68k->pref_addr)
{
m68k->pref_data = m68ki_ic_readimm16(m68k, REG_PC(m68k));
m68k->pref_addr = m68k->mmu_tmp_buserror_occurred ? ~0 : REG_PC(m68k);
}
result = MASK_OUT_ABOVE_16(m68k->pref_data);
REG_PC(m68k) += 2;
if (!m68k->mmu_tmp_buserror_occurred) {
// prefetch only if no bus error occurred in opcode fetch
m68k->pref_data = m68ki_ic_readimm16(m68k, REG_PC(m68k));
m68k->pref_addr = m68k->mmu_tmp_buserror_occurred ? ~0 : REG_PC(m68k);
// ignore bus error on prefetch
m68k->mmu_tmp_buserror_occurred = 0;
}
return result;
}
INLINE UINT32 m68ki_read_imm_32(m68000_base_device *m68k)
{
UINT32 temp_val;
m68k->mmu_tmp_fc = m68k->s_flag | FUNCTION_CODE_USER_PROGRAM;
m68k->mmu_tmp_rw = 1;
m68ki_check_address_error(m68k, REG_PC(m68k), MODE_READ, m68k->s_flag | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
if(REG_PC(m68k) != m68k->pref_addr)
{
m68k->pref_addr = REG_PC(m68k);
m68k->pref_data = m68ki_ic_readimm16(m68k, m68k->pref_addr);
}
temp_val = MASK_OUT_ABOVE_16(m68k->pref_data);
REG_PC(m68k) += 2;
m68k->pref_addr = REG_PC(m68k);
m68k->pref_data = m68ki_ic_readimm16(m68k, m68k->pref_addr);
temp_val = MASK_OUT_ABOVE_32((temp_val << 16) | MASK_OUT_ABOVE_16(m68k->pref_data));
REG_PC(m68k) += 2;
m68k->pref_data = m68ki_ic_readimm16(m68k, REG_PC(m68k));
m68k->pref_addr = m68k->mmu_tmp_buserror_occurred ? ~0 : REG_PC(m68k);
return temp_val;
}
/* ------------------------- Top level read/write ------------------------- */
/* Handles all memory accesses (except for immediate reads if they are
* configured to use separate functions in m68kconf.h).
* All memory accesses must go through these top level functions.
* These functions will also check for address error and set the function
* code if they are enabled in m68kconf.h.
*/
INLINE UINT32 m68ki_read_8_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc)
{
m68k->mmu_tmp_fc = fc;
m68k->mmu_tmp_rw = 1;
return m68k->/*memory.*/read8(address);
}
INLINE UINT32 m68ki_read_16_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc)
{
if (CPU_TYPE_IS_010_LESS(m68k->cpu_type))
{
m68ki_check_address_error(m68k, address, MODE_READ, fc);
}
m68k->mmu_tmp_fc = fc;
m68k->mmu_tmp_rw = 1;
return m68k->/*memory.*/read16(address);
}
INLINE UINT32 m68ki_read_32_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc)
{
if (CPU_TYPE_IS_010_LESS(m68k->cpu_type))
{
m68ki_check_address_error(m68k, address, MODE_READ, fc);
}
m68k->mmu_tmp_fc = fc;
m68k->mmu_tmp_rw = 1;
return m68k->/*memory.*/read32(address);
}
INLINE void m68ki_write_8_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc, UINT32 value)
{
m68k->mmu_tmp_fc = fc;
m68k->mmu_tmp_rw = 0;
m68k->/*memory.*/write8(address, value);
}
INLINE void m68ki_write_16_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc, UINT32 value)
{
if (CPU_TYPE_IS_010_LESS(m68k->cpu_type))
{
m68ki_check_address_error(m68k, address, MODE_WRITE, fc);
}
m68k->mmu_tmp_fc = fc;
m68k->mmu_tmp_rw = 0;
m68k->/*memory.*/write16(address, value);
}
INLINE void m68ki_write_32_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc, UINT32 value)
{
if (CPU_TYPE_IS_010_LESS(m68k->cpu_type))
{
m68ki_check_address_error(m68k, address, MODE_WRITE, fc);
}
m68k->mmu_tmp_fc = fc;
m68k->mmu_tmp_rw = 0;
m68k->/*memory.*/write32(address, value);
}
/* Special call to simulate undocumented 68k behavior when move.l with a
* predecrement destination mode is executed.
* A real 68k first writes the high word to [address+2], and then writes the
* low word to [address].
*/
INLINE void m68ki_write_32_pd_fc(m68000_base_device *m68k, UINT32 address, UINT32 fc, UINT32 value)
{
if (CPU_TYPE_IS_010_LESS(m68k->cpu_type))
{
m68ki_check_address_error(m68k, address, MODE_WRITE, fc);
}
m68k->mmu_tmp_fc = fc;
m68k->mmu_tmp_rw = 0;
m68k->/*memory.*/write16(address+2, value>>16);
m68k->/*memory.*/write16(address, value&0xffff);
}
/* --------------------- Effective Address Calculation -------------------- */
/* The program counter relative addressing modes cause operands to be
* retrieved from program space, not data space.
