mame/src/emu/cpu/mips/psx.c
Aaron Giles ffc326f8be Converted the IDE controller to a device. Updated all drivers
accordingly.

Added new functions for dynamically installing device memory 
read/write handlers.

Updated install_memory_XXX_handler() functions to take a machine
parameter. Updated all drivers accordingly.

Merged installation of read and write handlers where appropriate.

Simplified memory.c code for dynamic installation so that a single
function handles all the work; a NULL read or write handler 
indicates not to install anything for reads or writes.
2008-04-15 16:49:50 +00:00

4358 lines
138 KiB
C

/*
* PlayStation CPU emulator by smf
*
* Licensed to the MAME Team for distribution under the MAME license.
*
* Known chip id's
* CXD8530AQ
* CXD8530BQ
* CXD8530CQ
* CXD8661R
* CXD8606BQ
* CXD8606CQ
*
* The PlayStation CPU is based on the LSI LR33300.
*
* Differences from the LR33300:
*
* There is only 1k of data cache ram ( the LR33300 has 2k )
*
* There is no data cache tag ram, so the data cache ram can only be used as a fast area
* of ram ( which is a standard LR33300 feature ).
*
* If COP0 is disabled in user mode you get a coprocessor unusable exception, while
* the LR33300 is documented to generate a reserved instruction exception.
*
* Known limitations of the emulation:
*
* Only read & write break points are emulated, trace and program counter breakpoints are not.
*
* Load/Store timings are based on load scheduling turned off & no write cache. This affects when
* bus error exceptions occur and also when the read & write handlers are called. A scheduled
* load will complete if a load breakpoint fires, but an unscheduled load will not.
*
* Reading from the data and instruction cache at the same time causes a bus conflict that
* corrupts the data in a reliable but strange way, which is not emulated.
*
* Values written to COP1 & COP3 can be read back by the next instruction, which is not emulated.
* Because of loadscheduling the value loaded with LWC1/LWC3 can be read by more than the next
* instruction.
*
* SWC0 writes stale data from a previous operation, this is only partially emulated as the timing
* is complicated. Left over instruction fetches are currently emulated as they are the most
* 'interesting' and have no impact on the rest of the emulation.
*
* MTC0 timing is not emulated, switching to user mode while in kernel space continues
* execution for another two instructions before taking an exception. Using RFE to do the same
* thing causes the exception straight away, unless the RFE is the first instructio that follows
* an MTC0 instruction.
*
* The PRId register should be 1 on some revisions of the CPU ( there might be other values too ).
*
* Moving to the HI/LO register after a multiply or divide, but before reading the results will
* always abort the operation as if you did it immediately. In reality it should complete on it's
* own, and aborting before it completes would result in returning the working results.
*
* Running code in cached address space does not use or update the instruction cache.
*
* Wait states are not emulated.
*
* Bus errors caused by instruction fetches are not supported.
*
*/
#include "debugger.h"
#include "deprecat.h"
#include "osd_cpu.h"
#include "psx.h"
#define LOG_BIOSCALL ( 0 )
#define EXC_INT ( 0 )
#define EXC_ADEL ( 4 )
#define EXC_ADES ( 5 )
#define EXC_DBE ( 7 )
#define EXC_SYS ( 8 )
#define EXC_BP ( 9 )
#define EXC_RI ( 10 )
#define EXC_CPU ( 11 )
#define EXC_OVF ( 12 )
#define CP0_INDEX ( 0 )
#define CP0_RANDOM ( 1 )
#define CP0_ENTRYLO ( 2 )
#define CP0_CONTEXT ( 4 )
#define CP0_ENTRYHI ( 10 )
#define CP0_BPC ( 3 )
#define CP0_BDA ( 5 )
#define CP0_TAR ( 6 )
#define CP0_DCIC ( 7 )
#define CP0_BADA ( 8 )
#define CP0_BDAM ( 9 )
#define CP0_BPCM ( 11 )
#define CP0_SR ( 12 )
#define CP0_CAUSE ( 13 )
#define CP0_EPC ( 14 )
#define CP0_PRID ( 15 )
#define DCIC_STATUS ( 0x3f )
#define DCIC_DB ( 1L << 0 )
#define DCIC_DA ( 1L << 2 )
#define DCIC_R ( 1L << 3 )
#define DCIC_W ( 1L << 4 )
#define DCIC_DE ( 1L << 23 )
#define DCIC_DAE ( 1L << 25 )
#define DCIC_DR ( 1L << 26 )
#define DCIC_DW ( 1L << 27 )
#define DCIC_KD ( 1L << 29 )
#define DCIC_UD ( 1L << 30 )
#define DCIC_TR ( 1L << 31 )
#define SR_IEC ( 1L << 0 )
#define SR_KUC ( 1L << 1 )
#define SR_ISC ( 1L << 16 )
#define SR_SWC ( 1L << 17 )
#define SR_BEV ( 1L << 22 )
#define SR_CU0 ( 1L << 28 )
#define SR_CU1 ( 1L << 29 )
#define SR_CU2 ( 1L << 30 )
#define SR_CU3 ( 1L << 31 )
#define CAUSE_EXC ( 31L << 2 )
#define CAUSE_IP ( 255L << 8 )
#define CAUSE_IP2 ( 1L << 10 )
#define CAUSE_IP3 ( 1L << 11 )
#define CAUSE_IP4 ( 1L << 12 )
#define CAUSE_IP5 ( 1L << 13 )
#define CAUSE_IP6 ( 1L << 14 )
#define CAUSE_IP7 ( 1L << 15 )
#define CAUSE_CE ( 3L << 28 )
#define CAUSE_BT ( 1L << 30 )
#define CAUSE_BD ( 1L << 31 )
#define BIU_LOCK ( 0x00000001 )
#define BIU_INV ( 0x00000002 )
#define BIU_TAG ( 0x00000004 )
#define BIU_RAM ( 0x00000008 )
#define BIU_DS ( 0x00000080 )
#define BIU_IS1 ( 0x00000800 )
#define ICACHE_ENTRIES ( 0x400 )
#define DCACHE_ENTRIES ( 0x100 )
#define TAG_MATCH_MASK ( 0 - ( ICACHE_ENTRIES * 4 ) )
#define TAG_MATCH ( 0x10 )
#define TAG_VALID ( 0x0f )
#define MULTIPLIER_OPERATION_IDLE ( 0 )
#define MULTIPLIER_OPERATION_MULT ( 1 )
#define MULTIPLIER_OPERATION_MULTU ( 2 )
#define MULTIPLIER_OPERATION_DIV ( 3 )
#define MULTIPLIER_OPERATION_DIVU ( 4 )
static const char *const delayn[] =
{
"", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra",
"pc", "!pc"
};
typedef struct
{
UINT32 op;
UINT32 pc;
UINT32 delayv;
UINT32 delayr;
UINT32 hi;
UINT32 lo;
UINT32 biu;
UINT32 berr;
UINT32 r[ 32 ];
UINT32 cp0r[ 16 ];
PAIR cp2cr[ 32 ];
PAIR cp2dr[ 32 ];
UINT32 icacheTag[ ICACHE_ENTRIES / 4 ];
UINT32 icache[ ICACHE_ENTRIES ];
UINT32 dcache[ DCACHE_ENTRIES ];
int multiplier_operation;
UINT32 multiplier_operand1;
UINT32 multiplier_operand2;
int (*irq_callback)(int irqline);
UINT8 (*readbyte)( UINT32 );
UINT16 (*readhalf)( UINT32 );
UINT32 (*readword)( UINT32 );
UINT32 (*readword_masked)( UINT32, UINT32 );
void (*writeword)( UINT32, UINT32 );
void (*writeword_masked)( UINT32, UINT32, UINT32 );
UINT32 bad_byte_address_mask;
UINT32 bad_half_address_mask;
UINT32 bad_word_address_mask;
} mips_cpu_context;
static mips_cpu_context mipscpu;
static int mips_ICount = 0;
static const UINT32 mips_mtc0_writemask[]=
{
0x00000000, /* !INDEX */
0x00000000, /* !RANDOM */
0x00000000, /* !ENTRYLO */
0xffffffff, /* BPC */
0x00000000, /* !CONTEXT */
0xffffffff, /* BDA */
0x00000000, /* TAR */
0xff80f03f, /* DCIC */
0x00000000, /* BADA */
0xffffffff, /* BDAM */
0x00000000, /* !ENTRYHI */
0xffffffff, /* BPCM */
0xf04fff3f, /* SR */
0x00000300, /* CAUSE */
0x00000000, /* EPC */
0x00000000 /* PRID */
};
#if 0
void ATTR_PRINTF(1,2) GTELOG(const char *a,...)
