mame/src/devices/cpu/m68000/m68kcpu.h

1573 lines
55 KiB
C

// license:BSD-3-Clause
// copyright-holders:Karl Stenerud
/* ======================================================================== */
/* ========================= LICENSING & COPYRIGHT ======================== */
/* ======================================================================== */
/*
* MUSASHI
* Version 4.50
*
* A portable Motorola M680x0 processor emulation engine.
* Copyright Karl Stenerud. All rights reserved.
*
*/
#ifndef MAME_CPU_M68000_M68KCPU_H
#define MAME_CPU_M68000_M68KCPU_H
#pragma once
#include <limits.h>
#if defined(__sun__) && defined(__svr4__)
#undef REG_SP
#undef REG_PC
#endif
/* ======================================================================== */
/* ==================== ARCHITECTURE-DEPENDANT DEFINES ==================== */
/* ======================================================================== */
/* Check for > 32bit sizes */
static constexpr int8_t MAKE_INT_8(uint32_t A) { return (int8_t)(A); }
static constexpr int16_t MAKE_INT_16(uint32_t A) { return (int16_t)(A); }
static constexpr int32_t MAKE_INT_32(uint32_t A) { return (int32_t)(A); }
/* ======================================================================== */
/* ============================ GENERAL DEFINES =========================== */
/* ======================================================================== */
/* Exception Vectors handled by emulation */
static constexpr int EXCEPTION_RESET = 0;
static constexpr int EXCEPTION_BUS_ERROR = 2; /* This one is not emulated! */
static constexpr int EXCEPTION_ADDRESS_ERROR = 3; /* This one is partially emulated (doesn't stack a proper frame yet) */
static constexpr int EXCEPTION_ILLEGAL_INSTRUCTION = 4;
static constexpr int EXCEPTION_ZERO_DIVIDE = 5;
static constexpr int EXCEPTION_CHK = 6;
static constexpr int EXCEPTION_TRAPV = 7;
static constexpr int EXCEPTION_PRIVILEGE_VIOLATION = 8;
static constexpr int EXCEPTION_TRACE = 9;
static constexpr int EXCEPTION_1010 = 10;
static constexpr int EXCEPTION_1111 = 11;
static constexpr int EXCEPTION_FORMAT_ERROR = 14;
static constexpr int EXCEPTION_UNINITIALIZED_INTERRUPT = 15;
static constexpr int EXCEPTION_SPURIOUS_INTERRUPT = 24;
static constexpr int EXCEPTION_INTERRUPT_AUTOVECTOR = 24;
static constexpr int EXCEPTION_TRAP_BASE = 32;
/* Function codes set by CPU during data/address bus activity */
static constexpr int FUNCTION_CODE_USER_DATA = 1;
static constexpr int FUNCTION_CODE_USER_PROGRAM = 2;
static constexpr int FUNCTION_CODE_SUPERVISOR_DATA = 5;
static constexpr int FUNCTION_CODE_SUPERVISOR_PROGRAM = 6;
static constexpr int FUNCTION_CODE_CPU_SPACE = 7;
/* CPU types for deciding what to emulate */
static constexpr int CPU_TYPE_000 = (0x00000001);
static constexpr int CPU_TYPE_008 = (0x00000002);
static constexpr int CPU_TYPE_010 = (0x00000004);
static constexpr int CPU_TYPE_EC020 = (0x00000008);
static constexpr int CPU_TYPE_020 = (0x00000010);
static constexpr int CPU_TYPE_EC030 = (0x00000020);
static constexpr int CPU_TYPE_030 = (0x00000040);
static constexpr int CPU_TYPE_EC040 = (0x00000080);
static constexpr int CPU_TYPE_LC040 = (0x00000100);
static constexpr int CPU_TYPE_040 = (0x00000200);
static constexpr int CPU_TYPE_SCC070 = (0x00000400);
static constexpr int CPU_TYPE_FSCPU32 = (0x00000800);
static constexpr int CPU_TYPE_COLDFIRE = (0x00001000);
/* Different ways to stop the CPU */
static constexpr int STOP_LEVEL_STOP = 1;
static constexpr int STOP_LEVEL_HALT = 2;
/* Used for 68000 address error processing */
static constexpr int INSTRUCTION_YES = 0;
static constexpr int INSTRUCTION_NO = 0x08;
static constexpr int MODE_READ = 0x10;
static constexpr int MODE_WRITE = 0;
static constexpr int RUN_MODE_NORMAL = 0;
static constexpr int RUN_MODE_BERR_AERR_RESET = 1;
static constexpr int M68K_CACR_IBE = 0x10; // Instruction Burst Enable
static constexpr int M68K_CACR_CI = 0x08; // Clear Instruction Cache
static constexpr int M68K_CACR_CEI = 0x04; // Clear Entry in Instruction Cache
static constexpr int M68K_CACR_FI = 0x02; // Freeze Instruction Cache
static constexpr int M68K_CACR_EI = 0x01; // Enable Instruction Cache
/* ======================================================================== */
/* ================================ MACROS ================================ */
/* ======================================================================== */
/* ---------------------------- General Macros ---------------------------- */
/* Bit Isolation Macros */
static constexpr uint32_t BIT_0(uint32_t A) { return ((A) & 0x00000001); }
static constexpr uint32_t BIT_1(uint32_t A) { return ((A) & 0x00000002); }
static constexpr uint32_t BIT_2(uint32_t A) { return ((A) & 0x00000004); }
static constexpr uint32_t BIT_3(uint32_t A) { return ((A) & 0x00000008); }
static constexpr uint32_t BIT_4(uint32_t A) { return ((A) & 0x00000010); }
static constexpr uint32_t BIT_5(uint32_t A) { return ((A) & 0x00000020); }
static constexpr uint32_t BIT_6(uint32_t A) { return ((A) & 0x00000040); }
static constexpr uint32_t BIT_7(uint32_t A) { return ((A) & 0x00000080); }
static constexpr uint32_t BIT_8(uint32_t A) { return ((A) & 0x00000100); }
static constexpr uint32_t BIT_9(uint32_t A) { return ((A) & 0x00000200); }
static constexpr uint32_t BIT_A(uint32_t A) { return ((A) & 0x00000400); }
static constexpr uint32_t BIT_B(uint32_t A) { return ((A) & 0x00000800); }
static constexpr uint32_t BIT_C(uint32_t A) { return ((A) & 0x00001000); }
static constexpr uint32_t BIT_D(uint32_t A) { return ((A) & 0x00002000); }
static constexpr uint32_t BIT_E(uint32_t A) { return ((A) & 0x00004000); }
static constexpr uint32_t BIT_F(uint32_t A) { return ((A) & 0x00008000); }
static constexpr uint32_t BIT_10(uint32_t A) { return ((A) & 0x00010000); }
static constexpr uint32_t BIT_11(uint32_t A) { return ((A) & 0x00020000); }
static constexpr uint32_t BIT_12(uint32_t A) { return ((A) & 0x00040000); }
static constexpr uint32_t BIT_13(uint32_t A) { return ((A) & 0x00080000); }
static constexpr uint32_t BIT_14(uint32_t A) { return ((A) & 0x00100000); }
static constexpr uint32_t BIT_15(uint32_t A) { return ((A) & 0x00200000); }
static constexpr uint32_t BIT_16(uint32_t A) { return ((A) & 0x00400000); }
static constexpr uint32_t BIT_17(uint32_t A) { return ((A) & 0x00800000); }
static constexpr uint32_t BIT_18(uint32_t A) { return ((A) & 0x01000000); }
static constexpr uint32_t BIT_19(uint32_t A) { return ((A) & 0x02000000); }
static constexpr uint32_t BIT_1A(uint32_t A) { return ((A) & 0x04000000); }