*/
INLINE UINT32 m68ki_get_ea_pcdi(m68000_base_device *m68k)
{
UINT32 old_pc = REG_PC(m68k);
return old_pc + MAKE_INT_16(m68ki_read_imm_16(m68k));
}
INLINE UINT32 m68ki_get_ea_pcix(m68000_base_device *m68k)
{
return m68ki_get_ea_ix(m68k, REG_PC(m68k));
}
/* Indexed addressing modes are encoded as follows:
*
* Base instruction format:
* F E D C B A 9 8 7 6 | 5 4 3 | 2 1 0
* x x x x x x x x x x | 1 1 0 | BASE REGISTER (An)
*
* Base instruction format for destination EA in move instructions:
* F E D C | B A 9 | 8 7 6 | 5 4 3 2 1 0
* x x x x | BASE REG | 1 1 0 | X X X X X X (An)
*
* Brief extension format:
* F | E D C | B | A 9 | 8 | 7 6 5 4 3 2 1 0
* D/A | REGISTER | W/L | SCALE | 0 | DISPLACEMENT
*
* Full extension format:
* F E D C B A 9 8 7 6 5 4 3 2 1 0
* D/A | REGISTER | W/L | SCALE | 1 | BS | IS | BD SIZE | 0 | I/IS
* BASE DISPLACEMENT (0, 16, 32 bit) (bd)
* OUTER DISPLACEMENT (0, 16, 32 bit) (od)
*
* D/A: 0 = Dn, 1 = An (Xn)
* W/L: 0 = W (sign extend), 1 = L (.SIZE)
* SCALE: 00=1, 01=2, 10=4, 11=8 (*SCALE)
* BS: 0=add base reg, 1=suppress base reg (An suppressed)
* IS: 0=add index, 1=suppress index (Xn suppressed)
* BD SIZE: 00=reserved, 01=NULL, 10=Word, 11=Long (size of bd)
*
* IS I/IS Operation
* 0 000 No Memory Indirect
* 0 001 indir prex with null outer
* 0 010 indir prex with word outer
* 0 011 indir prex with long outer
* 0 100 reserved
* 0 101 indir postx with null outer
* 0 110 indir postx with word outer
* 0 111 indir postx with long outer
* 1 000 no memory indirect
* 1 001 mem indir with null outer
* 1 010 mem indir with word outer
* 1 011 mem indir with long outer
* 1 100-111 reserved
*/
INLINE UINT32 m68ki_get_ea_ix(m68000_base_device *m68k, UINT32 An)
{
/* An = base register */
UINT32 extension = m68ki_read_imm_16(m68k);
UINT32 Xn = 0; /* Index register */
UINT32 bd = 0; /* Base Displacement */
UINT32 od = 0; /* Outer Displacement */
if(CPU_TYPE_IS_010_LESS(m68k->cpu_type))
{
/* Calculate index */
Xn = REG_DA(m68k)[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
/* Add base register and displacement and return */
return An + Xn + MAKE_INT_8(extension);
}
/* Brief extension format */
if(!BIT_8(extension))
{
/* Calculate index */
Xn = REG_DA(m68k)[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
/* Add scale if proper CPU type */
if(CPU_TYPE_IS_EC020_PLUS(m68k->cpu_type))
Xn <<= (extension>>9) & 3; /* SCALE */
/* Add base register and displacement and return */
return An + Xn + MAKE_INT_8(extension);
}
/* Full extension format */
m68k->remaining_cycles -= m68ki_ea_idx_cycle_table[extension&0x3f];
/* Check if base register is present */
if(BIT_7(extension)) /* BS */
An = 0; /* An */
/* Check if index is present */
if(!BIT_6(extension)) /* IS */
{
Xn = REG_DA(m68k)[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
Xn <<= (extension>>9) & 3; /* SCALE */
}
/* Check if base displacement is present */
if(BIT_5(extension)) /* BD SIZE */
bd = BIT_4(extension) ? m68ki_read_imm_32(m68k) : MAKE_INT_16(m68ki_read_imm_16(m68k));
/* If no indirect action, we are done */
if(!(extension&7)) /* No Memory Indirect */
return An + bd + Xn;
/* Check if outer displacement is present */
if(BIT_1(extension)) /* I/IS: od */
od = BIT_0(extension) ? m68ki_read_imm_32(m68k) : MAKE_INT_16(m68ki_read_imm_16(m68k));
/* Postindex */
if(BIT_2(extension)) /* I/IS: 0 = preindex, 1 = postindex */
return m68ki_read_32(m68k, An + bd) + Xn + od;
/* Preindex */
return m68ki_read_32(m68k, An + bd + Xn) + od;
}
/* Fetch operands */