{
va_list va;
char s_text[ 1024 ];
va_start( va, a );
vsprintf( s_text, a, va );
va_end( va );
logerror( "%08x: GTE: %08x %s\n", mipscpu.pc, INS_COFUN( mipscpu.op ), s_text );
}
#else
INLINE void ATTR_PRINTF(1,2) GTELOG(const char *a, ...) {}
#endif
static UINT32 getcp1dr( int reg );
static void setcp1dr( int reg, UINT32 value );
static UINT32 getcp1cr( int reg );
static void setcp1cr( int reg, UINT32 value );
//static void docop1( int op );
static UINT32 getcp2dr( int reg );
static void setcp2dr( int reg, UINT32 value );
static UINT32 getcp2cr( int reg );
static void setcp2cr( int reg, UINT32 value );
static void docop2( int op );
static UINT32 getcp3dr( int reg );
static void setcp3dr( int reg, UINT32 value );
static UINT32 getcp3cr( int reg );
static void setcp3cr( int reg, UINT32 value );
//static void docop3( int op );
static void mips_exception( int exception );
static void mips_load_bad_address( UINT32 address );
static void mips_stop( void )
{
DEBUGGER_BREAK;
CALL_DEBUGGER( mipscpu.pc );
}
#if LOG_BIOSCALL
static const struct
{
int address;
int operation;
const char *prototype;
} bioscalls[] =
{
{ 0xa0, 0x00, "int open(const char *name, int mode)" },
{ 0xa0, 0x01, "int lseek(int fd, int offset, int whence)" },
{ 0xa0, 0x02, "int read(int fd, void *buf, int nbytes)" },
{ 0xa0, 0x03, "int write(int fd, void *buf, int nbytes)" },
{ 0xa0, 0x04, "int close(int fd)" },
{ 0xa0, 0x05, "int ioctl(int fd, int cmd, int arg)" },
{ 0xa0, 0x06, "void exit(int code)" },
{ 0xa0, 0x07, "sys_a0_07()" },
{ 0xa0, 0x08, "char getc(int fd)" },
{ 0xa0, 0x09, "void putc(char c, int fd)" },
{ 0xa0, 0x0a, "todigit()" },
{ 0xa0, 0x0b, "double atof(const char *s)" },
{ 0xa0, 0x0c, "long strtoul(const char *s, char **ptr, int base)" },
{ 0xa0, 0x0d, "unsigned long strtol(const char *s, char **ptr, int base)" },
{ 0xa0, 0x0e, "int abs(int val)" },
{ 0xa0, 0x0f, "long labs(long lval)" },
{ 0xa0, 0x10, "long atoi(const char *s)" },
{ 0xa0, 0x11, "int atol(const char *s)" },
{ 0xa0, 0x12, "atob()" },
{ 0xa0, 0x13, "int setjmp(jmp_buf *ctx)" },
{ 0xa0, 0x14, "void longjmp(jmp_buf *ctx, int value)" },
{ 0xa0, 0x15, "char *strcat(char *dst, const char *src)" },
{ 0xa0, 0x16, "char *strncat(char *dst, const char *src, size_t n)" },
{ 0xa0, 0x17, "int strcmp(const char *dst, const char *src)" },
{ 0xa0, 0x18, "int strncmp(const char *dst, const char *src, size_t n)" },
{ 0xa0, 0x19, "char *strcpy(char *dst, const char *src)" },
{ 0xa0, 0x1a, "char *strncpy(char *dst, const char *src, size_t n)" },
{ 0xa0, 0x1b, "size_t strlen(const char *s)" },
{ 0xa0, 0x1c, "int index(const char *s, int c)" },
{ 0xa0, 0x1d, "int rindex(const char *s, int c)" },
{ 0xa0, 0x1e, "char *strchr(const char *s, int c)" },
{ 0xa0, 0x1f, "char *strrchr(const char *s, int c)" },
{ 0xa0, 0x20, "char *strpbrk(const char *dst, const char *src)" },
{ 0xa0, 0x21, "size_t strspn(const char *s, const char *set)" },
{ 0xa0, 0x22, "size_t strcspn(const char *s, const char *set)" },
{ 0xa0, 0x23, "char *strtok(char *s, const char *set)" },
{ 0xa0, 0x24, "char *strstr(const char *s, const char *set)" },
{ 0xa0, 0x25, "int toupper(int c)" },
{ 0xa0, 0x26, "int tolower(int c)" },
{ 0xa0, 0x27, "void bcopy(const void *src, void *dst, size_t len)" },
{ 0xa0, 0x28, "void bzero(void *ptr, size_t len)" },
{ 0xa0, 0x29, "int bcmp(const void *ptr1, const void *ptr2, int len)" },
{ 0xa0, 0x2a, "void *memcpy(void *dst, const void *src, size_t n)" },
{ 0xa0, 0x2b, "void *memset(void *dst, char c, size_t n)" },
{ 0xa0, 0x2c, "void *memmove(void *dst, const void *src, size_t n)" },
{ 0xa0, 0x2d, "int memcmp(const void *dst, const void *src, size_t n)" },
{ 0xa0, 0x2e, "void *memchr(const void *s, int c, size_t n)" },
{ 0xa0, 0x2f, "int rand()" },
{ 0xa0, 0x30, "void srand(unsigned int seed)" },
{ 0xa0, 0x31, "void qsort(void *base, int nel, int width, int (*cmp)(void *, void *))" },
{ 0xa0, 0x32, "double strtod(const char *s, char **endptr)" },
{ 0xa0, 0x33, "void *malloc(int size)" },
{ 0xa0, 0x34, "void free(void *buf)" },
{ 0xa0, 0x35, "void *lsearch(void *key, void *base, int belp, int width, int (*cmp)(void *, void *))" },
{ 0xa0, 0x36, "void *bsearch(void *key, void *base, int nel, int size, int (*cmp)(void *, void *))" },
{ 0xa0, 0x37, "void *calloc(int size, int n)" },
{ 0xa0, 0x38, "void *realloc(void *buf, int n)" },
{ 0xa0, 0x39, "InitHeap(void *block, int size)" },
{ 0xa0, 0x3a, "void _exit(int code)" },
{ 0xa0, 0x3b, "char getchar(void)" },
{ 0xa0, 0x3c, "void putchar(char c)" },
{ 0xa0, 0x3d, "char *gets(char *s)" },
{ 0xa0, 0x3e, "void puts(const char *s)" },
{ 0xa0, 0x3f, "int printf(const char *fmt, ...)" },
{ 0xa0, 0x40, "sys_a0_40()" },
{ 0xa0, 0x41, "int LoadTest(const char *name, struct EXEC *header)" },
{ 0xa0, 0x42, "int Load(const char *name, struct EXEC *header)" },
{ 0xa0, 0x43, "int Exec(struct EXEC *header, int argc, char **argv)" },
{ 0xa0, 0x44, "void FlushCache()" },
{ 0xa0, 0x45, "void InstallInterruptHandler()" },
{ 0xa0, 0x46, "GPU_dw(int x, int y, int w, int h, long *data)" },
{ 0xa0, 0x47, "mem2vram(int x, int y, int w, int h, long *data)" },
{ 0xa0, 0x48, "SendGPU(int status)" },
{ 0xa0, 0x49, "GPU_cw(long cw)" },
{ 0xa0, 0x4a, "GPU_cwb(long *pkt, int len)" },
{ 0xa0, 0x4b, "SendPackets(void *ptr)" },
{ 0xa0, 0x4c, "sys_a0_4c()" },
{ 0xa0, 0x4d, "int GetGPUStatus()" },
{ 0xa0, 0x4e, "GPU_sync()" },
{ 0xa0, 0x4f, "sys_a0_4f()" },
{ 0xa0, 0x50, "sys_a0_50()" },
{ 0xa0, 0x51, "int LoadExec(const char *name, int, int)" },
{ 0xa0, 0x52, "GetSysSp()" },
{ 0xa0, 0x53, "sys_a0_53()" },
{ 0xa0, 0x54, "_96_init()" },
{ 0xa0, 0x55, "_bu_init()" },
{ 0xa0, 0x56, "_96_remove()" },
{ 0xa0, 0x57, "sys_a0_57()" },
{ 0xa0, 0x58, "sys_a0_58()" },
{ 0xa0, 0x59, "sys_a0_59()" },
{ 0xa0, 0x5a, "sys_a0_5a()" },
{ 0xa0, 0x5b, "dev_tty_init()" },
{ 0xa0, 0x5c, "dev_tty_open()" },
{ 0xa0, 0x5d, "dev_tty_5d()" },
{ 0xa0, 0x5e, "dev_tty_ioctl()" },
{ 0xa0, 0x5f, "dev_cd_open()" },
{ 0xa0, 0x60, "dev_cd_read()" },
{ 0xa0, 0x61, "dev_cd_close()" },
{ 0xa0, 0x62, "dev_cd_firstfile()" },
{ 0xa0, 0x63, "dev_cd_nextfile()" },
{ 0xa0, 0x64, "dev_cd_chdir()" },
{ 0xa0, 0x65, "dev_card_open()" },
{ 0xa0, 0x66, "dev_card_read()" },
{ 0xa0, 0x67, "dev_card_write()" },
{ 0xa0, 0x68, "dev_card_close()" },
{ 0xa0, 0x69, "dev_card_firstfile()" },
{ 0xa0, 0x6a, "dev_card_nextfile()" },
{ 0xa0, 0x6b, "dev_card_erase()" },
{ 0xa0, 0x6c, "dev_card_undelete()" },
{ 0xa0, 0x6d, "dev_card_format()" },
{ 0xa0, 0x6e, "dev_card_rename()" },
{ 0xa0, 0x6f, "dev_card_6f()" },
{ 0xa0, 0x70, "_bu_init()" },
{ 0xa0, 0x71, "_96_init()" },
{ 0xa0, 0x72, "_96_remove()" },
{ 0xa0, 0x73, "sys_a0_73()" },
{ 0xa0, 0x74, "sys_a0_74()" },
{ 0xa0, 0x75, "sys_a0_75()" },
{ 0xa0, 0x76, "sys_a0_76()" },
{ 0xa0, 0x77, "sys_a0_77()" },
{ 0xa0, 0x78, "_96_CdSeekL()" },
{ 0xa0, 0x79, "sys_a0_79()" },
{ 0xa0, 0x7a, "sys_a0_7a()" },
{ 0xa0, 0x7b, "sys_a0_7b()" },
{ 0xa0, 0x7c, "_96_CdGetStatus()" },
{ 0xa0, 0x7d, "sys_a0_7d()" },
{ 0xa0, 0x7e, "_96_CdRead()" },
{ 0xa0, 0x7f, "sys_a0_7f()" },
{ 0xa0, 0x80, "sys_a0_80()" },
{ 0xa0, 0x81, "sys_a0_81()" },
{ 0xa0, 0x82, "sys_a0_82()" },
{ 0xa0, 0x83, "sys_a0_83()" },
{ 0xa0, 0x84, "sys_a0_84()" },
{ 0xa0, 0x85, "_96_CdStop()" },
{ 0xa0, 0x84, "sys_a0_84()" },
{ 0xa0, 0x85, "sys_a0_85()" },
{ 0xa0, 0x86, "sys_a0_86()" },
{ 0xa0, 0x87, "sys_a0_87()" },
{ 0xa0, 0x88, "sys_a0_88()" },
{ 0xa0, 0x89, "sys_a0_89()" },
{ 0xa0, 0x8a, "sys_a0_8a()" },
{ 0xa0, 0x8b, "sys_a0_8b()" },
{ 0xa0, 0x8c, "sys_a0_8c()" },
{ 0xa0, 0x8d, "sys_a0_8d()" },
{ 0xa0, 0x8e, "sys_a0_8e()" },
{ 0xa0, 0x8f, "sys_a0_8f()" },
{ 0xa0, 0x90, "sys_a0_90()" },
{ 0xa0, 0x91, "sys_a0_91()" },
{ 0xa0, 0x92, "sys_a0_92()" },
{ 0xa0, 0x93, "sys_a0_93()" },
{ 0xa0, 0x94, "sys_a0_94()" },
{ 0xa0, 0x95, "sys_a0_95()" },
{ 0xa0, 0x96, "AddCDROMDevice()" },
{ 0xa0, 0x97, "AddMemCardDevice()" },
{ 0xa0, 0x98, "DisableKernelIORedirection()" },
{ 0xa0, 0x99, "EnableKernelIORedirection()" },
{ 0xa0, 0x9a, "sys_a0_9a()" },
{ 0xa0, 0x9b, "sys_a0_9b()" },