static constexpr uint32_t BIT_1B(uint32_t A) { return ((A) & 0x08000000); }
static constexpr uint32_t BIT_1C(uint32_t A) { return ((A) & 0x10000000); }
static constexpr uint32_t BIT_1D(uint32_t A) { return ((A) & 0x20000000); }
static constexpr uint32_t BIT_1E(uint32_t A) { return ((A) & 0x40000000); }
static constexpr uint32_t BIT_1F(uint32_t A) { return ((A) & 0x80000000); }
/* Get the most significant bit for specific sizes */
static constexpr uint32_t GET_MSB_8(uint32_t A) { return ((A) & 0x80); }
static constexpr uint32_t GET_MSB_9(uint32_t A) { return ((A) & 0x100); }
static constexpr uint32_t GET_MSB_16(uint32_t A) { return ((A) & 0x8000); }
static constexpr uint32_t GET_MSB_17(uint32_t A) { return ((A) & 0x10000); }
static constexpr uint32_t GET_MSB_32(uint32_t A) { return ((A) & 0x80000000); }
static constexpr uint64_t GET_MSB_33(uint64_t A) { return ((A) & 0x100000000U); }
/* Isolate nibbles */
static constexpr uint32_t LOW_NIBBLE(uint32_t A) { return ((A) & 0x0f); }
static constexpr uint32_t HIGH_NIBBLE(uint32_t A) { return ((A) & 0xf0); }
/* These are used to isolate 8, 16, and 32 bit sizes */
static constexpr uint32_t MASK_OUT_ABOVE_2(uint32_t A) { return ((A) & 3); }
static constexpr uint32_t MASK_OUT_ABOVE_8(uint32_t A) { return ((A) & 0xff); }
static constexpr uint32_t MASK_OUT_ABOVE_16(uint32_t A) { return ((A) & 0xffff); }
static constexpr uint32_t MASK_OUT_BELOW_2(uint32_t A) { return ((A) & ~3); }
static constexpr uint32_t MASK_OUT_BELOW_8(uint32_t A) { return ((A) & ~0xff); }
static constexpr uint32_t MASK_OUT_BELOW_16(uint32_t A) { return ((A) & ~0xffff); }
/* No need to mask if we are 32 bit */
static constexpr uint32_t MASK_OUT_ABOVE_32(uint32_t A) { return ((A) & u64(0xffffffffU)); }
static constexpr uint64_t MASK_OUT_BELOW_32(uint64_t A) { return ((A) & ~u64(0xffffffffU)); }
/* Shift & Rotate Macros. */
static constexpr uint32_t LSL(uint32 A, uint32_t C) { return ((A) << (C)); }
static constexpr uint32_t LSR(uint32 A, uint32_t C) { return ((A) >> (C)); }
/* We have to do this because the morons at ANSI decided that shifts
* by >= data size are undefined.
*/
static constexpr uint32_t LSR_32(uint32 A, uint32_t C) { return ((C) < 32 ? (A) >> (C) : 0); }
static constexpr uint32_t LSL_32(uint32 A, uint32_t C) { return ((C) < 32 ? (A) << (C) : 0); }
static constexpr uint64_t LSL_32_64(uint64_t A, uint32_t C) { return ((A) << (C)); }
static constexpr uint64_t LSR_32_64(uint64_t A, uint32_t C) { return ((A) >> (C)); }
static constexpr uint64_t ROL_33_64(uint64_t A, uint32_t C) { return (LSL_32_64(A, C) | LSR_32_64(A, 33 - (C))); }
static constexpr uint64_t ROR_33_64(uint64_t A, uint32_t C) { return (LSR_32_64(A, C) | LSL_32_64(A, 33 - (C))); }
static constexpr uint32_t ROL_8(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C))); }
static constexpr uint32_t ROL_9(uint32_t A, uint32_t C) { return (LSL(A, C) | LSR(A, 9-(C))); }
static constexpr uint32_t ROL_16(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C))); }
static constexpr uint32_t ROL_17(uint32_t A, uint32_t C) { return (LSL(A, C) | LSR(A, 17-(C))); }
static constexpr uint32_t ROL_32(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C))); }
static constexpr uint32_t ROR_8(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C))); }
static constexpr uint32_t ROR_9(uint32_t A, uint32_t C) { return (LSR(A, C) | LSL(A, 9-(C))); }
static constexpr uint32_t ROR_16(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C))); }
static constexpr uint32_t ROR_17(uint32_t A, uint32_t C) { return (LSR(A, C) | LSL(A, 17-(C))); }
static constexpr uint32_t ROR_32(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C))); }
/* ------------------------------ CPU Access ------------------------------ */
/* Access the CPU registers */
inline uint32_t (&REG_DA())[16] { return m_dar; } /* easy access to data and address regs */
inline uint32_t (&REG_D())[16] { return m_dar; }
inline uint32_t (*REG_A()) { return (m_dar+8); }
inline uint32_t (&REG_SP_BASE())[7]{ return m_sp; }
inline uint32_t &REG_USP() { return m_sp[0]; }
inline uint32_t &REG_ISP() { return m_sp[4]; }
inline uint32_t &REG_MSP() { return m_sp[6]; }
inline uint32_t &REG_SP() { return m_dar[15]; }
/* ----------------------------- Configuration ---------------------------- */
/* These defines are dependant on the configuration defines in m68kconf.h */
/* Disable certain comparisons if we're not using all CPU types */
inline uint32_t CPU_TYPE_IS_COLDFIRE() const { return ((m_cpu_type) & (CPU_TYPE_COLDFIRE)); }
inline uint32_t CPU_TYPE_IS_040_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_040 | CPU_TYPE_EC040)); }
inline uint32_t CPU_TYPE_IS_030_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040)); }
inline uint32_t CPU_TYPE_IS_020_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
inline uint32_t CPU_TYPE_IS_020_VARIANT() const { return ((m_cpu_type) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_FSCPU32)); }
inline uint32_t CPU_TYPE_IS_EC020_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
inline uint32_t CPU_TYPE_IS_EC020_LESS() const { return ((m_cpu_type) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_EC020)); }
inline uint32_t CPU_TYPE_IS_010() const { return ((m_cpu_type) == CPU_TYPE_010); }
inline uint32_t CPU_TYPE_IS_010_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_010 | CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_EC030 | CPU_TYPE_030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
inline uint32_t CPU_TYPE_IS_010_LESS() const { return ((m_cpu_type) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010)); }
inline uint32_t CPU_TYPE_IS_000() const { return ((m_cpu_type) == CPU_TYPE_000 || (m_cpu_type) == CPU_TYPE_008); }
/* Initiates trace checking before each instruction (t1) */
inline void m68ki_trace_t1() { m_tracing = m_t1_flag; }
/* adds t0 to trace checking if we encounter change of flow */
inline void m68ki_trace_t0() { m_tracing |= m_t0_flag; }
/* Clear all tracing */
inline void m68ki_clear_trace() { m_tracing = 0; }
/* Cause a trace exception if we are tracing */
inline void m68ki_exception_if_trace() { if(m_tracing) m68ki_exception_trace(); }
/* -------------------------- EA / Operand Access ------------------------- */
/*
* The general instruction format follows this pattern:
* .... XXX. .... .YYY
* where XXX is register X and YYY is register Y
*/
/* Data Register Isolation */
inline uint32_t &DX() { return (REG_D()[(m_ir >> 9) & 7]); }
inline uint32_t &DY() { return (REG_D()[m_ir & 7]); }
/* Address Register Isolation */