INLINE UINT32 OPER_AY_AI_8(m68000_base_device *m68k) {UINT32 ea = EA_AY_AI_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AY_AI_16(m68000_base_device *m68k) {UINT32 ea = EA_AY_AI_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AY_AI_32(m68000_base_device *m68k) {UINT32 ea = EA_AY_AI_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AY_PI_8(m68000_base_device *m68k) {UINT32 ea = EA_AY_PI_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AY_PI_16(m68000_base_device *m68k) {UINT32 ea = EA_AY_PI_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AY_PI_32(m68000_base_device *m68k) {UINT32 ea = EA_AY_PI_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AY_PD_8(m68000_base_device *m68k) {UINT32 ea = EA_AY_PD_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AY_PD_16(m68000_base_device *m68k) {UINT32 ea = EA_AY_PD_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AY_PD_32(m68000_base_device *m68k) {UINT32 ea = EA_AY_PD_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AY_DI_8(m68000_base_device *m68k) {UINT32 ea = EA_AY_DI_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AY_DI_16(m68000_base_device *m68k) {UINT32 ea = EA_AY_DI_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AY_DI_32(m68000_base_device *m68k) {UINT32 ea = EA_AY_DI_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AY_IX_8(m68000_base_device *m68k) {UINT32 ea = EA_AY_IX_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AY_IX_16(m68000_base_device *m68k) {UINT32 ea = EA_AY_IX_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AY_IX_32(m68000_base_device *m68k) {UINT32 ea = EA_AY_IX_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AX_AI_8(m68000_base_device *m68k) {UINT32 ea = EA_AX_AI_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AX_AI_16(m68000_base_device *m68k) {UINT32 ea = EA_AX_AI_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AX_AI_32(m68000_base_device *m68k) {UINT32 ea = EA_AX_AI_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AX_PI_8(m68000_base_device *m68k) {UINT32 ea = EA_AX_PI_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AX_PI_16(m68000_base_device *m68k) {UINT32 ea = EA_AX_PI_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AX_PI_32(m68000_base_device *m68k) {UINT32 ea = EA_AX_PI_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AX_PD_8(m68000_base_device *m68k) {UINT32 ea = EA_AX_PD_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AX_PD_16(m68000_base_device *m68k) {UINT32 ea = EA_AX_PD_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AX_PD_32(m68000_base_device *m68k) {UINT32 ea = EA_AX_PD_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AX_DI_8(m68000_base_device *m68k) {UINT32 ea = EA_AX_DI_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AX_DI_16(m68000_base_device *m68k) {UINT32 ea = EA_AX_DI_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AX_DI_32(m68000_base_device *m68k) {UINT32 ea = EA_AX_DI_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AX_IX_8(m68000_base_device *m68k) {UINT32 ea = EA_AX_IX_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AX_IX_16(m68000_base_device *m68k) {UINT32 ea = EA_AX_IX_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AX_IX_32(m68000_base_device *m68k) {UINT32 ea = EA_AX_IX_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_A7_PI_8(m68000_base_device *m68k) {UINT32 ea = EA_A7_PI_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_A7_PD_8(m68000_base_device *m68k) {UINT32 ea = EA_A7_PD_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AW_8(m68000_base_device *m68k) {UINT32 ea = EA_AW_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AW_16(m68000_base_device *m68k) {UINT32 ea = EA_AW_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AW_32(m68000_base_device *m68k) {UINT32 ea = EA_AW_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_AL_8(m68000_base_device *m68k) {UINT32 ea = EA_AL_8(m68k); return m68ki_read_8(m68k, ea); }
INLINE UINT32 OPER_AL_16(m68000_base_device *m68k) {UINT32 ea = EA_AL_16(m68k); return m68ki_read_16(m68k, ea);}