{ 0xa0, 0x9c, "void SetConf(int Event, int TCB, int Stack)" },
{ 0xa0, 0x9d, "void GetConf(int *Event, int *TCB, int *Stack)" },
{ 0xa0, 0x9e, "sys_a0_9e()" },
{ 0xa0, 0x9f, "void SetMem(int size)" },
{ 0xa0, 0xa0, "_boot()" },
{ 0xa0, 0xa1, "SystemError()" },
{ 0xa0, 0xa2, "EnqueueCdIntr()" },
{ 0xa0, 0xa3, "DequeueCdIntr()" },
{ 0xa0, 0xa4, "sys_a0_a4()" },
{ 0xa0, 0xa5, "ReadSector(int count, int sector, void *buffer)" },
{ 0xa0, 0xa6, "get_cd_status()" },
{ 0xa0, 0xa7, "bufs_cb_0()" },
{ 0xa0, 0xa8, "bufs_cb_1()" },
{ 0xa0, 0xa9, "bufs_cb_2()" },
{ 0xa0, 0xaa, "bufs_cb_3()" },
{ 0xa0, 0xab, "_card_info()" },
{ 0xa0, 0xac, "_card_load()" },
{ 0xa0, 0xad, "_card_auto()" },
{ 0xa0, 0xae, "bufs_cb_4()" },
{ 0xa0, 0xaf, "sys_a0_af()" },
{ 0xa0, 0xb0, "sys_a0_b0()" },
{ 0xa0, 0xb1, "sys_a0_b1()" },
{ 0xa0, 0xb2, "do_a_long_jmp()" },
{ 0xa0, 0xb3, "sys_a0_b3()" },
{ 0xa0, 0xb4, "GetKernelInfo(int sub_function)" },
{ 0xb0, 0x00, "SysMalloc()" },
{ 0xb0, 0x01, "sys_b0_01()" },
{ 0xb0, 0x02, "sys_b0_02()" },
{ 0xb0, 0x03, "sys_b0_03()" },
{ 0xb0, 0x04, "sys_b0_04()" },
{ 0xb0, 0x05, "sys_b0_05()" },
{ 0xb0, 0x06, "sys_b0_06()" },
{ 0xb0, 0x07, "void DeliverEvent(u_long class, u_long event)" },
{ 0xb0, 0x08, "long OpenEvent(u_long class, long spec, long mode, long (*func)())" },
{ 0xb0, 0x09, "long CloseEvent(long event)" },
{ 0xb0, 0x0a, "long WaitEvent(long event)" },
{ 0xb0, 0x0b, "long TestEvent(long event)" },
{ 0xb0, 0x0c, "long EnableEvent(long event)" },
{ 0xb0, 0x0d, "long DisableEvent(long event)" },
{ 0xb0, 0x0e, "OpenTh()" },
{ 0xb0, 0x0f, "CloseTh()" },
{ 0xb0, 0x10, "ChangeTh()" },
{ 0xb0, 0x11, "sys_b0_11()" },
{ 0xb0, 0x12, "int InitPAD(char *buf1, int len1, char *buf2, int len2)" },
{ 0xb0, 0x13, "int StartPAD(void)" },
{ 0xb0, 0x14, "int StopPAD(void)" },
{ 0xb0, 0x15, "PAD_init(u_long nazo, u_long *pad_buf)" },
{ 0xb0, 0x16, "u_long PAD_dr()" },
{ 0xb0, 0x17, "void ReturnFromException(void)" },
{ 0xb0, 0x18, "ResetEntryInt()" },
{ 0xb0, 0x19, "HookEntryInt()" },
{ 0xb0, 0x1a, "sys_b0_1a()" },
{ 0xb0, 0x1b, "sys_b0_1b()" },
{ 0xb0, 0x1c, "sys_b0_1c()" },
{ 0xb0, 0x1d, "sys_b0_1d()" },
{ 0xb0, 0x1e, "sys_b0_1e()" },
{ 0xb0, 0x1f, "sys_b0_1f()" },
{ 0xb0, 0x20, "UnDeliverEvent(int class, int event)" },
{ 0xb0, 0x21, "sys_b0_21()" },
{ 0xb0, 0x22, "sys_b0_22()" },
{ 0xb0, 0x23, "sys_b0_23()" },
{ 0xb0, 0x24, "sys_b0_24()" },
{ 0xb0, 0x25, "sys_b0_25()" },
{ 0xb0, 0x26, "sys_b0_26()" },
{ 0xb0, 0x27, "sys_b0_27()" },
{ 0xb0, 0x28, "sys_b0_28()" },
{ 0xb0, 0x29, "sys_b0_29()" },
{ 0xb0, 0x2a, "sys_b0_2a()" },
{ 0xb0, 0x2b, "sys_b0_2b()" },
{ 0xb0, 0x2c, "sys_b0_2c()" },
{ 0xb0, 0x2d, "sys_b0_2d()" },
{ 0xb0, 0x2e, "sys_b0_2e()" },
{ 0xb0, 0x2f, "sys_b0_2f()" },
{ 0xb0, 0x2f, "sys_b0_30()" },
{ 0xb0, 0x31, "sys_b0_31()" },
{ 0xb0, 0x32, "int open(const char *name, int access)" },
{ 0xb0, 0x33, "int lseek(int fd, long pos, int seektype)" },
{ 0xb0, 0x34, "int read(int fd, void *buf, int nbytes)" },
{ 0xb0, 0x35, "int write(int fd, void *buf, int nbytes)" },
{ 0xb0, 0x36, "close(int fd)" },
{ 0xb0, 0x37, "int ioctl(int fd, int cmd, int arg)" },
{ 0xb0, 0x38, "exit(int exitcode)" },
{ 0xb0, 0x39, "sys_b0_39()" },
{ 0xb0, 0x3a, "char getc(int fd)" },
{ 0xb0, 0x3b, "putc(int fd, char ch)" },
{ 0xb0, 0x3c, "char getchar(void)" },
{ 0xb0, 0x3d, "putchar(char ch)" },
{ 0xb0, 0x3e, "char *gets(char *s)" },
{ 0xb0, 0x3f, "puts(const char *s)" },
{ 0xb0, 0x40, "int cd(const char *path)" },
{ 0xb0, 0x41, "int format(const char *fs)" },
{ 0xb0, 0x42, "struct DIRENTRY* firstfile(const char *name, struct DIRENTRY *dir)" },
{ 0xb0, 0x43, "struct DIRENTRY* nextfile(struct DIRENTRY *dir)" },
{ 0xb0, 0x44, "int rename(const char *oldname, const char *newname)" },
{ 0xb0, 0x45, "int delete(const char *name)" },
{ 0xb0, 0x46, "undelete()" },
{ 0xb0, 0x47, "AddDevice()" },
{ 0xb0, 0x48, "RemoveDevice()" },
{ 0xb0, 0x49, "PrintInstalledDevices()" },
{ 0xb0, 0x4a, "InitCARD()" },
{ 0xb0, 0x4b, "StartCARD()" },
{ 0xb0, 0x4c, "StopCARD()" },
{ 0xb0, 0x4d, "sys_b0_4d()" },
{ 0xb0, 0x4e, "_card_write()" },
{ 0xb0, 0x4f, "_card_read()" },
{ 0xb0, 0x50, "_new_card()" },
{ 0xb0, 0x51, "void *Krom2RawAdd(int code)" },
{ 0xb0, 0x52, "sys_b0_52()" },
{ 0xb0, 0x53, "sys_b0_53()" },
{ 0xb0, 0x54, "long _get_errno(void)" },
{ 0xb0, 0x55, "long _get_error(long fd)" },
{ 0xb0, 0x56, "GetC0Table()" },
{ 0xb0, 0x57, "GetB0Table()" },
{ 0xb0, 0x58, "_card_chan()" },
{ 0xb0, 0x59, "sys_b0_59()" },
{ 0xb0, 0x5a, "sys_b0_5a()" },
{ 0xb0, 0x5b, "ChangeClearPAD(int, int)" },
{ 0xb0, 0x5c, "_card_status()" },
{ 0xb0, 0x5d, "_card_wait()" },
{ 0xc0, 0x00, "InitRCnt()" },
{ 0xc0, 0x01, "InitException()" },
{ 0xc0, 0x02, "SysEnqIntRP(int index, long *queue)" },
{ 0xc0, 0x03, "SysDeqIntRP(int index, long *queue)" },
{ 0xc0, 0x04, "int get_free_EvCB_slot(void)" },
{ 0xc0, 0x05, "get_free_TCB_slot()" },
{ 0xc0, 0x06, "ExceptionHandler()" },
{ 0xc0, 0x07, "InstallExceptionHandlers()" },
{ 0xc0, 0x08, "SysInitMemory()" },
{ 0xc0, 0x09, "SysInitKMem()" },
{ 0xc0, 0x0a, "ChangeClearRCnt()" },
{ 0xc0, 0x0b, "SystemError()" },
{ 0xc0, 0x0c, "InitDefInt()" },
{ 0xc0, 0x0d, "sys_c0_0d()" },
{ 0xc0, 0x0e, "sys_c0_0e()" },
{ 0xc0, 0x0f, "sys_c0_0f()" },
{ 0xc0, 0x10, "sys_c0_10()" },
{ 0xc0, 0x11, "sys_c0_11()" },
{ 0xc0, 0x12, "InstallDevices()" },
{ 0xc0, 0x13, "FlushStdInOutPut()" },
{ 0xc0, 0x14, "sys_c0_14()" },
{ 0xc0, 0x15, "_cdevinput()" },
{ 0xc0, 0x16, "_cdevscan()" },
{ 0xc0, 0x17, "char _circgetc(struct device_buf *circ)" },
{ 0xc0, 0x18, "_circputc(char c, struct device_buf *circ)" },
{ 0xc0, 0x19, "ioabort(const char *str)" },
{ 0xc0, 0x1a, "sys_c0_1a()" },
{ 0xc0, 0x1b, "KernelRedirect(int flag)" },
{ 0xc0, 0x1c, "PatchA0Table()" },
{ 0x00, 0x00, NULL }
};
static UINT32 log_bioscall_parameter( int parm )
{
if( parm < 4 )
{
return activecpu_get_reg( MIPS_R4 + parm );
}
else
{
return mipscpu.readword( activecpu_get_reg( MIPS_R29 ) + ( parm * 4 ) );
}
}
static const char *log_bioscall_string( int parm )
{
int pos;
UINT32 address;
static char string[ 1024 ];
address = log_bioscall_parameter( parm );
if( address == 0 )
{
return "NULL";
}
pos = 0;
string[ pos++ ] = '\"';
for( ;; )
{
UINT8 c = mipscpu.readbyte( address );
if( c == 0 )
{
break;
}
else if( c == '\t' )
{
string[ pos++ ] = '\\';
string[ pos++ ] = 't';
}
else if( c == '\r' )
{
string[ pos++ ] = '\\';
string[ pos++ ] = 'r';
}
else if( c == '\n' )
{
string[ pos++ ] = '\\';
string[ pos++ ] = 'n';
}
else if( c < 32 || c > 127 )
{
string[ pos++ ] = '\\';
string[ pos++ ] = ( ( c / 64 ) % 8 ) + '0';
string[ pos++ ] = ( ( c / 8 ) % 8 ) + '0';
string[ pos++ ] = ( ( c / 1 ) % 8 ) + '0';
}
else
{
string[ pos++ ] = c;
}
address++;
}
string[ pos++ ] = '\"';
string[ pos++ ] = 0;
return string;
}
static const char *log_bioscall_hex( int parm )
{
static char string[ 1024 ];
sprintf( string, "0x%08x", log_bioscall_parameter( parm ) );
return string;
}
static const char *log_bioscall_char( int parm )
{
int c;
static char string[ 1024 ];
c = log_bioscall_parameter( parm );
if( c < 32 || c > 127 )
{
sprintf( string, "0x%02x", c );
}
else
{
sprintf( string, "'%c'", c );
}
return string;
}
static void log_bioscall( void )
{
int address = activecpu_get_reg( MIPS_PC ) - 0x04;
if( address == 0xa0 ||
address == 0xb0 ||
address == 0xc0 )
{
char buf[ 1024 ];
int operation = activecpu_get_reg( MIPS_R9 ) & 0xff;
int bioscall = 0;
if( ( address == 0xa0 && operation == 0x3c ) ||
( address == 0xb0 && operation == 0x3d ) )
{
putchar( log_bioscall_parameter( 0 ) );
}
if( ( address == 0xa0 && operation == 0x03 ) ||
( address == 0xb0 && operation == 0x35 ) )
{
int fd = log_bioscall_parameter( 0 );
int buf = log_bioscall_parameter( 1 );
int nbytes = log_bioscall_parameter( 2 );
if( fd == 1 )
{
while( nbytes > 0 )
{
UINT8 c = mipscpu.readbyte( buf );
putchar( c );
nbytes--;
buf++;
}
}
}
while( bioscalls[ bioscall ].prototype != NULL &&
( bioscalls[ bioscall ].address != address ||
bioscalls[ bioscall ].operation != operation ) )
{