inline uint32_t &AX() { return (REG_A()[(m_ir >> 9) & 7]); }
inline uint32_t &AY() { return (REG_A()[m_ir & 7]); }
/* Effective Address Calculations */
inline uint32_t EA_AY_AI_8() { return AY(); } /* address register indirect */
inline uint32_t EA_AY_AI_16() { return EA_AY_AI_8(); }
inline uint32_t EA_AY_AI_32() { return EA_AY_AI_8(); }
inline uint32_t EA_AY_PI_8() { return (AY()++); } /* postincrement (size = byte) */
inline uint32_t EA_AY_PI_16() { return ((AY()+=2)-2); } /* postincrement (size = word) */
inline uint32_t EA_AY_PI_32() { return ((AY()+=4)-4); } /* postincrement (size = long) */
inline uint32_t EA_AY_PD_8() { return (--AY()); } /* predecrement (size = byte) */
inline uint32_t EA_AY_PD_16() { return (AY()-=2); } /* predecrement (size = word) */
inline uint32_t EA_AY_PD_32() { return (AY()-=4); } /* predecrement (size = long) */
inline uint32_t EA_AY_DI_8() { return (AY()+MAKE_INT_16(m68ki_read_imm_16())); } /* displacement */
inline uint32_t EA_AY_DI_16() { return EA_AY_DI_8(); }
inline uint32_t EA_AY_DI_32() { return EA_AY_DI_8(); }
inline uint32_t EA_AY_IX_8() { return m68ki_get_ea_ix(AY()); } /* indirect + index */
inline uint32_t EA_AY_IX_16() { return EA_AY_IX_8(); }
inline uint32_t EA_AY_IX_32() { return EA_AY_IX_8(); }
inline uint32_t EA_AX_AI_8() { return AX(); }
inline uint32_t EA_AX_AI_16() { return EA_AX_AI_8(); }
inline uint32_t EA_AX_AI_32() { return EA_AX_AI_8(); }
inline uint32_t EA_AX_PI_8() { return (AX()++); }
inline uint32_t EA_AX_PI_16() { return ((AX()+=2)-2); }
inline uint32_t EA_AX_PI_32() { return ((AX()+=4)-4); }
inline uint32_t EA_AX_PD_8() { return (--AX()); }
inline uint32_t EA_AX_PD_16() { return (AX()-=2); }
inline uint32_t EA_AX_PD_32() { return (AX()-=4); }
inline uint32_t EA_AX_DI_8() { return (AX()+MAKE_INT_16(m68ki_read_imm_16())); }
inline uint32_t EA_AX_DI_16() { return EA_AX_DI_8(); }
inline uint32_t EA_AX_DI_32() { return EA_AX_DI_8(); }
inline uint32_t EA_AX_IX_8() { return m68ki_get_ea_ix(AX()); }
inline uint32_t EA_AX_IX_16() { return EA_AX_IX_8(); }
inline uint32_t EA_AX_IX_32() { return EA_AX_IX_8(); }
inline uint32_t EA_A7_PI_8() { return ((REG_A()[7]+=2)-2); }
inline uint32_t EA_A7_PD_8() { return (REG_A()[7]-=2); }
inline uint32_t EA_AW_8() { return MAKE_INT_16(m68ki_read_imm_16()); } /* absolute word */
inline uint32_t EA_AW_16() { return EA_AW_8(); }
inline uint32_t EA_AW_32() { return EA_AW_8(); }
inline uint32_t EA_AL_8() { return m68ki_read_imm_32(); } /* absolute long */
inline uint32_t EA_AL_16() { return EA_AL_8(); }
inline uint32_t EA_AL_32() { return EA_AL_8(); }
inline uint32_t EA_PCDI_8() { return m68ki_get_ea_pcdi(); } /* pc indirect + displacement */
inline uint32_t EA_PCDI_16() { return EA_PCDI_8(); }
inline uint32_t EA_PCDI_32() { return EA_PCDI_8(); }
inline uint32_t EA_PCIX_8() { return m68ki_get_ea_pcix(); } /* pc indirect + index */
inline uint32_t EA_PCIX_16() { return EA_PCIX_8(); }
inline uint32_t EA_PCIX_32() { return EA_PCIX_8(); }
inline uint32_t OPER_I_8() { return m68ki_read_imm_8(); }
inline uint32_t OPER_I_16() { return m68ki_read_imm_16(); }
inline uint32_t OPER_I_32() { return m68ki_read_imm_32(); }
/* --------------------------- Status Register ---------------------------- */
/* Flag Calculation Macros */
static constexpr uint32_t CFLAG_8(uint32_t A) { return (A); }
static constexpr uint32_t CFLAG_16(uint32_t A) { return ((A)>>8); }
static constexpr uint32_t CFLAG_ADD_32(uint32_t S, uint32_t D, uint32_t R) { return (((S & D) | (~R & (S | D)))>>23); }
static constexpr uint32_t CFLAG_SUB_32(uint32_t S, uint32_t D, uint32_t R) { return (((S & R) | (~D & (S | R)))>>23); }
static constexpr uint32_t VFLAG_ADD_8(uint32_t S, uint32_t D, uint32_t R) { return ((S^R) & (D^R)); }
static constexpr uint32_t VFLAG_ADD_16(uint32_t S, uint32_t D, uint32_t R) { return (((S^R) & (D^R))>>8); }
static constexpr uint32_t VFLAG_ADD_32(uint32_t S, uint32_t D, uint32_t R) { return (((S^R) & (D^R))>>24); }
static constexpr uint32_t VFLAG_SUB_8(uint32_t S, uint32_t D, uint32_t R) { return ((S^D) & (R^D)); }
static constexpr uint32_t VFLAG_SUB_16(uint32_t S, uint32_t D, uint32_t R) { return (((S^D) & (R^D))>>8); }
static constexpr uint32_t VFLAG_SUB_32(uint32_t S, uint32_t D, uint32_t R) { return (((S^D) & (R^D))>>24); }
static constexpr uint32_t NFLAG_8(uint32_t A) { return (A); }
static constexpr uint32_t NFLAG_16(uint32_t A) { return ((A)>>8); }
static constexpr uint32_t NFLAG_32(uint32_t A) { return ((A)>>24); }
static constexpr uint32_t NFLAG_64(uint64_t A) { return ((A)>>56); }
static constexpr uint32_t ZFLAG_8(uint32_t A) { return MASK_OUT_ABOVE_8(A); }
static constexpr uint32_t ZFLAG_16(uint32_t A) { return MASK_OUT_ABOVE_16(A); }
static constexpr uint32_t ZFLAG_32(uint32_t A) { return MASK_OUT_ABOVE_32(A); }
/* Flag values */
static constexpr int NFLAG_SET = 0x80;
static constexpr int NFLAG_CLEAR = 0;
static constexpr int CFLAG_SET = 0x100;
static constexpr int CFLAG_CLEAR = 0;
static constexpr int XFLAG_SET = 0x100;
static constexpr int XFLAG_CLEAR = 0;
static constexpr int VFLAG_SET = 0x80;
static constexpr int VFLAG_CLEAR = 0;
static constexpr int ZFLAG_SET = 0;
static constexpr int ZFLAG_CLEAR = 0xffffffff;
static constexpr int SFLAG_SET = 4;
static constexpr int SFLAG_CLEAR = 0;
static constexpr int MFLAG_SET = 2;
static constexpr int MFLAG_CLEAR = 0;
/* Turn flag values into 1 or 0 */
inline uint32_t XFLAG_1() const { return ((m_x_flag>>8)&1); }
inline uint32_t NFLAG_1() const { return ((m_n_flag>>7)&1); }
inline uint32_t VFLAG_1() const { return ((m_v_flag>>7)&1); }
inline uint32_t ZFLAG_1() const { return (!m_not_z_flag); }
inline uint32_t CFLAG_1() const { return ((m_c_flag>>8)&1); }
/* Conditions */
inline uint32_t COND_CS() const { return (m_c_flag&0x100); }
inline uint32_t COND_CC() const { return (!COND_CS()); }
inline uint32_t COND_VS() const { return (m_v_flag&0x80); }
inline uint32_t COND_VC() const { return (!COND_VS()); }
inline uint32_t COND_NE() const { return m_not_z_flag; }
inline uint32_t COND_EQ() const { return (!COND_NE()); }
inline uint32_t COND_MI() const { return (m_n_flag&0x80); }
inline uint32_t COND_PL() const { return (!COND_MI()); }
inline uint32_t COND_LT() const { return ((m_n_flag^m_v_flag)&0x80); }
inline uint32_t COND_GE() const { return (!COND_LT()); }
inline uint32_t COND_HI() const { return (COND_CC() && COND_NE()); }
inline uint32_t COND_LS() const { return (COND_CS() || COND_EQ()); }
inline uint32_t COND_GT() const { return (COND_GE() && COND_NE()); }
inline uint32_t COND_LE() const { return (COND_LT() || COND_EQ()); }