INLINE UINT32 OPER_AL_32(m68000_base_device *m68k) {UINT32 ea = EA_AL_32(m68k); return m68ki_read_32(m68k, ea);}
INLINE UINT32 OPER_PCDI_8(m68000_base_device *m68k) {UINT32 ea = EA_PCDI_8(m68k); return m68ki_read_pcrel_8(m68k, ea); }
INLINE UINT32 OPER_PCDI_16(m68000_base_device *m68k) {UINT32 ea = EA_PCDI_16(m68k); return m68ki_read_pcrel_16(m68k, ea);}
INLINE UINT32 OPER_PCDI_32(m68000_base_device *m68k) {UINT32 ea = EA_PCDI_32(m68k); return m68ki_read_pcrel_32(m68k, ea);}
INLINE UINT32 OPER_PCIX_8(m68000_base_device *m68k) {UINT32 ea = EA_PCIX_8(m68k); return m68ki_read_pcrel_8(m68k, ea); }
INLINE UINT32 OPER_PCIX_16(m68000_base_device *m68k) {UINT32 ea = EA_PCIX_16(m68k); return m68ki_read_pcrel_16(m68k, ea);}
INLINE UINT32 OPER_PCIX_32(m68000_base_device *m68k) {UINT32 ea = EA_PCIX_32(m68k); return m68ki_read_pcrel_32(m68k, ea);}
/* ---------------------------- Stack Functions --------------------------- */
/* Push/pull data from the stack */
INLINE void m68ki_push_16(m68000_base_device *m68k, UINT32 value)
{
REG_SP(m68k) = MASK_OUT_ABOVE_32(REG_SP(m68k) - 2);
m68ki_write_16(m68k, REG_SP(m68k), value);
}
INLINE void m68ki_push_32(m68000_base_device *m68k, UINT32 value)
{
REG_SP(m68k) = MASK_OUT_ABOVE_32(REG_SP(m68k) - 4);
m68ki_write_32(m68k, REG_SP(m68k), value);
}
INLINE UINT32 m68ki_pull_16(m68000_base_device *m68k)
{
REG_SP(m68k) = MASK_OUT_ABOVE_32(REG_SP(m68k) + 2);
return m68ki_read_16(m68k, REG_SP(m68k)-2);
}
INLINE UINT32 m68ki_pull_32(m68000_base_device *m68k)
{
REG_SP(m68k) = MASK_OUT_ABOVE_32(REG_SP(m68k) + 4);
return m68ki_read_32(m68k, REG_SP(m68k)-4);
}
/* Increment/decrement the stack as if doing a push/pull but
* don't do any memory access.
*/
INLINE void m68ki_fake_push_16(m68000_base_device *m68k)
{
REG_SP(m68k) = MASK_OUT_ABOVE_32(REG_SP(m68k) - 2);
}
INLINE void m68ki_fake_push_32(m68000_base_device *m68k)
{
REG_SP(m68k) = MASK_OUT_ABOVE_32(REG_SP(m68k) - 4);
}
INLINE void m68ki_fake_pull_16(m68000_base_device *m68k)
{
REG_SP(m68k) = MASK_OUT_ABOVE_32(REG_SP(m68k) + 2);
}
INLINE void m68ki_fake_pull_32(m68000_base_device *m68k)
{
REG_SP(m68k) = MASK_OUT_ABOVE_32(REG_SP(m68k) + 4);
}
/* ----------------------------- Program Flow ----------------------------- */
/* Jump to a new program location or vector.
* These functions will also call the pc_changed callback if it was enabled
* in m68kconf.h.
*/
INLINE void m68ki_jump(m68000_base_device *m68k, UINT32 new_pc)
{
REG_PC(m68k) = new_pc;
}
INLINE void m68ki_jump_vector(m68000_base_device *m68k, UINT32 vector)
{
REG_PC(m68k) = (vector<<2) + m68k->vbr;
REG_PC(m68k) = m68ki_read_data_32(m68k, REG_PC(m68k));
}
/* Branch to a new memory location.
* The 32-bit branch will call pc_changed if it was enabled in m68kconf.h.
* So far I've found no problems with not calling pc_changed for 8 or 16
* bit branches.
*/
INLINE void m68ki_branch_8(m68000_base_device *m68k, UINT32 offset)
{
REG_PC(m68k) += MAKE_INT_8(offset);
}
INLINE void m68ki_branch_16(m68000_base_device *m68k, UINT32 offset)
{
REG_PC(m68k) += MAKE_INT_16(offset);
}
INLINE void m68ki_branch_32(m68000_base_device *m68k, UINT32 offset)
{
REG_PC(m68k) += offset;
}
/* ---------------------------- Status Register --------------------------- */
/* Set the S flag and change the active stack pointer.
* Note that value MUST be 4 or 0.
*/
INLINE void m68ki_set_s_flag(m68000_base_device *m68k, UINT32 value)
{
/* Backup the old stack pointer */
REG_SP_BASE(m68k)[m68k->s_flag | ((m68k->s_flag>>1) & m68k->m_flag)] = REG_SP(m68k);
/* Set the S flag */
m68k->s_flag = value;
/* Set the new stack pointer */
REG_SP(m68k) = REG_SP_BASE(m68k)[m68k->s_flag | ((m68k->s_flag>>1) & m68k->m_flag)];
}
/* Set the S and M flags and change the active stack pointer.
* Note that value MUST be 0, 2, 4, or 6 (bit2 = S, bit1 = M).