bioscall++;
}
if( bioscalls[ bioscall ].prototype != NULL )
{
const char *prototype = bioscalls[ bioscall ].prototype;
const char *parmstart = NULL;
int parm = 0;
int parmlen = -1;
int brackets = 0;
int pos = 0;
while( *( prototype ) != 0 )
{
int ch = *( prototype );
switch( ch )
{
case '(':
brackets++;
prototype++;
if( brackets == 1 )
{
buf[ pos++ ] = ch;
parmstart = prototype;
}
break;
case ')':
if( brackets == 1 )
{
parmlen = prototype - parmstart;
}
prototype++;
brackets--;
break;
case ',':
if( brackets == 1 )
{
parmlen = prototype - parmstart;
}
prototype++;
break;
default:
if( brackets == 0 )
{
buf[ pos++ ] = ch;
}
prototype++;
break;
}
if( parmlen >= 0 )
{
while( parmlen > 0 && parmstart[ 0 ] == ' ' )
{
parmstart++;
parmlen--;
}
while( parmlen > 0 && parmstart[ parmlen - 1 ] == ' ' )
{
parmlen--;
}
if( parmlen == 0 ||
( parmlen == 4 && memcmp( parmstart, "void", 4 ) == 0 ) )
{
parm = -1;
}
else if( parmlen == 3 && memcmp( parmstart, "...", 3 ) == 0 )
{
if( parm > 0 )
{
UINT32 format = log_bioscall_parameter( parm - 1 );
const char *parmstr = NULL;
int percent = 0;
for( ;; )
{
UINT8 c = mipscpu.readbyte( format );
if( c == 0 )
{
break;
}
if( percent == 0 )
{
if( c == '%' )
{
percent = 1;
}
}
else
{
if( c == '%' )
{
percent = 0;
}
else if( c == '*' )
{
parmstr = log_bioscall_hex( parm );
}
else if( c == 's' )
{
parmstr = log_bioscall_string( parm );
percent = 0;
}
else if( c == 'c' )
{
parmstr = log_bioscall_char( parm );
percent = 0;
}
else if( c != '-' && c != '.' && c != 'l' && ( c < '0' || c > '9' ) )
{
parmstr = log_bioscall_hex( parm );
percent = 0;
}
}
if( parmstr != NULL )
{
if( parm > 0 )
{
buf[ pos++ ] = ',';
}
buf[ pos++ ] = ' ';
strcpy( &buf[ pos ], parmstr );
pos += strlen( parmstr );
parmstr = NULL;
parm++;
}
format++;
}
}
}
else if( parmlen > 0 )
{
const char *parmstr;
int typelen = parmlen;
while( typelen > 0 && parmstart[ typelen - 1 ] != ' ' && parmstart[ typelen - 1 ] != '*' )
{
typelen--;
}
if( typelen == 5 && memcmp( parmstart, "char ", 5 ) == 0 )
{
parmstr = log_bioscall_char( parm );
}
else if( typelen == 12 && memcmp( parmstart, "const char *", 12 ) == 0 )
{
parmstr = log_bioscall_string( parm );
}
else
{
parmstr = log_bioscall_hex( parm );
}
if( parm > 0 )
{
buf[ pos++ ] = ',';
}
buf[ pos++ ] = ' ';
strcpy( &buf[ pos ], parmstr );
pos += strlen( parmstr );
}
parmlen = -1;
parm++;
if( ch == ',' )
{
parmstart = prototype;
}
else
{
if( parm > 0 )
{
buf[ pos++ ] = ' ';
}
buf[ pos++ ] = ch;
}
}
}
buf[ pos ] = 0;
}
else
{
sprintf( buf, "unknown_%02x_%02x", address, operation );
}
logerror( "%08x: bioscall %s\n", (unsigned int)activecpu_get_reg( MIPS_R31 ) - 8, buf );
}
}
static void log_syscall( void )
{
char buf[ 1024 ];
int operation = activecpu_get_reg( MIPS_R4 );
switch( operation )
{
case 0:
strcpy( buf, "void Exception()" );
break;
case 1:
strcpy( buf, "void EnterCriticalSection()" );
break;
case 2:
strcpy( buf, "void ExitCriticalSection()" );
break;
default:
sprintf( buf, "unknown_%02x", operation );
break;
}
logerror( "%08x: syscall %s\n", (unsigned int)activecpu_get_reg( MIPS_R31 ) - 8, buf );
}
#endif
static UINT32 mips_cache_readword( UINT32 offset )
{
UINT32 data = 0;
if( ( mipscpu.biu & BIU_TAG ) != 0 )
{
if( ( mipscpu.biu & BIU_IS1 ) != 0 )
{
UINT32 tag = mipscpu.icacheTag[ ( offset / 16 ) % ( ICACHE_ENTRIES / 4 ) ];
data |= tag & TAG_VALID;
if( ( ( tag ^ offset ) & TAG_MATCH_MASK ) == 0 )
{
data |= TAG_MATCH;
}
}
}
else if( ( mipscpu.biu & ( BIU_LOCK | BIU_INV ) ) != 0 )
{
}
else
{
if( ( mipscpu.biu & BIU_IS1 ) == BIU_IS1 )
{
data |= mipscpu.icache[ ( offset / 4 ) % ICACHE_ENTRIES ];
}
if( ( mipscpu.biu & BIU_DS ) == BIU_DS )
{
data |= mipscpu.dcache[ ( offset / 4 ) % DCACHE_ENTRIES ];
}
}
return data;
}
static UINT8 mips_cache_readbyte( UINT32 offset )
{
return mips_cache_readword( offset ) >> ( ( offset & 3 ) * 8 );
}
static UINT16 mips_cache_readhalf( UINT32 offset )
{
return mips_cache_readword( offset ) >> ( ( offset & 2 ) * 8 );
}
static UINT32 mips_cache_readword_masked( UINT32 offset, UINT32 mask )
{
return mips_cache_readword( offset );
}
static void mips_cache_writeword( UINT32 offset, UINT32 data )
{
if( ( mipscpu.biu & BIU_TAG ) != 0 )
{
if( ( mipscpu.biu & BIU_IS1 ) != 0 )
{
mipscpu.icacheTag[ ( offset / 16 ) % ( ICACHE_ENTRIES / 4 ) ] = ( data & TAG_VALID ) | ( offset & TAG_MATCH_MASK );
}
}
else if( ( mipscpu.biu & ( BIU_LOCK | BIU_INV ) ) != 0 )
{
if( ( mipscpu.biu & BIU_IS1 ) != 0 )
{
mipscpu.icacheTag[ ( offset / 16 ) % ( ICACHE_ENTRIES / 4 ) ] = ( offset & TAG_MATCH_MASK );
}
}
else
{
if( ( mipscpu.biu & BIU_IS1 ) != 0 )
{
mipscpu.icache[ ( offset / 4 ) % ICACHE_ENTRIES ] = data;
}
if( ( mipscpu.biu & BIU_DS ) != 0 )
{
mipscpu.dcache[ ( offset / 4 ) % DCACHE_ENTRIES ] = data;
}
}
}
static void mips_cache_writeword_masked( UINT32 offset, UINT32 data, UINT32 mask )
{
mips_cache_writeword( offset, data );
}
static void mips_update_memory_handlers( void )
{
if( ( mipscpu.cp0r[ CP0_SR ] & SR_ISC ) != 0 )
{
mipscpu.readbyte = mips_cache_readbyte;
mipscpu.readhalf = mips_cache_readhalf;
mipscpu.readword = mips_cache_readword;
mipscpu.readword_masked = mips_cache_readword_masked;
mipscpu.writeword = mips_cache_writeword;
mipscpu.writeword_masked = mips_cache_writeword_masked;
}
else
{
mipscpu.readbyte = program_read_byte_32le;
mipscpu.readhalf = program_read_word_32le;
mipscpu.readword = program_read_dword_32le;
mipscpu.readword_masked = program_read_dword_masked_32le;
mipscpu.writeword = program_write_dword_32le;
mipscpu.writeword_masked = program_write_dword_masked_32le;
}
}
INLINE void funct_mthi( void )
{
mipscpu.multiplier_operation = MULTIPLIER_OPERATION_IDLE;
mipscpu.hi = mipscpu.r[ INS_RS( mipscpu.op ) ];
}
INLINE void funct_mtlo( void )
{
mipscpu.multiplier_operation = MULTIPLIER_OPERATION_IDLE;
mipscpu.lo = mipscpu.r[ INS_RS( mipscpu.op ) ];
}
INLINE void funct_mult( void )
{
mipscpu.multiplier_operation = MULTIPLIER_OPERATION_MULT;
mipscpu.multiplier_operand1 = mipscpu.r[ INS_RS( mipscpu.op ) ];
mipscpu.multiplier_operand2 = mipscpu.r[ INS_RT( mipscpu.op ) ];
mipscpu.lo = mipscpu.multiplier_operand1;
}
INLINE void funct_multu( void )
{
mipscpu.multiplier_operation = MULTIPLIER_OPERATION_MULTU;
mipscpu.multiplier_operand1 = mipscpu.r[ INS_RS( mipscpu.op ) ];
mipscpu.multiplier_operand2 = mipscpu.r[ INS_RT( mipscpu.op ) ];
mipscpu.lo = mipscpu.multiplier_operand1;
}
INLINE void funct_div( void )
{
mipscpu.multiplier_operation = MULTIPLIER_OPERATION_DIV;
mipscpu.multiplier_operand1 = mipscpu.r[ INS_RS( mipscpu.op ) ];
mipscpu.multiplier_operand2 = mipscpu.r[ INS_RT( mipscpu.op ) ];
mipscpu.lo = mipscpu.multiplier_operand1;
mipscpu.hi = 0;
}
INLINE void funct_divu( void )
{
mipscpu.multiplier_operation = MULTIPLIER_OPERATION_DIVU;
mipscpu.multiplier_operand1 = mipscpu.r[ INS_RS( mipscpu.op ) ];
mipscpu.multiplier_operand2 = mipscpu.r[ INS_RT( mipscpu.op ) ];
mipscpu.lo = mipscpu.multiplier_operand1;
mipscpu.hi = 0;
}
static void multiplier_update( void )
{
switch( mipscpu.multiplier_operation )
{
case MULTIPLIER_OPERATION_MULT:
{
INT64 result = MUL_64_32_32( (INT32)mipscpu.multiplier_operand1, (INT32)mipscpu.multiplier_operand2 );
mipscpu.lo = LO32_32_64( result );
mipscpu.hi = HI32_32_64( result );
}
break;
case MULTIPLIER_OPERATION_MULTU:
{
UINT64 result = MUL_U64_U32_U32( mipscpu.multiplier_operand1, mipscpu.multiplier_operand2 );
mipscpu.lo = LO32_U32_U64( result );
mipscpu.hi = HI32_U32_U64( result );
}
break;
case MULTIPLIER_OPERATION_DIV:
if( mipscpu.multiplier_operand2 != 0 )
{
mipscpu.lo = (INT32)mipscpu.multiplier_operand1 / (INT32)mipscpu.multiplier_operand2;
mipscpu.hi = (INT32)mipscpu.multiplier_operand1 % (INT32)mipscpu.multiplier_operand2;
}
else
{
if( (INT32)mipscpu.multiplier_operand1 < 0 )
{
mipscpu.lo = 1;
}
else
{
mipscpu.lo = 0xffffffff;
}
mipscpu.hi = mipscpu.multiplier_operand1;
}
break;
case MULTIPLIER_OPERATION_DIVU:
if( mipscpu.multiplier_operand2 != 0 )
{
mipscpu.lo = mipscpu.multiplier_operand1 / mipscpu.multiplier_operand2;