/* Reversed conditions */
inline uint32_t COND_NOT_CS() const { return COND_CC(); }
inline uint32_t COND_NOT_CC() const { return COND_CS(); }
inline uint32_t COND_NOT_VS() const { return COND_VC(); }
inline uint32_t COND_NOT_VC() const { return COND_VS(); }
inline uint32_t COND_NOT_NE() const { return COND_EQ(); }
inline uint32_t COND_NOT_EQ() const { return COND_NE(); }
inline uint32_t COND_NOT_MI() const { return COND_PL(); }
inline uint32_t COND_NOT_PL() const { return COND_MI(); }
inline uint32_t COND_NOT_LT() const { return COND_GE(); }
inline uint32_t COND_NOT_GE() const { return COND_LT(); }
inline uint32_t COND_NOT_HI() const { return COND_LS(); }
inline uint32_t COND_NOT_LS() const { return COND_HI(); }
inline uint32_t COND_NOT_GT() const { return COND_LE(); }
inline uint32_t COND_NOT_LE() const { return COND_GT(); }
/* Not real conditions, but here for convenience */
inline uint32_t COND_XS() const { return (m_x_flag&0x100); }
inline uint32_t COND_XC() const { return (!COND_XS()); }
/* Get the condition code register */
inline uint32_t m68ki_get_ccr() const { return((COND_XS() >> 4) |
(COND_MI() >> 4) |
(COND_EQ() << 2) |
(COND_VS() >> 6) |
(COND_CS() >> 8)); }
/* Get the status register */
inline uint32_t m68ki_get_sr() const { return (m_t1_flag |
m_t0_flag |
(m_s_flag << 11) |
(m_m_flag << 11) |
m_int_mask |
m68ki_get_ccr()); }
/* ----------------------------- Read / Write ----------------------------- */
/* Read from the current address space */
inline uint32_t m68ki_read_8(uint32_t address) { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
inline uint32_t m68ki_read_16(uint32_t address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
inline uint32_t m68ki_read_32(uint32_t address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
/* Write to the current data space */
inline void m68ki_write_8(uint32_t address, uint32_t value) { m68ki_write_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
inline void m68ki_write_16(uint32_t address, uint32_t value) { m68ki_write_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
inline void m68ki_write_32(uint32_t address, uint32_t value) { m68ki_write_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
inline void m68ki_write_32_pd(uint32_t address, uint32_t value) { m68ki_write_32_pd_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
/* map read immediate 8 to read immediate 16 */
inline uint32_t m68ki_read_imm_8() { return MASK_OUT_ABOVE_8(m68ki_read_imm_16()); }
/* Map PC-relative reads */
inline uint32_t m68ki_read_pcrel_8(uint32_t address) { return m68k_read_pcrelative_8(address); }
inline uint32_t m68ki_read_pcrel_16(uint32_t address) { return m68k_read_pcrelative_16(address); }
inline uint32_t m68ki_read_pcrel_32(uint32_t address) { return m68k_read_pcrelative_32(address); }
/* Read from the program space */
inline uint32_t m68ki_read_program_8(uint32_t address) { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
inline uint32_t m68ki_read_program_16(uint32_t address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
inline uint32_t m68ki_read_program_32(uint32_t address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
/* Read from the data space */
inline uint32_t m68ki_read_data_8(uint32_t address) { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
inline uint32_t m68ki_read_data_16(uint32_t address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
inline uint32_t m68ki_read_data_32(uint32_t address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
/* ======================================================================== */
/* =============================== PROTOTYPES ============================= */
/* ======================================================================== */
void set_irq_line(int irqline, int state);
void m68k_cause_bus_error();
static const uint8_t m68ki_shift_8_table[65];
static const uint16_t m68ki_shift_16_table[65];
static const uint32_t m68ki_shift_32_table[65];
static const uint8_t m68ki_exception_cycle_table[7][256];
static const uint8_t m68ki_ea_idx_cycle_table[64];
/* ======================================================================== */
/* =========================== UTILITY FUNCTIONS ========================== */
/* ======================================================================== */
inline unsigned int m68k_read_pcrelative_8(unsigned int address)
{
return ((m_readimm16(address&~1)>>(8*(1-(address & 1))))&0xff);
}
inline unsigned int m68k_read_pcrelative_16(unsigned int address)
{
if (!WORD_ALIGNED(address))
return
(m_readimm16(address-1) << 8) |
(m_readimm16(address+1) >> 8);
else
return
(m_readimm16(address ) );
}
inline unsigned int m68k_read_pcrelative_32(unsigned int address)
{
if (!WORD_ALIGNED(address))
return
(m_readimm16(address-1) << 24) |
(m_readimm16(address+1) << 8) |
(m_readimm16(address+3) >> 8);
else
return
(m_readimm16(address ) << 16) |
(m_readimm16(address+2) );
}
/* Special call to simulate undocumented 68k behavior when move.l with a
* predecrement destination mode is executed.
* A real 68k first writes the high word to [address+2], and then writes the
* low word to [address].
*/
inline void m68kx_write_memory_32_pd(unsigned int address, unsigned int value)
{
m_write16(address+2, value>>16);
m_write16(address, value&0xffff);
}
/* ---------------------------- Read Immediate ---------------------------- */
// clear the instruction cache
inline void m68ki_ic_clear()
{
int i;
for (i=0; i< M68K_IC_SIZE; i++) {
m_ic_address[i] = ~0;
}
}
// read immediate word using the instruction cache
inline uint32_t m68ki_ic_readimm16(uint32_t address)
{
if (m_cacr & M68K_CACR_EI)
{
// 68020 series I-cache (MC68020 User's Manual, Section 4 - On-Chip Cache Memory)
if (m_cpu_type & (CPU_TYPE_EC020 | CPU_TYPE_020))
{
uint32_t tag = (address >> 8) | (m_s_flag ? 0x1000000 : 0);
int idx = (address >> 2) & 0x3f; // 1-of-64 select
// do a cache fill if the line is invalid or the tags don't match
if ((!m_ic_valid[idx]) || (m_ic_address[idx] != tag))
{
// if the cache is frozen, don't update it
if (m_cacr & M68K_CACR_FI)
{
return m_readimm16(address);
}
uint32_t data = m_read32(address & ~3);
//printf("m68k: doing cache fill at %08x (tag %08x idx %d)\n", address, tag, idx);
// if no buserror occurred, validate the tag
if (!m_mmu_tmp_buserror_occurred)
{
m_ic_address[idx] = tag;
m_ic_data[idx] = data;
m_ic_valid[idx] = true;
}
else
{
return m_readimm16(address);
}
}
// at this point, the cache is guaranteed to be valid, either as
// a hit or because we just filled it.