*/
INLINE void m68ki_set_sm_flag(m68000_base_device *m68k, UINT32 value)
{
/* Backup the old stack pointer */
REG_SP_BASE(m68k)[m68k->s_flag | ((m68k->s_flag>>1) & m68k->m_flag)] = REG_SP(m68k);
/* Set the S and M flags */
m68k->s_flag = value & SFLAG_SET;
m68k->m_flag = value & MFLAG_SET;
/* Set the new stack pointer */
REG_SP(m68k) = REG_SP_BASE(m68k)[m68k->s_flag | ((m68k->s_flag>>1) & m68k->m_flag)];
}
/* Set the S and M flags. Don't touch the stack pointer. */
INLINE void m68ki_set_sm_flag_nosp(m68000_base_device *m68k, UINT32 value)
{
/* Set the S and M flags */
m68k->s_flag = value & SFLAG_SET;
m68k->m_flag = value & MFLAG_SET;
}
/* Set the condition code register */
INLINE void m68ki_set_ccr(m68000_base_device *m68k, UINT32 value)
{
m68k->x_flag = BIT_4(value) << 4;
m68k->n_flag = BIT_3(value) << 4;
m68k->not_z_flag = !BIT_2(value);
m68k->v_flag = BIT_1(value) << 6;
m68k->c_flag = BIT_0(value) << 8;
}
/* Set the status register but don't check for interrupts */
INLINE void m68ki_set_sr_noint(m68000_base_device *m68k, UINT32 value)
{
/* Mask out the "unimplemented" bits */
value &= m68k->sr_mask;
/* Now set the status register */
m68k->t1_flag = BIT_F(value);
m68k->t0_flag = BIT_E(value);
m68k->int_mask = value & 0x0700;
m68ki_set_ccr(m68k, value);
m68ki_set_sm_flag(m68k, (value >> 11) & 6);
}
/* Set the status register but don't check for interrupts nor
* change the stack pointer
*/
INLINE void m68ki_set_sr_noint_nosp(m68000_base_device *m68k, UINT32 value)
{
/* Mask out the "unimplemented" bits */
value &= m68k->sr_mask;
/* Now set the status register */
m68k->t1_flag = BIT_F(value);
m68k->t0_flag = BIT_E(value);
m68k->int_mask = value & 0x0700;
m68ki_set_ccr(m68k, value);
m68ki_set_sm_flag_nosp(m68k, (value >> 11) & 6);
}
/* Set the status register and check for interrupts */
INLINE void m68ki_set_sr(m68000_base_device *m68k, UINT32 value)
{
m68ki_set_sr_noint(m68k, value);
m68ki_check_interrupts(m68k);
}
/* ------------------------- Exception Processing ------------------------- */
/* Initiate exception processing */
INLINE UINT32 m68ki_init_exception(m68000_base_device *m68k)
{
/* Save the old status register */
UINT32 sr = m68ki_get_sr(m68k);
/* Turn off trace flag, clear pending traces */
m68k->t1_flag = m68k->t0_flag = 0;
m68ki_clear_trace(m68k);
/* Enter supervisor mode */
m68ki_set_s_flag(m68k, SFLAG_SET);
return sr;
}
/* 3 word stack frame (68000 only) */
INLINE void m68ki_stack_frame_3word(m68000_base_device *m68k, UINT32 pc, UINT32 sr)
{
m68ki_push_32(m68k, pc);
m68ki_push_16(m68k, sr);
}
/* Format 0 stack frame.
* This is the standard stack frame for 68010+.
*/
INLINE void m68ki_stack_frame_0000(m68000_base_device *m68k, UINT32 pc, UINT32 sr, UINT32 vector)
{
/* Stack a 3-word frame if we are 68000 */
if(m68k->cpu_type == CPU_TYPE_000 || m68k->cpu_type == CPU_TYPE_008)
{
m68ki_stack_frame_3word(m68k, pc, sr);
return;
}
m68ki_push_16(m68k, vector<<2);
m68ki_push_32(m68k, pc);
m68ki_push_16(m68k, sr);
}
/* Format 1 stack frame (68020).
* For 68020, this is the 4 word throwaway frame.
*/
INLINE void m68ki_stack_frame_0001(m68000_base_device *m68k, UINT32 pc, UINT32 sr, UINT32 vector)
{
m68ki_push_16(m68k, 0x1000 | (vector<<2));
m68ki_push_32(m68k, pc);
m68ki_push_16(m68k, sr);
}
/* Format 2 stack frame.
* This is used only by 68020 for trap exceptions.
*/
INLINE void m68ki_stack_frame_0010(m68000_base_device *m68k, UINT32 sr, UINT32 vector)
{
m68ki_push_32(m68k, REG_PPC(m68k));
m68ki_push_16(m68k, 0x2000 | (vector<<2));
m68ki_push_32(m68k, REG_PC(m68k));
m68ki_push_16(m68k, sr);
}
/* Bus error stack frame (68000 only).