mipscpu.hi = mipscpu.multiplier_operand1 % mipscpu.multiplier_operand2;
}
else
{
mipscpu.lo = 0xffffffff;
mipscpu.hi = mipscpu.multiplier_operand1;
}
break;
}
mipscpu.multiplier_operation = MULTIPLIER_OPERATION_IDLE;
}
static UINT32 mips_get_hi( void )
{
if( mipscpu.multiplier_operation != MULTIPLIER_OPERATION_IDLE )
{
multiplier_update();
}
return mipscpu.hi;
}
static UINT32 mips_get_lo( void )
{
if( mipscpu.multiplier_operation != MULTIPLIER_OPERATION_IDLE )
{
multiplier_update();
}
return mipscpu.lo;
}
static int mips_execute_unstoppable_instructions( int executeCop2 )
{
switch( INS_OP( mipscpu.op ) )
{
case OP_SPECIAL:
switch( INS_FUNCT( mipscpu.op ) )
{
case FUNCT_MTHI:
funct_mthi();
break;
case FUNCT_MTLO:
funct_mtlo();
break;
case FUNCT_MULT:
funct_mult();
break;
case FUNCT_MULTU:
funct_multu();
break;
case FUNCT_DIV:
funct_div();
break;
case FUNCT_DIVU:
funct_divu();
break;
}
break;
case OP_COP2:
if( executeCop2 )
{
switch( INS_CO( mipscpu.op ) )
{
case 1:
if( ( mipscpu.cp0r[ CP0_SR ] & SR_CU2 ) == 0 )
{
return 0;
}
docop2( INS_COFUN( mipscpu.op ) );
break;
}
}
}
return 1;
}
static void mips_update_address_masks( void )
{
if( ( mipscpu.cp0r[ CP0_SR ] & SR_KUC ) != 0 )
{
mipscpu.bad_byte_address_mask = 0x80000000;
mipscpu.bad_half_address_mask = 0x80000001;
mipscpu.bad_word_address_mask = 0x80000003;
}
else
{
mipscpu.bad_byte_address_mask = 0;
mipscpu.bad_half_address_mask = 1;
mipscpu.bad_word_address_mask = 3;
}
}
static READ32_HANDLER( psx_berr_r )
{
mipscpu.berr = 1;
return 0;
}
static WRITE32_HANDLER( psx_berr_w )
{
mipscpu.berr = 1;
}
static void mips_update_scratchpad( running_machine *machine )
{
int cpu = cpu_getactivecpu();
if( ( mipscpu.biu & BIU_RAM ) == 0 )
{
memory_install_readwrite32_handler( machine, cpu, ADDRESS_SPACE_PROGRAM, 0x1f800000, 0x1f8003ff, 0, 0, psx_berr_r, psx_berr_w );
}
else if( ( mipscpu.biu & BIU_DS ) == 0 )
{
memory_install_readwrite32_handler( machine, cpu, ADDRESS_SPACE_PROGRAM, 0x1f800000, 0x1f8003ff, 0, 0, psx_berr_r, SMH_NOP );
}
else
{
memory_install_readwrite32_handler( machine, cpu, ADDRESS_SPACE_PROGRAM, 0x1f800000, 0x1f8003ff, 0, 0, SMH_BANK32, SMH_BANK32 );
memory_set_bankptr( 32, mipscpu.dcache );
}
}
INLINE void mips_set_cp0r( int reg, UINT32 value )
{
UINT32 old = mipscpu.cp0r[ reg ];
mipscpu.cp0r[ reg ] = value;
if( reg == CP0_SR )
{
if( ( old & SR_ISC ) != ( value & SR_ISC ) )
{
mips_update_memory_handlers();
}
if( ( old & SR_KUC ) != ( value & SR_KUC ) )
{
mips_update_address_masks();
}
}
if( ( reg == CP0_SR || reg == CP0_CAUSE ) &&
( mipscpu.cp0r[ CP0_SR ] & SR_IEC ) != 0 &&
( mipscpu.cp0r[ CP0_SR ] & mipscpu.cp0r[ CP0_CAUSE ] & CAUSE_IP ) != 0 )
{
mipscpu.op = cpu_readop32( mipscpu.pc );
mips_execute_unstoppable_instructions( 1 );
mips_exception( EXC_INT );
}
else if( reg == CP0_SR &&
mipscpu.delayr != MIPS_DELAYR_PC &&
( mipscpu.pc & mipscpu.bad_word_address_mask ) != 0 )
{
mips_load_bad_address( mipscpu.pc );
}
}
INLINE void mips_commit_delayed_load( void )
{
if( mipscpu.delayr != 0 )
{
mipscpu.r[ mipscpu.delayr ] = mipscpu.delayv;
mipscpu.delayr = 0;
mipscpu.delayv = 0;
}
}
static void mips_set_pc( unsigned val )
{
mipscpu.pc = val;
change_pc( val );
}
static void mips_fetch_next_op( void )
{
if( mipscpu.delayr == MIPS_DELAYR_PC )
{
UINT32 safepc = mipscpu.delayv & ~mipscpu.bad_word_address_mask;
change_pc( safepc );
mipscpu.op = cpu_readop32( safepc );
change_pc( mipscpu.pc );
}
else
{
mipscpu.op = cpu_readop32( mipscpu.pc + 4 );
}
}
INLINE int mips_advance_pc( void )
{
if( mipscpu.delayr == MIPS_DELAYR_PC )
{
mipscpu.pc = mipscpu.delayv;
mipscpu.delayr = 0;
mipscpu.delayv = 0;
if( ( mipscpu.pc & mipscpu.bad_word_address_mask ) != 0 )
{
mips_load_bad_address( mipscpu.pc );
return 0;
}
else
{
change_pc( mipscpu.pc );
}
}
else if( mipscpu.delayr == MIPS_DELAYR_NOTPC )
{
mipscpu.delayr = 0;
mipscpu.delayv = 0;
mipscpu.pc += 4;
}
else
{
mips_commit_delayed_load();
mipscpu.pc += 4;
}
return 1;
}
INLINE void mips_load( UINT32 reg, UINT32 value )
{
mips_advance_pc();
if( reg != 0 )
{
mipscpu.r[ reg ] = value;
}
}
INLINE void mips_delayed_load( UINT32 reg, UINT32 value )
{
mips_advance_pc();
mipscpu.delayr = reg;
mipscpu.delayv = value;
}
INLINE void mips_branch( UINT32 address )
{
mips_advance_pc();
mipscpu.delayr = MIPS_DELAYR_PC;
mipscpu.delayv = address;
}
INLINE void mips_conditional_branch( int takeBranch )
{
mips_advance_pc();
if( takeBranch )
{
mipscpu.delayr = MIPS_DELAYR_PC;
mipscpu.delayv = mipscpu.pc + ( MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) ) << 2 );
}
else
{
mipscpu.delayr = MIPS_DELAYR_NOTPC;
mipscpu.delayv = 0;
}
}
INLINE void mips_unconditional_branch( void )
{
mips_advance_pc();
mipscpu.delayr = MIPS_DELAYR_PC;
mipscpu.delayv = ( mipscpu.pc & 0xf0000000 ) + ( INS_TARGET( mipscpu.op ) << 2 );
}
static void mips_common_exception( int exception, UINT32 romOffset, UINT32 ramOffset )
{
int cause = ( exception << 2 ) | ( ( ( mipscpu.op >> 26 ) & 3 ) << 28 );
if( mipscpu.delayr == MIPS_DELAYR_PC )
{
cause |= CAUSE_BT;
mips_set_cp0r( CP0_TAR, mipscpu.delayv );
}
else if( mipscpu.delayr == MIPS_DELAYR_NOTPC )
{
mips_set_cp0r( CP0_TAR, mipscpu.pc + 4 );
}
else
{
mips_commit_delayed_load();
}
if( mipscpu.delayr == MIPS_DELAYR_PC || mipscpu.delayr == MIPS_DELAYR_NOTPC )
{
cause |= CAUSE_BD;
mips_set_cp0r( CP0_EPC, mipscpu.pc - 4 );
}
else
{
mips_set_cp0r( CP0_EPC, mipscpu.pc );
}
#if LOG_BIOSCALL
if( exception != EXC_INT )
{
logerror( "%08x: Exception %d\n", mipscpu.pc, exception );
}
#endif
mipscpu.delayr = 0;
mipscpu.delayv = 0;
mipscpu.berr = 0;
if( mipscpu.cp0r[ CP0_SR ] & SR_BEV )
{
mips_set_pc( romOffset );
}
else
{
mips_set_pc( ramOffset );
}
mips_set_cp0r( CP0_SR, ( mipscpu.cp0r[ CP0_SR ] & ~0x3f ) | ( ( mipscpu.cp0r[ CP0_SR ] << 2 ) & 0x3f ) );
mips_set_cp0r( CP0_CAUSE, ( mipscpu.cp0r[ CP0_CAUSE ] & ~( CAUSE_EXC | CAUSE_BD | CAUSE_BT | CAUSE_CE ) ) | cause );
}
static void mips_exception( int exception )
{
mips_common_exception( exception, 0xbfc00180, 0x80000080 );
}
static void mips_breakpoint_exception( void )
{
mips_fetch_next_op();
mips_execute_unstoppable_instructions( 1 );
mips_common_exception( EXC_BP, 0xbfc00140, 0x80000040 );
}
static void mips_load_bus_error_exception( void )
{
mips_fetch_next_op();
mips_execute_unstoppable_instructions( 0 );
mips_common_exception( EXC_DBE, 0xbfc00180, 0x80000080 );
}
static void mips_store_bus_error_exception( void )
{
mips_fetch_next_op();
if( mips_execute_unstoppable_instructions( 1 ) )
{
if( !mips_advance_pc() )
{
return;
}
mips_fetch_next_op();
mips_execute_unstoppable_instructions( 0 );
}
mips_common_exception( EXC_DBE, 0xbfc00180, 0x80000080 );
}
static void mips_load_bad_address( UINT32 address )
{
mips_set_cp0r( CP0_BADA, address );
mips_exception( EXC_ADEL );
}
static void mips_store_bad_address( UINT32 address )
{
mips_set_cp0r( CP0_BADA, address );
mips_exception( EXC_ADES );
}
INLINE int mips_data_address_breakpoint( int dcic_rw, int dcic_status, UINT32 address )
{
if( address < 0x1f000000 || address > 0x1fffffff )
{
if( ( mipscpu.cp0r[ CP0_DCIC ] & DCIC_DE ) != 0 &&
( ( ( mipscpu.cp0r[ CP0_DCIC ] & DCIC_KD ) != 0 && ( mipscpu.cp0r[ CP0_SR ] & SR_KUC ) == 0 ) ||
( ( mipscpu.cp0r[ CP0_DCIC ] & DCIC_UD ) != 0 && ( mipscpu.cp0r[ CP0_SR ] & SR_KUC ) != 0 ) ) )
{
if( ( mipscpu.cp0r[ CP0_DCIC ] & dcic_rw ) == dcic_rw &&
( address & mipscpu.cp0r[ CP0_BDAM ] ) == ( mipscpu.cp0r[ CP0_BDA ] & mipscpu.cp0r[ CP0_BDAM ] ) )
{
mipscpu.cp0r[ CP0_DCIC ] = ( mipscpu.cp0r[ CP0_DCIC ] & ~DCIC_STATUS ) | dcic_status;
if( ( mipscpu.cp0r[ CP0_DCIC ] & DCIC_TR ) != 0 )
{
return 1;
}
}
}
}
return 0;
}
INLINE int mips_load_data_address_breakpoint( UINT32 address )
{
return mips_data_address_breakpoint( DCIC_DR | DCIC_DAE, DCIC_DB | DCIC_DA | DCIC_R, address );
}
INLINE int mips_store_data_address_breakpoint( UINT32 address )
{
return mips_data_address_breakpoint( DCIC_DW | DCIC_DAE, DCIC_DB | DCIC_DA | DCIC_W, address );
}
static STATE_POSTLOAD( mips_postload )
{
mips_update_memory_handlers();
mips_update_address_masks();