if (address & 2)
{
return m_ic_data[idx] & 0xffff;
}
else
{
return m_ic_data[idx] >> 16;
}
}
}
return m_readimm16(address);
}
/* Handles all immediate reads, does address error check, function code setting,
* and prefetching if they are enabled in m68kconf.h
*/
inline uint32_t m68ki_read_imm_16()
{
uint32_t result;
m_mmu_tmp_fc = m_s_flag | FUNCTION_CODE_USER_PROGRAM;
m_mmu_tmp_rw = 1;
m68ki_check_address_error(m_pc, MODE_READ, m_s_flag | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
if (m_pc != m_pref_addr)
{
m_pref_data = m68ki_ic_readimm16(m_pc);
m_pref_addr = m_mmu_tmp_buserror_occurred ? ~0 : m_pc;
}
result = MASK_OUT_ABOVE_16(m_pref_data);
m_pc += 2;
if (!m_mmu_tmp_buserror_occurred) {
// prefetch only if no bus error occurred in opcode fetch
m_pref_data = m68ki_ic_readimm16(m_pc);
m_pref_addr = m_mmu_tmp_buserror_occurred ? ~0 : m_pc;
// ignore bus error on prefetch
m_mmu_tmp_buserror_occurred = 0;
}
return result;
}
inline uint32_t m68ki_read_imm_32()
{
uint32_t temp_val;
m_mmu_tmp_fc = m_s_flag | FUNCTION_CODE_USER_PROGRAM;
m_mmu_tmp_rw = 1;
m68ki_check_address_error(m_pc, MODE_READ, m_s_flag | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
if(m_pc != m_pref_addr)
{
m_pref_addr = m_pc;
m_pref_data = m68ki_ic_readimm16(m_pref_addr);
}
temp_val = MASK_OUT_ABOVE_16(m_pref_data);
m_pc += 2;
m_pref_addr = m_pc;
m_pref_data = m68ki_ic_readimm16(m_pref_addr);
temp_val = MASK_OUT_ABOVE_32((temp_val << 16) | MASK_OUT_ABOVE_16(m_pref_data));
m_pc += 2;
m_pref_data = m68ki_ic_readimm16(m_pc);
m_pref_addr = m_mmu_tmp_buserror_occurred ? ~0 : m_pc;
return temp_val;
}
/* ------------------------- Top level read/write ------------------------- */
/* Handles all memory accesses (except for immediate reads if they are
* configured to use separate functions in m68kconf.h).
* All memory accesses must go through these top level functions.
* These functions will also check for address error and set the function
* code if they are enabled in m68kconf.h.
*/
inline uint32_t m68ki_read_8_fc(uint32_t address, uint32_t fc)
{
m_mmu_tmp_fc = fc;
m_mmu_tmp_rw = 1;
return m_read8(address);
}
inline uint32_t m68ki_read_16_fc(uint32_t address, uint32_t fc)
{
if (CPU_TYPE_IS_010_LESS())
{
m68ki_check_address_error(address, MODE_READ, fc);
}
m_mmu_tmp_fc = fc;
m_mmu_tmp_rw = 1;
return m_read16(address);
}
inline uint32_t m68ki_read_32_fc(uint32_t address, uint32_t fc)
{
if (CPU_TYPE_IS_010_LESS())
{
m68ki_check_address_error(address, MODE_READ, fc);
}
m_mmu_tmp_fc = fc;
m_mmu_tmp_rw = 1;
return m_read32(address);
}
inline void m68ki_write_8_fc(uint32_t address, uint32_t fc, uint32_t value)
{
m_mmu_tmp_fc = fc;
m_mmu_tmp_rw = 0;
m_write8(address, value);
}
inline void m68ki_write_16_fc(uint32_t address, uint32_t fc, uint32_t value)
{
if (CPU_TYPE_IS_010_LESS())
{
m68ki_check_address_error(address, MODE_WRITE, fc);
}
m_mmu_tmp_fc = fc;
m_mmu_tmp_rw = 0;
m_write16(address, value);
}
inline void m68ki_write_32_fc(uint32_t address, uint32_t fc, uint32_t value)
{
if (CPU_TYPE_IS_010_LESS())
{
m68ki_check_address_error(address, MODE_WRITE, fc);
}
m_mmu_tmp_fc = fc;
m_mmu_tmp_rw = 0;
m_write32(address, value);
}
/* Special call to simulate undocumented 68k behavior when move.l with a
* predecrement destination mode is executed.
* A real 68k first writes the high word to [address+2], and then writes the
* low word to [address].
*/
inline void m68ki_write_32_pd_fc(uint32_t address, uint32_t fc, uint32_t value)
{
if (CPU_TYPE_IS_010_LESS())
{
m68ki_check_address_error(address, MODE_WRITE, fc);
}
m_mmu_tmp_fc = fc;
m_mmu_tmp_rw = 0;
m_write16(address+2, value>>16);
m_write16(address, value&0xffff);
}
/* --------------------- Effective Address Calculation -------------------- */
/* The program counter relative addressing modes cause operands to be
* retrieved from program space, not data space.
*/
inline uint32_t m68ki_get_ea_pcdi()
{
uint32_t old_pc = m_pc;
return old_pc + MAKE_INT_16(m68ki_read_imm_16());
}
inline uint32_t m68ki_get_ea_pcix()
{
return m68ki_get_ea_ix(m_pc);
}
/* Indexed addressing modes are encoded as follows:
*
* Base instruction format:
* F E D C B A 9 8 7 6 | 5 4 3 | 2 1 0
* x x x x x x x x x x | 1 1 0 | BASE REGISTER (An)
*
* Base instruction format for destination EA in move instructions:
* F E D C | B A 9 | 8 7 6 | 5 4 3 2 1 0
* x x x x | BASE REG | 1 1 0 | X X X X X X (An)
*
* Brief extension format:
* F | E D C | B | A 9 | 8 | 7 6 5 4 3 2 1 0
* D/A | REGISTER | W/L | SCALE | 0 | DISPLACEMENT
*
* Full extension format:
* F E D C B A 9 8 7 6 5 4 3 2 1 0
* D/A | REGISTER | W/L | SCALE | 1 | BS | IS | BD SIZE | 0 | I/IS
* BASE DISPLACEMENT (0, 16, 32 bit) (bd)
* OUTER DISPLACEMENT (0, 16, 32 bit) (od)
*
* D/A: 0 = Dn, 1 = An (Xn)
* W/L: 0 = W (sign extend), 1 = L (.SIZE)
* SCALE: 00=1, 01=2, 10=4, 11=8 (*SCALE)
* BS: 0=add base reg, 1=suppress base reg (An suppressed)
* IS: 0=add index, 1=suppress index (Xn suppressed)
* BD SIZE: 00=reserved, 01=NULL, 10=Word, 11=Long (size of bd)
*
* IS I/IS Operation
* 0 000 No Memory Indirect
* 0 001 indir prex with null outer
* 0 010 indir prex with word outer
* 0 011 indir prex with long outer
* 0 100 reserved
* 0 101 indir postx with null outer
* 0 110 indir postx with word outer
* 0 111 indir postx with long outer
* 1 000 no memory indirect
* 1 001 mem indir with null outer
* 1 010 mem indir with word outer
* 1 011 mem indir with long outer
* 1 100-111 reserved
*/
inline uint32_t m68ki_get_ea_ix(uint32_t An)
{
/* An = base register */
uint32_t extension = m68ki_read_imm_16();
uint32_t Xn = 0; /* Index register */
uint32_t bd = 0; /* Base Displacement */
uint32_t od = 0; /* Outer Displacement */
if(CPU_TYPE_IS_010_LESS())
{
/* Calculate index */
Xn = REG_DA()[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
/* Add base register and displacement and return */
return An + Xn + MAKE_INT_8(extension);
}
/* Brief extension format */
if(!BIT_8(extension))
{
/* Calculate index */
Xn = REG_DA()[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
/* Add scale if proper CPU type */
if(CPU_TYPE_IS_EC020_PLUS())
Xn <<= (extension>>9) & 3; /* SCALE */
/* Add base register and displacement and return */
return An + Xn + MAKE_INT_8(extension);
}
/* Full extension format */
m_remaining_cycles -= m68ki_ea_idx_cycle_table[extension&0x3f];
/* Check if base register is present */
if(BIT_7(extension)) /* BS */
An = 0; /* An */
/* Check if index is present */
if(!BIT_6(extension)) /* IS */
{
Xn = REG_DA()[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
Xn <<= (extension>>9) & 3; /* SCALE */
}
/* Check if base displacement is present */
if(BIT_5(extension)) /* BD SIZE */
bd = BIT_4(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());
/* If no indirect action, we are done */