*/
INLINE void m68ki_stack_frame_buserr(m68000_base_device *m68k, UINT32 sr)
{
m68ki_push_32(m68k, REG_PC(m68k));
m68ki_push_16(m68k, sr);
m68ki_push_16(m68k, m68k->ir);
m68ki_push_32(m68k, m68k->aerr_address); /* access address */
/* 0 0 0 0 0 0 0 0 0 0 0 R/W I/N FC
* R/W 0 = write, 1 = read
* I/N 0 = instruction, 1 = not
* FC 3-bit function code
*/
m68ki_push_16(m68k, m68k->aerr_write_mode | m68k->instr_mode | m68k->aerr_fc);
}
/* Format 8 stack frame (68010).
* 68010 only. This is the 29 word bus/address error frame.
*/
INLINE void m68ki_stack_frame_1000(m68000_base_device *m68k, UINT32 pc, UINT32 sr, UINT32 vector)
{
/* VERSION
* NUMBER
* INTERNAL INFORMATION, 16 WORDS
*/
m68ki_fake_push_32(m68k);
m68ki_fake_push_32(m68k);
m68ki_fake_push_32(m68k);
m68ki_fake_push_32(m68k);
m68ki_fake_push_32(m68k);
m68ki_fake_push_32(m68k);
m68ki_fake_push_32(m68k);
m68ki_fake_push_32(m68k);
/* INSTRUCTION INPUT BUFFER */
m68ki_push_16(m68k, 0);
/* UNUSED, RESERVED (not written) */
m68ki_fake_push_16(m68k);
/* DATA INPUT BUFFER */
m68ki_push_16(m68k, 0);
/* UNUSED, RESERVED (not written) */
m68ki_fake_push_16(m68k);
/* DATA OUTPUT BUFFER */
m68ki_push_16(m68k, 0);
/* UNUSED, RESERVED (not written) */
m68ki_fake_push_16(m68k);
/* FAULT ADDRESS */
m68ki_push_32(m68k, 0);
/* SPECIAL STATUS WORD */
m68ki_push_16(m68k, 0);
/* 1000, VECTOR OFFSET */
m68ki_push_16(m68k, 0x8000 | (vector<<2));
/* PROGRAM COUNTER */
m68ki_push_32(m68k, pc);
/* STATUS REGISTER */
m68ki_push_16(m68k, sr);
}
/* Format A stack frame (short bus fault).
* This is used only by 68020 for bus fault and address error
* if the error happens at an instruction boundary.
* PC stacked is address of next instruction.
*/
INLINE void m68ki_stack_frame_1010(m68000_base_device *m68k, UINT32 sr, UINT32 vector, UINT32 pc, UINT32 fault_address)
{
int orig_rw = m68k->mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now
int orig_fc = m68k->mmu_tmp_buserror_fc;
/* INTERNAL REGISTER */
m68ki_push_16(m68k, 0);
/* INTERNAL REGISTER */
m68ki_push_16(m68k, 0);
/* DATA OUTPUT BUFFER (2 words) */
m68ki_push_32(m68k, 0);
/* INTERNAL REGISTER */
m68ki_push_16(m68k, 0);
/* INTERNAL REGISTER */
m68ki_push_16(m68k, 0);
/* DATA CYCLE FAULT ADDRESS (2 words) */
m68ki_push_32(m68k, fault_address);
/* INSTRUCTION PIPE STAGE B */
m68ki_push_16(m68k, 0);
/* INSTRUCTION PIPE STAGE C */
m68ki_push_16(m68k, 0);
/* SPECIAL STATUS REGISTER */
// set bit for: Rerun Faulted bus Cycle, or run pending prefetch
// set FC
m68ki_push_16(m68k, 0x0100 | orig_fc | orig_rw<<6);
/* INTERNAL REGISTER */
m68ki_push_16(m68k, 0);
/* 1010, VECTOR OFFSET */
m68ki_push_16(m68k, 0xa000 | (vector<<2));
/* PROGRAM COUNTER */
m68ki_push_32(m68k, pc);
/* STATUS REGISTER */
m68ki_push_16(m68k, sr);
}
/* Format B stack frame (long bus fault).
* This is used only by 68020 for bus fault and address error
* if the error happens during instruction execution.
* PC stacked is address of instruction in progress.