mips_update_scratchpad(machine);
}
static void mips_state_register( const char *type, int index )
{
state_save_register_item( type, index, mipscpu.op );
state_save_register_item( type, index, mipscpu.pc );
state_save_register_item( type, index, mipscpu.delayv );
state_save_register_item( type, index, mipscpu.delayr );
state_save_register_item( type, index, mipscpu.hi );
state_save_register_item( type, index, mipscpu.lo );
state_save_register_item( type, index, mipscpu.biu );
state_save_register_item_array( type, index, mipscpu.r );
state_save_register_item_array( type, index, mipscpu.cp0r );
state_save_register_item_array( type, index, mipscpu.cp2cr );
state_save_register_item_array( type, index, mipscpu.cp2dr );
state_save_register_item_array( type, index, mipscpu.icacheTag );
state_save_register_item_array( type, index, mipscpu.icache );
state_save_register_item_array( type, index, mipscpu.dcache );
state_save_register_item( type, index, mipscpu.multiplier_operation );
state_save_register_item( type, index, mipscpu.multiplier_operand1 );
state_save_register_item( type, index, mipscpu.multiplier_operand2 );
state_save_register_postload( Machine, mips_postload, NULL );
}
static void mips_init( int index, int clock, const void *config, int (*irqcallback)(int) )
{
mipscpu.irq_callback = irqcallback;
mips_state_register( "psxcpu", index );
}
static void mips_reset( void )
{
mipscpu.delayr = 0;
mipscpu.delayv = 0;
mipscpu.multiplier_operation = MULTIPLIER_OPERATION_IDLE;
mips_update_memory_handlers();
mips_update_address_masks();
mips_update_scratchpad(Machine);
mips_set_cp0r( CP0_SR, SR_BEV );
mips_set_cp0r( CP0_CAUSE, 0x00000000 );
mips_set_cp0r( CP0_PRID, 0x00000002 );
mips_set_cp0r( CP0_DCIC, 0x00000000 );
mips_set_cp0r( CP0_BPCM, 0xffffffff );
mips_set_cp0r( CP0_BDAM, 0xffffffff );
mips_set_pc( 0xbfc00000 );
}
static void mips_exit( void )
{
}
static UINT32 mips_get_register_from_pipeline( int reg )
{
if( mipscpu.delayr == reg )
{
UINT32 data = mipscpu.delayv;
mipscpu.delayr = 0;
mipscpu.delayv = 0;
return data;
}
return mipscpu.r[ reg ];
}
static int mips_cop0_usable( void )
{
if( ( mipscpu.cp0r[ CP0_SR ] & SR_KUC ) != 0 && ( mipscpu.cp0r[ CP0_SR ] & SR_CU0 ) == 0 )
{
mips_exception( EXC_CPU );
return 0;
}
return 1;
}
static void mips_lwc( int cop, int sr_cu )
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_load_data_address_breakpoint( address );
if( ( mipscpu.cp0r[ CP0_SR ] & sr_cu ) == 0 )
{
mips_exception( EXC_CPU );
}
else if( ( address & mipscpu.bad_word_address_mask ) != 0 )
{
mips_load_bad_address( address );
}
else if( breakpoint )
{
mips_breakpoint_exception();
}
else
{
UINT32 data = mipscpu.readword( address );
if( mipscpu.berr )
{
mips_load_bus_error_exception();
}
else
{
int reg = INS_RT( mipscpu.op );
mips_advance_pc();
switch( cop )
{
case 0:
/* lwc0 doesn't update any cop0 registers */
break;
case 1:
setcp1dr( reg, data );
break;
case 2:
setcp2dr( reg, data );
break;
case 3:
setcp3dr( reg, data );
break;
}
}
}
}
static void mips_swc( int cop, int sr_cu )
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_store_data_address_breakpoint( address );
if( ( mipscpu.cp0r[ CP0_SR ] & sr_cu ) == 0 )
{
mips_exception( EXC_CPU );
}
else if( ( address & mipscpu.bad_word_address_mask ) != 0 )
{
mips_store_bad_address( address );
}
else
{
UINT32 data = 0;
switch( cop )
{
case 0:
{
int address;
if( mipscpu.delayr == MIPS_DELAYR_PC )
{
switch( mipscpu.delayv & 0x0c )
{
case 0x0c:
address = mipscpu.delayv;
break;
default:
address = mipscpu.delayv + 4;
break;
}
}
else
{
switch( mipscpu.pc & 0x0c )
{
case 0x0:
case 0xc:
address = mipscpu.pc + 0x08;
break;
default:
address = mipscpu.pc | 0x0c;
break;
}
}
data = program_read_dword_32le( address );
}
break;
case 1:
data = getcp1dr( INS_RT( mipscpu.op ) );
break;
case 2:
data = getcp2dr( INS_RT( mipscpu.op ) );
break;
case 3:
data = getcp3dr( INS_RT( mipscpu.op ) );
break;
}
mipscpu.writeword( address, data );
if( breakpoint )
{
mips_breakpoint_exception();
}
else if( mipscpu.berr )
{
mips_store_bus_error_exception();
}
else
{
mips_advance_pc();
}
}
}
static void mips_bc( int cop, int sr_cu, int condition )
{
if( ( mipscpu.cp0r[ CP0_SR ] & sr_cu ) == 0 )
{
mips_exception( EXC_CPU );
}
else
{
mips_conditional_branch( !condition );
}
}
static int mips_execute( int cycles )
{
mips_ICount = cycles;
do
{
#if LOG_BIOSCALL
log_bioscall();
#endif
CALL_DEBUGGER( mipscpu.pc );
mipscpu.op = cpu_readop32( mipscpu.pc );
switch( INS_OP( mipscpu.op ) )
{
case OP_SPECIAL:
switch( INS_FUNCT( mipscpu.op ) )
{
case FUNCT_SLL:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] << INS_SHAMT( mipscpu.op ) );
break;
case FUNCT_SRL:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] >> INS_SHAMT( mipscpu.op ) );
break;
case FUNCT_SRA:
mips_load( INS_RD( mipscpu.op ), (INT32)mipscpu.r[ INS_RT( mipscpu.op ) ] >> INS_SHAMT( mipscpu.op ) );
break;
case FUNCT_SLLV:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] << ( mipscpu.r[ INS_RS( mipscpu.op ) ] & 31 ) );
break;
case FUNCT_SRLV:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] >> ( mipscpu.r[ INS_RS( mipscpu.op ) ] & 31 ) );
break;
case FUNCT_SRAV:
mips_load( INS_RD( mipscpu.op ), (INT32)mipscpu.r[ INS_RT( mipscpu.op ) ] >> ( mipscpu.r[ INS_RS( mipscpu.op ) ] & 31 ) );
break;
case FUNCT_JR:
mips_branch( mipscpu.r[ INS_RS( mipscpu.op ) ] );
break;
case FUNCT_JALR:
mips_branch( mipscpu.r[ INS_RS( mipscpu.op ) ] );
if( INS_RD( mipscpu.op ) != 0 )
{
mipscpu.r[ INS_RD( mipscpu.op ) ] = mipscpu.pc + 4;
}
break;
case FUNCT_SYSCALL:
#if LOG_BIOSCALL
log_syscall();
#endif
mips_exception( EXC_SYS );
break;
case FUNCT_BREAK:
mips_exception( EXC_BP );
break;
case FUNCT_MFHI:
mips_load( INS_RD( mipscpu.op ), mips_get_hi() );
break;
case FUNCT_MTHI:
funct_mthi();
mips_advance_pc();
break;
case FUNCT_MFLO:
mips_load( INS_RD( mipscpu.op ), mips_get_lo() );
break;
case FUNCT_MTLO:
funct_mtlo();
mips_advance_pc();
break;
case FUNCT_MULT:
funct_mult();
mips_advance_pc();
break;
case FUNCT_MULTU:
funct_multu();
mips_advance_pc();
break;
case FUNCT_DIV:
funct_div();
mips_advance_pc();
break;
case FUNCT_DIVU:
funct_divu();
mips_advance_pc();
break;
case FUNCT_ADD:
{
UINT32 result = mipscpu.r[ INS_RS( mipscpu.op ) ] + mipscpu.r[ INS_RT( mipscpu.op ) ];
if( (INT32)( ~( mipscpu.r[ INS_RS( mipscpu.op ) ] ^ mipscpu.r[ INS_RT( mipscpu.op ) ] ) & ( mipscpu.r[ INS_RS( mipscpu.op ) ] ^ result ) ) < 0 )
{
mips_exception( EXC_OVF );
}
else
{
mips_load( INS_RD( mipscpu.op ), result );
}
}
break;
case FUNCT_ADDU:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] + mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case FUNCT_SUB:
{
UINT32 result = mipscpu.r[ INS_RS( mipscpu.op ) ] - mipscpu.r[ INS_RT( mipscpu.op ) ];
if( (INT32)( ( mipscpu.r[ INS_RS( mipscpu.op ) ] ^ mipscpu.r[ INS_RT( mipscpu.op ) ] ) & ( mipscpu.r[ INS_RS( mipscpu.op ) ] ^ result ) ) < 0 )
{
mips_exception( EXC_OVF );
}
else
{
mips_load( INS_RD( mipscpu.op ), result );
}
}
break;
case FUNCT_SUBU:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] - mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case FUNCT_AND:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] & mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case FUNCT_OR:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] | mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case FUNCT_XOR:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] ^ mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case FUNCT_NOR:
mips_load( INS_RD( mipscpu.op ), ~( mipscpu.r[ INS_RS( mipscpu.op ) ] | mipscpu.r[ INS_RT( mipscpu.op ) ] ) );
break;
case FUNCT_SLT:
mips_load( INS_RD( mipscpu.op ), (INT32)mipscpu.r[ INS_RS( mipscpu.op ) ] < (INT32)mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case FUNCT_SLTU:
mips_load( INS_RD( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] < mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
default:
mips_exception( EXC_RI );
break;
}
break;
case OP_REGIMM:
switch( INS_RT_REGIMM( mipscpu.op ) )
{
case RT_BLTZ:
mips_conditional_branch( (INT32)mipscpu.r[ INS_RS( mipscpu.op ) ] < 0 );
if( INS_RT( mipscpu.op ) == RT_BLTZAL )
{
mipscpu.r[ 31 ] = mipscpu.pc + 4;
}
break;
case RT_BGEZ:
mips_conditional_branch( (INT32)mipscpu.r[ INS_RS( mipscpu.op ) ] >= 0 );
if( INS_RT( mipscpu.op ) == RT_BGEZAL )
{
mipscpu.r[ 31 ] = mipscpu.pc + 4;
}
break;
}
break;
case OP_J:
mips_unconditional_branch();
break;
case OP_JAL:
mips_unconditional_branch();
mipscpu.r[ 31 ] = mipscpu.pc + 4;
break;
case OP_BEQ:
mips_conditional_branch( mipscpu.r[ INS_RS( mipscpu.op ) ] == mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case OP_BNE:
mips_conditional_branch( mipscpu.r[ INS_RS( mipscpu.op ) ] != mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case OP_BLEZ:
mips_conditional_branch( (INT32)mipscpu.r[ INS_RS( mipscpu.op ) ] < 0 || mipscpu.r[ INS_RS( mipscpu.op ) ] == mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case OP_BGTZ:
mips_conditional_branch( (INT32)mipscpu.r[ INS_RS( mipscpu.op ) ] >= 0 && mipscpu.r[ INS_RS( mipscpu.op ) ] != mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case OP_ADDI:
{
UINT32 immediate = MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
UINT32 result = mipscpu.r[ INS_RS( mipscpu.op ) ] + immediate;
if( (INT32)( ~( mipscpu.r[ INS_RS( mipscpu.op ) ] ^ immediate ) & ( mipscpu.r[ INS_RS( mipscpu.op ) ] ^ result ) ) < 0 )
{
mips_exception( EXC_OVF );
}
else
{
mips_load( INS_RT( mipscpu.op ), result );
}
}
break;
case OP_ADDIU:
mips_load( INS_RT( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) ) );
break;
case OP_SLTI:
mips_load( INS_RT( mipscpu.op ), (INT32)mipscpu.r[ INS_RS( mipscpu.op ) ] < MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) ) );
break;
case OP_SLTIU:
mips_load( INS_RT( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] < (UINT32)MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) ) );
break;
case OP_ANDI:
mips_load( INS_RT( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] & INS_IMMEDIATE( mipscpu.op ) );
break;
case OP_ORI:
mips_load( INS_RT( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] | INS_IMMEDIATE( mipscpu.op ) );
break;
case OP_XORI:
mips_load( INS_RT( mipscpu.op ), mipscpu.r[ INS_RS( mipscpu.op ) ] ^ INS_IMMEDIATE( mipscpu.op ) );
break;
case OP_LUI:
mips_load( INS_RT( mipscpu.op ), INS_IMMEDIATE( mipscpu.op ) << 16 );
break;
case OP_COP0:
switch( INS_RS( mipscpu.op ) )
{
case RS_MFC:
{
int reg = INS_RD( mipscpu.op );
if( reg == CP0_INDEX ||
reg == CP0_RANDOM ||
reg == CP0_ENTRYLO ||
reg == CP0_CONTEXT ||
reg == CP0_ENTRYHI )
{
mips_exception( EXC_RI );
}
else if( reg < 16 )
{
if( mips_cop0_usable() )
{
mips_delayed_load( INS_RT( mipscpu.op ), mipscpu.cp0r[ reg ] );
}
}
else
{
mips_advance_pc();
}
}
break;
case RS_CFC:
mips_exception( EXC_RI );
break;
case RS_MTC:
{
int reg = INS_RD( mipscpu.op );
if( reg == CP0_INDEX ||
reg == CP0_RANDOM ||
reg == CP0_ENTRYLO ||
reg == CP0_CONTEXT ||
reg == CP0_ENTRYHI )
{
mips_exception( EXC_RI );
}
else if( reg < 16 )
{
if( mips_cop0_usable() )
{
UINT32 data = ( mipscpu.cp0r[ reg ] & ~mips_mtc0_writemask[ reg ] ) |
( mipscpu.r[ INS_RT( mipscpu.op ) ] & mips_mtc0_writemask[ reg ] );
mips_advance_pc();
mips_set_cp0r( reg, data );
}
}
else
{
mips_advance_pc();
}
}
break;
case RS_CTC:
mips_exception( EXC_RI );
break;
case RS_BC:
case RS_BC_ALT:
switch( INS_BC( mipscpu.op ) )
{
case BC_BCF:
mips_bc( 0, SR_CU0, 0 );
break;
case BC_BCT:
mips_bc( 0, SR_CU0, 1 );
break;
}
break;
default:
switch( INS_CO( mipscpu.op ) )
{
case 1:
switch( INS_CF( mipscpu.op ) )
{
case CF_TLBR:
case CF_TLBWI:
case CF_TLBWR:
case CF_TLBP:
mips_exception( EXC_RI );
break;
case CF_RFE:
if( mips_cop0_usable() )
{
mips_advance_pc();
mips_set_cp0r( CP0_SR, ( mipscpu.cp0r[ CP0_SR ] & ~0xf ) | ( ( mipscpu.cp0r[ CP0_SR ] >> 2 ) & 0xf ) );
}
break;
default:
mips_advance_pc();
break;
}
break;
default:
mips_advance_pc();
break;
}
break;
}
break;
case OP_COP1:
if( ( mipscpu.cp0r[ CP0_SR ] & SR_CU1 ) == 0 )
{
mips_exception( EXC_CPU );
}
else
{
switch( INS_RS( mipscpu.op ) )
{
case RS_MFC:
mips_delayed_load( INS_RT( mipscpu.op ), getcp1dr( INS_RD( mipscpu.op ) ) );
break;
case RS_CFC:
mips_delayed_load( INS_RT( mipscpu.op ), getcp1cr( INS_RD( mipscpu.op ) ) );
break;
case RS_MTC:
setcp1dr( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] );
mips_advance_pc();
break;
case RS_CTC:
setcp1cr( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] );
mips_advance_pc();
break;
case RS_BC:
case RS_BC_ALT:
switch( INS_BC( mipscpu.op ) )
{
case BC_BCF:
mips_bc( 1, SR_CU1, 0 );
break;
case BC_BCT:
mips_bc( 1, SR_CU1, 1 );
break;
}
break;
default:
mips_advance_pc();
break;
}
}
break;
case OP_COP2:
if( ( mipscpu.cp0r[ CP0_SR ] & SR_CU2 ) == 0 )
{
mips_exception( EXC_CPU );
}
else
{
switch( INS_RS( mipscpu.op ) )
{
case RS_MFC:
mips_delayed_load( INS_RT( mipscpu.op ), getcp2dr( INS_RD( mipscpu.op ) ) );
break;
case RS_CFC:
mips_delayed_load( INS_RT( mipscpu.op ), getcp2cr( INS_RD( mipscpu.op ) ) );
break;
case RS_MTC:
setcp2dr( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] );
mips_advance_pc();
break;
case RS_CTC:
setcp2cr( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] );
mips_advance_pc();
break;
case RS_BC:
case RS_BC_ALT:
switch( INS_BC( mipscpu.op ) )
{
case BC_BCF:
mips_bc( 2, SR_CU2, 0 );
break;
case BC_BCT:
mips_bc( 2, SR_CU2, 1 );
break;
}
break;
default:
switch( INS_CO( mipscpu.op ) )
{
case 1:
docop2( INS_COFUN( mipscpu.op ) );
mips_advance_pc();
break;
default:
mips_advance_pc();
break;
}
break;
}
}
break;
case OP_COP3:
if( ( mipscpu.cp0r[ CP0_SR ] & SR_CU3 ) == 0 )
{
mips_exception( EXC_CPU );
}
else
{
switch( INS_RS( mipscpu.op ) )
{
case RS_MFC:
mips_delayed_load( INS_RT( mipscpu.op ), getcp3dr( INS_RD( mipscpu.op ) ) );
break;
case RS_CFC:
mips_delayed_load( INS_RT( mipscpu.op ), getcp3cr( INS_RD( mipscpu.op ) ) );
break;
case RS_MTC:
setcp3dr( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] );
mips_advance_pc();
break;
case RS_CTC:
setcp3cr( INS_RD( mipscpu.op ), mipscpu.r[ INS_RT( mipscpu.op ) ] );
mips_advance_pc();
break;
case RS_BC:
case RS_BC_ALT:
switch( INS_BC( mipscpu.op ) )
{
case BC_BCF:
mips_bc( 3, SR_CU3, 0 );
break;
case BC_BCT:
mips_bc( 3, SR_CU3, 1 );
break;
}
break;
default:
mips_advance_pc();
break;
}
}
break;
case OP_LB:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_load_data_address_breakpoint( address );
if( ( address & mipscpu.bad_byte_address_mask ) != 0 )
{
mips_load_bad_address( address );
}
else if( breakpoint )
{
mips_breakpoint_exception();
}
else
{
UINT32 data = MIPS_BYTE_EXTEND( mipscpu.readbyte( address ) );
if( mipscpu.berr )
{
mips_load_bus_error_exception();
}
else
{
mips_delayed_load( INS_RT( mipscpu.op ), data );
}
}
}
break;
case OP_LH:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_load_data_address_breakpoint( address );
if( ( address & mipscpu.bad_half_address_mask ) != 0 )
{
mips_load_bad_address( address );
}
else if( breakpoint )
{
mips_breakpoint_exception();
}
else
{
UINT32 data = MIPS_WORD_EXTEND( mipscpu.readhalf( address ) );
if( mipscpu.berr )
{
mips_load_bus_error_exception();
}
else
{
mips_delayed_load( INS_RT( mipscpu.op ), data );
}
}
}
break;
case OP_LWL:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int load_type = address & 3;
int breakpoint;
address &= ~3;
breakpoint = mips_load_data_address_breakpoint( address );
if( ( address & mipscpu.bad_byte_address_mask ) != 0 )
{
mips_load_bad_address( address );
}
else if( breakpoint )
{
mips_breakpoint_exception();
}
else
{
UINT32 data = mips_get_register_from_pipeline( INS_RT( mipscpu.op ) );
switch( load_type )
{
case 0:
data = ( data & 0x00ffffff ) | ( mipscpu.readword_masked( address, 0xff000000 ) << 24 );
break;
case 1:
data = ( data & 0x0000ffff ) | ( mipscpu.readword_masked( address, 0xffff0000 ) << 16 );
break;
case 2:
data = ( data & 0x000000ff ) | ( mipscpu.readword_masked( address, 0xffffff00 ) << 8 );
break;
case 3:
data = mipscpu.readword( address );