if(!(extension&7)) /* No Memory Indirect */
return An + bd + Xn;
/* Check if outer displacement is present */
if(BIT_1(extension)) /* I/IS: od */
od = BIT_0(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());
/* Postindex */
if(BIT_2(extension)) /* I/IS: 0 = preindex, 1 = postindex */
return m68ki_read_32(An + bd) + Xn + od;
/* Preindex */
return m68ki_read_32(An + bd + Xn) + od;
}
/* Fetch operands */
inline uint32_t OPER_AY_AI_8() {uint32_t ea = EA_AY_AI_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AY_AI_16() {uint32_t ea = EA_AY_AI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_AI_32() {uint32_t ea = EA_AY_AI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AY_PI_8() {uint32_t ea = EA_AY_PI_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AY_PI_16() {uint32_t ea = EA_AY_PI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_PI_32() {uint32_t ea = EA_AY_PI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AY_PD_8() {uint32_t ea = EA_AY_PD_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AY_PD_16() {uint32_t ea = EA_AY_PD_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_PD_32() {uint32_t ea = EA_AY_PD_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AY_DI_8() {uint32_t ea = EA_AY_DI_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AY_DI_16() {uint32_t ea = EA_AY_DI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_DI_32() {uint32_t ea = EA_AY_DI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AY_IX_8() {uint32_t ea = EA_AY_IX_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AY_IX_16() {uint32_t ea = EA_AY_IX_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_IX_32() {uint32_t ea = EA_AY_IX_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AX_AI_8() {uint32_t ea = EA_AX_AI_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AX_AI_16() {uint32_t ea = EA_AX_AI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_AI_32() {uint32_t ea = EA_AX_AI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AX_PI_8() {uint32_t ea = EA_AX_PI_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AX_PI_16() {uint32_t ea = EA_AX_PI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_PI_32() {uint32_t ea = EA_AX_PI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AX_PD_8() {uint32_t ea = EA_AX_PD_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AX_PD_16() {uint32_t ea = EA_AX_PD_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_PD_32() {uint32_t ea = EA_AX_PD_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AX_DI_8() {uint32_t ea = EA_AX_DI_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AX_DI_16() {uint32_t ea = EA_AX_DI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_DI_32() {uint32_t ea = EA_AX_DI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AX_IX_8() {uint32_t ea = EA_AX_IX_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AX_IX_16() {uint32_t ea = EA_AX_IX_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_IX_32() {uint32_t ea = EA_AX_IX_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_A7_PI_8() {uint32_t ea = EA_A7_PI_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_A7_PD_8() {uint32_t ea = EA_A7_PD_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AW_8() {uint32_t ea = EA_AW_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AW_16() {uint32_t ea = EA_AW_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AW_32() {uint32_t ea = EA_AW_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AL_8() {uint32_t ea = EA_AL_8(); return m68ki_read_8(ea); }
inline uint32_t OPER_AL_16() {uint32_t ea = EA_AL_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AL_32() {uint32_t ea = EA_AL_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_PCDI_8() {uint32_t ea = EA_PCDI_8(); return m68ki_read_pcrel_8(ea); }
inline uint32_t OPER_PCDI_16() {uint32_t ea = EA_PCDI_16(); return m68ki_read_pcrel_16(ea);}
inline uint32_t OPER_PCDI_32() {uint32_t ea = EA_PCDI_32(); return m68ki_read_pcrel_32(ea);}
inline uint32_t OPER_PCIX_8() {uint32_t ea = EA_PCIX_8(); return m68ki_read_pcrel_8(ea); }
inline uint32_t OPER_PCIX_16() {uint32_t ea = EA_PCIX_16(); return m68ki_read_pcrel_16(ea);}
inline uint32_t OPER_PCIX_32() {uint32_t ea = EA_PCIX_32(); return m68ki_read_pcrel_32(ea);}
/* ---------------------------- Stack Functions --------------------------- */
/* Push/pull data from the stack */
inline void m68ki_push_16(uint32_t value)
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 2);
m68ki_write_16(REG_SP(), value);
}
inline void m68ki_push_32(uint32_t value)
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 4);
m68ki_write_32(REG_SP(), value);
}
inline uint32_t m68ki_pull_16()
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 2);
return m68ki_read_16(REG_SP()-2);
}
inline uint32_t m68ki_pull_32()
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 4);
return m68ki_read_32(REG_SP()-4);
}
/* Increment/decrement the stack as if doing a push/pull but
* don't do any memory access.
*/
inline void m68ki_fake_push_16()
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 2);
}
inline void m68ki_fake_push_32()
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 4);
}
inline void m68ki_fake_pull_16()
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 2);
}
inline void m68ki_fake_pull_32()
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 4);
}
/* ----------------------------- Program Flow ----------------------------- */
/* Jump to a new program location or vector.
* These functions will also call the pc_changed callback if it was enabled
* in m68kconf.h.
*/
inline void m68ki_jump(uint32_t new_pc)
{
m_pc = new_pc;
}
inline void m68ki_jump_vector(uint32_t vector)
{
m_pc = (vector<<2) + m_vbr;
m_pc = m68ki_read_data_32(m_pc);
}
/* Branch to a new memory location.
* The 32-bit branch will call pc_changed if it was enabled in m68kconf.h.
* So far I've found no problems with not calling pc_changed for 8 or 16
* bit branches.
*/
inline void m68ki_branch_8(uint32_t offset)
{
m_pc += MAKE_INT_8(offset);
}
inline void m68ki_branch_16(uint32_t offset)
{
m_pc += MAKE_INT_16(offset);
}
inline void m68ki_branch_32(uint32_t offset)
{
m_pc += offset;
}
/* ---------------------------- Status Register --------------------------- */
/* Set the S flag and change the active stack pointer.
* Note that value MUST be 4 or 0.
*/
inline void m68ki_set_s_flag(uint32_t value)
{
/* Backup the old stack pointer */
REG_SP_BASE()[m_s_flag | ((m_s_flag>>1) & m_m_flag)] = REG_SP();
/* Set the S flag */
m_s_flag = value;
/* Set the new stack pointer */
REG_SP() = REG_SP_BASE()[m_s_flag | ((m_s_flag>>1) & m_m_flag)];
}
/* Set the S and M flags and change the active stack pointer.
* Note that value MUST be 0, 2, 4, or 6 (bit2 = S, bit1 = M).