*/
INLINE void m68ki_stack_frame_1011(m68000_base_device *m68k, UINT32 sr, UINT32 vector, UINT32 pc, UINT32 fault_address)
{
int orig_rw = m68k->mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now
int orig_fc = m68k->mmu_tmp_buserror_fc;
/* INTERNAL REGISTERS (18 words) */
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
/* VERSION# (4 bits), INTERNAL INFORMATION */
m68ki_push_16(m68k, 0);
/* INTERNAL REGISTERS (3 words) */
m68ki_push_32(m68k, 0);
m68ki_push_16(m68k, 0);
/* DATA INTPUT BUFFER (2 words) */
m68ki_push_32(m68k, 0);
/* INTERNAL REGISTERS (2 words) */
m68ki_push_32(m68k, 0);
/* STAGE B ADDRESS (2 words) */
m68ki_push_32(m68k, 0);
/* INTERNAL REGISTER (4 words) */
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
/* DATA OUTPUT BUFFER (2 words) */
m68ki_push_32(m68k, 0);
/* INTERNAL REGISTER */
m68ki_push_16(m68k, 0);
/* INTERNAL REGISTER */
m68ki_push_16(m68k, 0);
/* DATA CYCLE FAULT ADDRESS (2 words) */
m68ki_push_32(m68k, fault_address);
/* INSTRUCTION PIPE STAGE B */
m68ki_push_16(m68k, 0);
/* INSTRUCTION PIPE STAGE C */
m68ki_push_16(m68k, 0);
/* SPECIAL STATUS REGISTER */
m68ki_push_16(m68k, 0x0100 | orig_fc | orig_rw<<6);
/* INTERNAL REGISTER */
m68ki_push_16(m68k, 0);
/* 1011, VECTOR OFFSET */
m68ki_push_16(m68k, 0xb000 | (vector<<2));
/* PROGRAM COUNTER */
m68ki_push_32(m68k, pc);
/* STATUS REGISTER */
m68ki_push_16(m68k, sr);
}
/* Type 7 stack frame (access fault).
* This is used by the 68040 for bus fault and mmu trap
* 30 words
*/
INLINE void m68ki_stack_frame_0111(m68000_base_device *m68k, UINT32 sr, UINT32 vector, UINT32 pc, UINT32 fault_address, bool in_mmu)
{
int orig_rw = m68k->mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now
int orig_fc = m68k->mmu_tmp_buserror_fc;
/* INTERNAL REGISTERS (18 words) */
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
m68ki_push_32(m68k, 0);
/* FAULT ADDRESS (2 words) */
m68ki_push_32(m68k, fault_address);
/* INTERNAL REGISTERS (3 words) */
m68ki_push_32(m68k, 0);
m68ki_push_16(m68k, 0);
/* SPECIAL STATUS REGISTER (1 word) */
m68ki_push_16(m68k, (in_mmu ? 0x400 : 0) | orig_fc | (orig_rw<<8));
/* EFFECTIVE ADDRESS (2 words) */
m68ki_push_32(m68k, fault_address);
/* 0111, VECTOR OFFSET (1 word) */
m68ki_push_16(m68k, 0x7000 | (vector<<2));
/* PROGRAM COUNTER (2 words) */
m68ki_push_32(m68k, pc);
/* STATUS REGISTER (1 word) */
m68ki_push_16(m68k, sr);
}
/* Used for Group 2 exceptions.
* These stack a type 2 frame on the 020.
*/
INLINE void m68ki_exception_trap(m68000_base_device *m68k, UINT32 vector)
{
UINT32 sr = m68ki_init_exception(m68k);
if(CPU_TYPE_IS_010_LESS(m68k->cpu_type))
m68ki_stack_frame_0000(m68k, REG_PC(m68k), sr, vector);
else
m68ki_stack_frame_0010(m68k, sr, vector);
m68ki_jump_vector(m68k, vector);
/* Use up some clock cycles */
m68k->remaining_cycles -= m68k->cyc_exception[vector];
}
/* Trap#n stacks a 0 frame but behaves like group2 otherwise */
INLINE void m68ki_exception_trapN(m68000_base_device *m68k, UINT32 vector)
{
UINT32 sr = m68ki_init_exception(m68k);
m68ki_stack_frame_0000(m68k, REG_PC(m68k), sr, vector);
m68ki_jump_vector(m68k, vector);
/* Use up some clock cycles */
m68k->remaining_cycles -= m68k->cyc_exception[vector];
}
/* Exception for trace mode */
INLINE void m68ki_exception_trace(m68000_base_device *m68k)
{
UINT32 sr = m68ki_init_exception(m68k);
if(CPU_TYPE_IS_010_LESS(m68k->cpu_type))
{
if(CPU_TYPE_IS_000(m68k->cpu_type))
{
m68k->instr_mode = INSTRUCTION_NO;
}
m68ki_stack_frame_0000(m68k, REG_PC(m68k), sr, EXCEPTION_TRACE);
}
else
m68ki_stack_frame_0010(m68k, sr, EXCEPTION_TRACE);
m68ki_jump_vector(m68k, EXCEPTION_TRACE);
/* Trace nullifies a STOP instruction */
m68k->stopped &= ~STOP_LEVEL_STOP;
/* Use up some clock cycles */
m68k->remaining_cycles -= m68k->cyc_exception[EXCEPTION_TRACE];
}
/* Exception for privilege violation */
INLINE void m68ki_exception_privilege_violation(m68000_base_device *m68k)
{
UINT32 sr = m68ki_init_exception(m68k);
if(CPU_TYPE_IS_000(m68k->cpu_type))
{
m68k->instr_mode = INSTRUCTION_NO;
}
m68ki_stack_frame_0000(m68k, REG_PPC(m68k), sr, EXCEPTION_PRIVILEGE_VIOLATION);
m68ki_jump_vector(m68k, EXCEPTION_PRIVILEGE_VIOLATION);
/* Use up some clock cycles and undo the instruction's cycles */
m68k->remaining_cycles -= m68k->cyc_exception[EXCEPTION_PRIVILEGE_VIOLATION] - m68k->cyc_instruction[m68k->ir];
}
/* Exception for A-Line instructions */
INLINE void m68ki_exception_1010(m68000_base_device *m68k)
{
UINT32 sr;
sr = m68ki_init_exception(m68k);
m68ki_stack_frame_0000(m68k, REG_PPC(m68k), sr, EXCEPTION_1010);
m68ki_jump_vector(m68k, EXCEPTION_1010);
/* Use up some clock cycles and undo the instruction's cycles */
m68k->remaining_cycles -= m68k->cyc_exception[EXCEPTION_1010] - m68k->cyc_instruction[m68k->ir];
}
/* Exception for F-Line instructions */
INLINE void m68ki_exception_1111(m68000_base_device *m68k)
{
UINT32 sr;
sr = m68ki_init_exception(m68k);
m68ki_stack_frame_0000(m68k, REG_PPC(m68k), sr, EXCEPTION_1111);
m68ki_jump_vector(m68k, EXCEPTION_1111);
/* Use up some clock cycles and undo the instruction's cycles */
m68k->remaining_cycles -= m68k->cyc_exception[EXCEPTION_1111] - m68k->cyc_instruction[m68k->ir];
}
/* Exception for illegal instructions */
INLINE void m68ki_exception_illegal(m68000_base_device *m68k)
{
UINT32 sr;
sr = m68ki_init_exception(m68k);
if(CPU_TYPE_IS_000(m68k->cpu_type))
{
m68k->instr_mode = INSTRUCTION_NO;
}
m68ki_stack_frame_0000(m68k, REG_PPC(m68k), sr, EXCEPTION_ILLEGAL_INSTRUCTION);
m68ki_jump_vector(m68k, EXCEPTION_ILLEGAL_INSTRUCTION);
/* Use up some clock cycles and undo the instruction's cycles */
m68k->remaining_cycles -= m68k->cyc_exception[EXCEPTION_ILLEGAL_INSTRUCTION] - m68k->cyc_instruction[m68k->ir];
}
/* Exception for format errror in RTE */
INLINE void m68ki_exception_format_error(m68000_base_device *m68k)
{
UINT32 sr = m68ki_init_exception(m68k);
m68ki_stack_frame_0000(m68k, REG_PC(m68k), sr, EXCEPTION_FORMAT_ERROR);
m68ki_jump_vector(m68k, EXCEPTION_FORMAT_ERROR);
/* Use up some clock cycles and undo the instruction's cycles */
m68k->remaining_cycles -= m68k->cyc_exception[EXCEPTION_FORMAT_ERROR] - m68k->cyc_instruction[m68k->ir];
}
/* Exception for address error */
INLINE void m68ki_exception_address_error(m68000_base_device *m68k)
{
UINT32 sr = m68ki_init_exception(m68k);
/* If we were processing a bus error, address error, or reset,
* this is a catastrophic failure.
* Halt the CPU
*/
if(m68k->run_mode == RUN_MODE_BERR_AERR_RESET)
{
m68k->/*memory.*/read8(0x00ffff01);
m68k->stopped = STOP_LEVEL_HALT;
return;
}
m68k->run_mode = RUN_MODE_BERR_AERR_RESET;
/* Note: This is implemented for 68000 only! */
m68ki_stack_frame_buserr(m68k, sr);
m68ki_jump_vector(m68k, EXCEPTION_ADDRESS_ERROR);
/* Use up some clock cycles and undo the instruction's cycles */
m68k->remaining_cycles -= m68k->cyc_exception[EXCEPTION_ADDRESS_ERROR] - m68k->cyc_instruction[m68k->ir];
}
/* ASG: Check for interrupts */
INLINE void m68ki_check_interrupts(m68000_base_device *m68k)
{
if(m68k->nmi_pending)
{
m68k->nmi_pending = FALSE;
m68k->m68ki_exception_interrupt(m68k, 7);
}
else if(m68k->int_level > m68k->int_mask)
m68k->m68ki_exception_interrupt(m68k, m68k->int_level>>8);
}
/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */
#endif /* __M68KCPU_H__ */