*/
inline void m68ki_set_sm_flag(uint32_t value)
{
/* Backup the old stack pointer */
REG_SP_BASE()[m_s_flag | ((m_s_flag >> 1) & m_m_flag)] = REG_SP();
/* Set the S and M flags */
m_s_flag = value & SFLAG_SET;
m_m_flag = value & MFLAG_SET;
/* Set the new stack pointer */
REG_SP() = REG_SP_BASE()[m_s_flag | ((m_s_flag>>1) & m_m_flag)];
}
/* Set the S and M flags. Don't touch the stack pointer. */
inline void m68ki_set_sm_flag_nosp(uint32_t value)
{
/* Set the S and M flags */
m_s_flag = value & SFLAG_SET;
m_m_flag = value & MFLAG_SET;
}
/* Set the condition code register */
inline void m68ki_set_ccr(uint32_t value)
{
m_x_flag = BIT_4(value)<< 4;
m_n_flag = BIT_3(value)<< 4;
m_not_z_flag = !BIT_2(value);
m_v_flag = BIT_1(value)<< 6;
m_c_flag = BIT_0(value)<< 8;
}
/* Set the status register but don't check for interrupts */
inline void m68ki_set_sr_noint(uint32_t value)
{
/* Mask out the "unimplemented" bits */
value &= m_sr_mask;
/* Now set the status register */
m_t1_flag = BIT_F(value);
m_t0_flag = BIT_E(value);
m_int_mask = value & 0x0700;
m68ki_set_ccr(value);
m68ki_set_sm_flag((value >> 11) & 6);
}
/* Set the status register but don't check for interrupts nor
* change the stack pointer
*/
inline void m68ki_set_sr_noint_nosp(uint32_t value)
{
/* Mask out the "unimplemented" bits */
value &= m_sr_mask;
/* Now set the status register */
m_t1_flag = BIT_F(value);
m_t0_flag = BIT_E(value);
m_int_mask = value & 0x0700;
m68ki_set_ccr(value);
m68ki_set_sm_flag_nosp((value >> 11) & 6);
}
/* Set the status register and check for interrupts */
inline void m68ki_set_sr(uint32_t value)
{
m68ki_set_sr_noint(value);
m68ki_check_interrupts();
}
/* ------------------------- Exception Processing ------------------------- */
/* Initiate exception processing */
inline uint32_t m68ki_init_exception()
{
/* Save the old status register */
uint32_t sr = m68ki_get_sr();
/* Turn off trace flag, clear pending traces */
m_t1_flag = m_t0_flag = 0;
m68ki_clear_trace();
/* Enter supervisor mode */
m68ki_set_s_flag(SFLAG_SET);
return sr;
}
/* 3 word stack frame (68000 only) */
inline void m68ki_stack_frame_3word(uint32_t pc, uint32_t sr)
{
m68ki_push_32(pc);
m68ki_push_16(sr);
}
/* Format 0 stack frame.
* This is the standard stack frame for 68010+.
*/
inline void m68ki_stack_frame_0000(uint32_t pc, uint32_t sr, uint32_t vector)
{
/* Stack a 3-word frame if we are 68000 */
if(m_cpu_type == CPU_TYPE_000 || m_cpu_type == CPU_TYPE_008)
{
m68ki_stack_frame_3word(pc, sr);
return;
}
m68ki_push_16(vector<<2);
m68ki_push_32(pc);
m68ki_push_16(sr);
}
/* Format 1 stack frame (68020).
* For 68020, this is the 4 word throwaway frame.
*/
inline void m68ki_stack_frame_0001(uint32_t pc, uint32_t sr, uint32_t vector)
{
m68ki_push_16(0x1000 | (vector<<2));
m68ki_push_32(pc);
m68ki_push_16(sr);
}
/* Format 2 stack frame.
* This is used only by 68020 for trap exceptions.
*/
inline void m68ki_stack_frame_0010(uint32_t sr, uint32_t vector)
{
m68ki_push_32(m_ppc);
m68ki_push_16(0x2000 | (vector<<2));
m68ki_push_32(m_pc);
m68ki_push_16(sr);
}
/* Bus error stack frame (68000 only).
*/
inline void m68ki_stack_frame_buserr(uint32_t sr)
{
m68ki_push_32(m_pc);
m68ki_push_16(sr);
m68ki_push_16(m_ir);
m68ki_push_32(m_aerr_address); /* access address */
/* 0 0 0 0 0 0 0 0 0 0 0 R/W I/N FC
* R/W 0 = write, 1 = read
* I/N 0 = instruction, 1 = not
* FC 3-bit function code
*/
m68ki_push_16(m_aerr_write_mode | m_instr_mode | m_aerr_fc);
}
/* Format 8 stack frame (68010).
* 68010 only. This is the 29 word bus/address error frame.
*/
inline void m68ki_stack_frame_1000(uint32_t pc, uint32_t sr, uint32_t vector)
{
/* VERSION
* NUMBER
* INTERNAL INFORMATION, 16 WORDS
*/
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
/* INSTRUCTION INPUT BUFFER */
m68ki_push_16(0);
/* UNUSED, RESERVED (not written) */
m68ki_fake_push_16();
/* DATA INPUT BUFFER */
m68ki_push_16(0);
/* UNUSED, RESERVED (not written) */
m68ki_fake_push_16();
/* DATA OUTPUT BUFFER */
m68ki_push_16(0);
/* UNUSED, RESERVED (not written) */
m68ki_fake_push_16();
/* FAULT ADDRESS */
m68ki_push_32(0);
/* SPECIAL STATUS WORD */
m68ki_push_16(0);
/* 1000, VECTOR OFFSET */
m68ki_push_16(0x8000 | (vector<<2));
/* PROGRAM COUNTER */
m68ki_push_32(pc);
/* STATUS REGISTER */
m68ki_push_16(sr);
}
/* Format A stack frame (short bus fault).
* This is used only by 68020 for bus fault and address error
* if the error happens at an instruction boundary.
* PC stacked is address of next instruction.
*/
inline void m68ki_stack_frame_1010(uint32_t sr, uint32_t vector, uint32_t pc, uint32_t fault_address)
{
int orig_rw = m_mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now
int orig_fc = m_mmu_tmp_buserror_fc;
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* DATA OUTPUT BUFFER (2 words) */
m68ki_push_32(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* DATA CYCLE FAULT ADDRESS (2 words) */
m68ki_push_32(fault_address);
/* INSTRUCTION PIPE STAGE B */
m68ki_push_16(0);
/* INSTRUCTION PIPE STAGE C */
m68ki_push_16(0);
/* SPECIAL STATUS REGISTER */
// set bit for: Rerun Faulted bus Cycle, or run pending prefetch
// set FC
m68ki_push_16(0x0100 | orig_fc | orig_rw<<6);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* 1010, VECTOR OFFSET */
m68ki_push_16(0xa000 | (vector<<2));
/* PROGRAM COUNTER */
m68ki_push_32(pc);
/* STATUS REGISTER */
m68ki_push_16(sr);
}
/* Format B stack frame (long bus fault).
* This is used only by 68020 for bus fault and address error
* if the error happens during instruction execution.
* PC stacked is address of instruction in progress.
*/
inline void m68ki_stack_frame_1011(uint32_t sr, uint32_t vector, uint32_t pc, uint32_t fault_address)
{
int orig_rw = m_mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now
int orig_fc = m_mmu_tmp_buserror_fc;
/* INTERNAL REGISTERS (18 words) */
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
/* VERSION# (4 bits), INTERNAL INFORMATION */
m68ki_push_16(0);
/* INTERNAL REGISTERS (3 words) */
m68ki_push_32(0);
m68ki_push_16(0);
/* DATA INTPUT BUFFER (2 words) */
m68ki_push_32(0);
/* INTERNAL REGISTERS (2 words) */
m68ki_push_32(0);
/* STAGE B ADDRESS (2 words) */
m68ki_push_32(0);
/* INTERNAL REGISTER (4 words) */
m68ki_push_32(0);
m68ki_push_32(0);
/* DATA OUTPUT BUFFER (2 words) */
m68ki_push_32(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* DATA CYCLE FAULT ADDRESS (2 words) */
m68ki_push_32(fault_address);
/* INSTRUCTION PIPE STAGE B */
m68ki_push_16(0);
/* INSTRUCTION PIPE STAGE C */
m68ki_push_16(0);
/* SPECIAL STATUS REGISTER */
m68ki_push_16(0x0100 | orig_fc | orig_rw<<6);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* 1011, VECTOR OFFSET */
m68ki_push_16(0xb000 | (vector<<2));
/* PROGRAM COUNTER */
m68ki_push_32(pc);
/* STATUS REGISTER */
m68ki_push_16(sr);
}
/* Type 7 stack frame (access fault).
* This is used by the 68040 for bus fault and mmu trap
* 30 words
*/
inline void m68ki_stack_frame_0111(uint32_t sr, uint32_t vector, uint32_t pc, uint32_t fault_address, bool in_mmu)
{
int orig_rw = m_mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now
int orig_fc = m_mmu_tmp_buserror_fc;
/* INTERNAL REGISTERS (18 words) */
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
/* FAULT ADDRESS (2 words) */
m68ki_push_32(fault_address);
/* INTERNAL REGISTERS (3 words) */
m68ki_push_32(0);
m68ki_push_16(0);
/* SPECIAL STATUS REGISTER (1 word) */
m68ki_push_16((in_mmu ? 0x400 : 0) | orig_fc | (orig_rw<<8));
/* EFFECTIVE ADDRESS (2 words) */
m68ki_push_32(fault_address);
/* 0111, VECTOR OFFSET (1 word) */
m68ki_push_16(0x7000 | (vector<<2));
/* PROGRAM COUNTER (2 words) */
m68ki_push_32(pc);
/* STATUS REGISTER (1 word) */
m68ki_push_16(sr);
}
/* Used for Group 2 exceptions.
* These stack a type 2 frame on the 020.
*/
inline void m68ki_exception_trap(uint32_t vector)
{
uint32_t sr = m68ki_init_exception();
if(CPU_TYPE_IS_010_LESS())
m68ki_stack_frame_0000(m_pc, sr, vector);
else
m68ki_stack_frame_0010(sr, vector);
m68ki_jump_vector(vector);
/* Use up some clock cycles */
m_remaining_cycles -= m_cyc_exception[vector];
}
/* Trap#n stacks a 0 frame but behaves like group2 otherwise */
inline void m68ki_exception_trapN(uint32_t vector)
{
uint32_t sr = m68ki_init_exception();
m68ki_stack_frame_0000(m_pc, sr, vector);
m68ki_jump_vector(vector);
/* Use up some clock cycles */
m_remaining_cycles -= m_cyc_exception[vector];
}
/* Exception for trace mode */
inline void m68ki_exception_trace()
{
uint32_t sr = m68ki_init_exception();
if(CPU_TYPE_IS_010_LESS())
{
if(CPU_TYPE_IS_000())
{
m_instr_mode = INSTRUCTION_NO;
}
m68ki_stack_frame_0000(m_pc, sr, EXCEPTION_TRACE);
}
else
m68ki_stack_frame_0010(sr, EXCEPTION_TRACE);
m68ki_jump_vector(EXCEPTION_TRACE);
/* Trace nullifies a STOP instruction */
m_stopped &= ~STOP_LEVEL_STOP;
/* Use up some clock cycles */
m_remaining_cycles -= m_cyc_exception[EXCEPTION_TRACE];
}
/* Exception for privilege violation */
inline void m68ki_exception_privilege_violation()
{
uint32_t sr = m68ki_init_exception();
if(CPU_TYPE_IS_000())
{
m_instr_mode = INSTRUCTION_NO;
}
m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_PRIVILEGE_VIOLATION);
m68ki_jump_vector(EXCEPTION_PRIVILEGE_VIOLATION);
/* Use up some clock cycles and undo the instruction's cycles */
m_remaining_cycles -= m_cyc_exception[EXCEPTION_PRIVILEGE_VIOLATION] - m_cyc_instruction[m_ir];
}
/* Exception for A-Line instructions */
inline void m68ki_exception_1010()
{
uint32_t sr;
sr = m68ki_init_exception();
m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_1010);
m68ki_jump_vector(EXCEPTION_1010);
/* Use up some clock cycles and undo the instruction's cycles */
m_remaining_cycles -= m_cyc_exception[EXCEPTION_1010] - m_cyc_instruction[m_ir];
}
/* Exception for F-Line instructions */
inline void m68ki_exception_1111()
{
uint32_t sr;
sr = m68ki_init_exception();
m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_1111);
m68ki_jump_vector(EXCEPTION_1111);
/* Use up some clock cycles and undo the instruction's cycles */
m_remaining_cycles -= m_cyc_exception[EXCEPTION_1111] - m_cyc_instruction[m_ir];
}
/* Exception for illegal instructions */
inline void m68ki_exception_illegal()
{
uint32_t sr;
sr = m68ki_init_exception();
if(CPU_TYPE_IS_000())
{
m_instr_mode = INSTRUCTION_NO;
}
m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_ILLEGAL_INSTRUCTION);
m68ki_jump_vector(EXCEPTION_ILLEGAL_INSTRUCTION);
/* Use up some clock cycles and undo the instruction's cycles */
m_remaining_cycles -= m_cyc_exception[EXCEPTION_ILLEGAL_INSTRUCTION] - m_cyc_instruction[m_ir];
}
/* Exception for format errror in RTE */
inline void m68ki_exception_format_error()
{
uint32_t sr = m68ki_init_exception();
m68ki_stack_frame_0000(m_pc, sr, EXCEPTION_FORMAT_ERROR);
m68ki_jump_vector(EXCEPTION_FORMAT_ERROR);
/* Use up some clock cycles and undo the instruction's cycles */
m_remaining_cycles -= m_cyc_exception[EXCEPTION_FORMAT_ERROR] - m_cyc_instruction[m_ir];
}
/* Exception for address error */
inline void m68ki_exception_address_error()
{
uint32_t sr = m68ki_init_exception();
/* If we were processing a bus error, address error, or reset,
* this is a catastrophic failure.
* Halt the CPU
*/
if(m_run_mode == RUN_MODE_BERR_AERR_RESET)
{
m_read8(0x00ffff01);
m_stopped = STOP_LEVEL_HALT;
return;
}
m_run_mode = RUN_MODE_BERR_AERR_RESET;
if (!CPU_TYPE_IS_010_PLUS())
{
/* Note: This is implemented for 68000 only! */
m68ki_stack_frame_buserr(sr);
}
else if (CPU_TYPE_IS_010())
{
/* only the 68010 throws this unique type-1000 frame */
m68ki_stack_frame_1000(m_ppc, sr, EXCEPTION_BUS_ERROR);
}
else if (m_mmu_tmp_buserror_address == m_ppc)
{
m68ki_stack_frame_1010(sr, EXCEPTION_BUS_ERROR, m_ppc, m_mmu_tmp_buserror_address);
}
else
{
m68ki_stack_frame_1011(sr, EXCEPTION_BUS_ERROR, m_ppc, m_mmu_tmp_buserror_address);
}
m68ki_jump_vector(EXCEPTION_ADDRESS_ERROR);
/* Use up some clock cycles and undo the instruction's cycles */
m_remaining_cycles -= m_cyc_exception[EXCEPTION_ADDRESS_ERROR] - m_cyc_instruction[m_ir];
}
/* ASG: Check for interrupts */
inline void m68ki_check_interrupts()
{
if(m_nmi_pending)
{
m_nmi_pending = false;
m68ki_exception_interrupt(7);
}
else if(m_int_level > m_int_mask)
m68ki_exception_interrupt(m_int_level>>8);
}
/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */
#endif // MAME_CPU_M68000_M68KCPU_H