break;
}
if( mipscpu.berr )
{
mips_load_bus_error_exception();
}
else
{
mips_delayed_load( INS_RT( mipscpu.op ), data );
}
}
}
break;
case OP_LW:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_load_data_address_breakpoint( address );
if( ( address & mipscpu.bad_word_address_mask ) != 0 )
{
mips_load_bad_address( address );
}
else if( breakpoint )
{
mips_breakpoint_exception();
}
else
{
UINT32 data = mipscpu.readword( address );
if( mipscpu.berr )
{
mips_load_bus_error_exception();
}
else
{
mips_delayed_load( INS_RT( mipscpu.op ), data );
}
}
}
break;
case OP_LBU:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_load_data_address_breakpoint( address );
if( ( address & mipscpu.bad_byte_address_mask ) != 0 )
{
mips_load_bad_address( address );
}
else if( breakpoint )
{
mips_breakpoint_exception();
}
else
{
UINT32 data = mipscpu.readbyte( address );
if( mipscpu.berr )
{
mips_load_bus_error_exception();
}
else
{
mips_delayed_load( INS_RT( mipscpu.op ), data );
}
}
}
break;
case OP_LHU:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_load_data_address_breakpoint( address );
if( ( address & mipscpu.bad_half_address_mask ) != 0 )
{
mips_load_bad_address( address );
}
else if( breakpoint )
{
mips_breakpoint_exception();
}
else
{
UINT32 data = mipscpu.readhalf( address );
if( mipscpu.berr )
{
mips_load_bus_error_exception();
}
else
{
mips_delayed_load( INS_RT( mipscpu.op ), data );
}
}
}
break;
case OP_LWR:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_load_data_address_breakpoint( address );
if( ( address & mipscpu.bad_byte_address_mask ) != 0 )
{
mips_load_bad_address( address );
}
else if( breakpoint )
{
mips_breakpoint_exception();
}
else
{
UINT32 data = mips_get_register_from_pipeline( INS_RT( mipscpu.op ) );
switch( address & 3 )
{
case 0:
data = mipscpu.readword( address );
break;
case 1:
data = ( data & 0xff000000 ) | ( mipscpu.readword_masked( address, 0x00ffffff ) >> 8 );
break;
case 2:
data = ( data & 0xffff0000 ) | ( mipscpu.readword_masked( address, 0x0000ffff ) >> 16 );
break;
case 3:
data = ( data & 0xffffff00 ) | ( mipscpu.readword_masked( address, 0x000000ff ) >> 24 );
break;
}
if( mipscpu.berr )
{
mips_load_bus_error_exception();
}
else
{
mips_delayed_load( INS_RT( mipscpu.op ), data );
}
}
}
break;
case OP_SB:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_store_data_address_breakpoint( address );
if( ( address & mipscpu.bad_byte_address_mask ) != 0 )
{
mips_store_bad_address( address );
}
else
{
int shift = 8 * ( address & 3 );
mipscpu.writeword_masked( address, mipscpu.r[ INS_RT( mipscpu.op ) ] << shift, ~( 0xff << shift ) );
if( breakpoint )
{
mips_breakpoint_exception();
}
else if( mipscpu.berr )
{
mips_store_bus_error_exception();
}
else
{
mips_advance_pc();
}
}
}
break;
case OP_SH:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_store_data_address_breakpoint( address );
if( ( address & mipscpu.bad_half_address_mask ) != 0 )
{
mips_store_bad_address( address );
}
else
{
int shift = 8 * ( address & 2 );
mipscpu.writeword_masked( address, mipscpu.r[ INS_RT( mipscpu.op ) ] << shift, ~( 0xffff << shift ) );
if( breakpoint )
{
mips_breakpoint_exception();
}
else if( mipscpu.berr )
{
mips_store_bus_error_exception();
}
else
{
mips_advance_pc();
}
}
}
break;
case OP_SWL:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int save_type = address & 3;
int breakpoint;
address &= ~3;
breakpoint = mips_store_data_address_breakpoint( address );
if( ( address & mipscpu.bad_byte_address_mask ) != 0 )
{
mips_store_bad_address( address );
}
else
{
switch( save_type )
{
case 0:
mipscpu.writeword_masked( address, mipscpu.r[ INS_RT( mipscpu.op ) ] >> 24, 0xffffff00 );
break;
case 1:
mipscpu.writeword_masked( address, mipscpu.r[ INS_RT( mipscpu.op ) ] >> 16, 0xffff0000 );
break;
case 2:
mipscpu.writeword_masked( address, mipscpu.r[ INS_RT( mipscpu.op ) ] >> 8, 0xff000000 );
break;
case 3:
mipscpu.writeword( address, mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
}
if( breakpoint )
{
mips_breakpoint_exception();
}
else if( mipscpu.berr )
{
mips_store_bus_error_exception();
}
else
{
mips_advance_pc();
}
}
}
break;
case OP_SW:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_store_data_address_breakpoint( address );
if( ( address & mipscpu.bad_word_address_mask ) != 0 )
{
mips_store_bad_address( address );
}
else
{
mipscpu.writeword( address, mipscpu.r[ INS_RT( mipscpu.op ) ] );
if( breakpoint )
{
mips_breakpoint_exception();
}
else if( mipscpu.berr )
{
mips_store_bus_error_exception();
}
else
{
mips_advance_pc();
}
}
}
break;
case OP_SWR:
{
UINT32 address = mipscpu.r[ INS_RS( mipscpu.op ) ] + MIPS_WORD_EXTEND( INS_IMMEDIATE( mipscpu.op ) );
int breakpoint = mips_store_data_address_breakpoint( address );
if( ( address & mipscpu.bad_byte_address_mask ) != 0 )
{
mips_store_bad_address( address );
}
else
{
switch( address & 3 )
{
case 0:
mipscpu.writeword( address, mipscpu.r[ INS_RT( mipscpu.op ) ] );
break;
case 1:
mipscpu.writeword_masked( address, mipscpu.r[ INS_RT( mipscpu.op ) ] << 8, 0x000000ff );
break;
case 2:
mipscpu.writeword_masked( address, mipscpu.r[ INS_RT( mipscpu.op ) ] << 16, 0x0000ffff );
break;
case 3:
mipscpu.writeword_masked( address, mipscpu.r[ INS_RT( mipscpu.op ) ] << 24, 0x00ffffff );
break;
}
if( breakpoint )
{
mips_breakpoint_exception();
}
else if( mipscpu.berr )
{
mips_store_bus_error_exception();
}
else
{
mips_advance_pc();
}
}
}
break;
case OP_LWC0:
mips_lwc( 0, SR_CU0 );
break;
case OP_LWC1:
mips_lwc( 1, SR_CU1 );
break;
case OP_LWC2:
mips_lwc( 2, SR_CU2 );
break;
case OP_LWC3:
mips_lwc( 3, SR_CU3 );
break;
case OP_SWC0:
mips_swc( 0, SR_CU0 );
break;
case OP_SWC1:
mips_swc( 1, SR_CU1 );
break;
case OP_SWC2:
mips_swc( 2, SR_CU2 );
break;
case OP_SWC3:
mips_swc( 3, SR_CU3 );
break;
default:
logerror( "%08x: unknown opcode %08x\n", mipscpu.pc, mipscpu.op );
mips_stop();
mips_exception( EXC_RI );
break;
}
mips_ICount--;
} while( mips_ICount > 0 );
return cycles - mips_ICount;
}
static void mips_get_context( void *dst )
{
if( dst )
{
*(mips_cpu_context *)dst = mipscpu;
}
}
static void mips_set_context( void *src )
{
if( src )
{
mipscpu = *(mips_cpu_context *)src;
change_pc( mipscpu.pc );
}
}
static void set_irq_line( int irqline, int state )
{
UINT32 ip;
switch( irqline )
{
case MIPS_IRQ0:
ip = CAUSE_IP2;
break;
case MIPS_IRQ1:
ip = CAUSE_IP3;
break;
case MIPS_IRQ2:
ip = CAUSE_IP4;
break;
case MIPS_IRQ3:
ip = CAUSE_IP5;
break;
case MIPS_IRQ4:
ip = CAUSE_IP6;
break;
case MIPS_IRQ5:
ip = CAUSE_IP7;
break;
default:
return;
}
switch( state )
{
case CLEAR_LINE:
mips_set_cp0r( CP0_CAUSE, mipscpu.cp0r[ CP0_CAUSE ] & ~ip );
break;
case ASSERT_LINE:
mips_set_cp0r( CP0_CAUSE, mipscpu.cp0r[ CP0_CAUSE ] |= ip );
if( mipscpu.irq_callback )
{
/* HOLD_LINE interrupts are not supported by the architecture.
By acknowledging the interupt here they are treated like PULSE_LINE
interrupts, so if the interrupt isn't enabled it will be ignored.
There is also a problem with PULSE_LINE interrupts as the interrupt
pending bits aren't latched the emulated code won't know what caused
the interrupt. */
(*mipscpu.irq_callback)( irqline );
}
break;
}
}
static READ32_HANDLER( psx_biu_r )
{
return mipscpu.biu;
}
static WRITE32_HANDLER( psx_biu_w )
{
UINT32 old = mipscpu.biu;
COMBINE_DATA( &mipscpu.biu );
if( ( old & ( BIU_RAM | BIU_DS ) ) != ( mipscpu.biu & ( BIU_RAM | BIU_DS ) ) )
{
mips_update_scratchpad(machine);
}
}
// On-board RAM and peripherals
static ADDRESS_MAP_START( psxcpu_internal_map, ADDRESS_SPACE_PROGRAM, 32 )
AM_RANGE(0x00800000, 0x1effffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0x1f800400, 0x1f800fff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0x20000000, 0x7fffffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0x80800000, 0x9effffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0xa0800000, 0xbeffffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0xc0000000, 0xfffdffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0xfffe0130, 0xfffe0133) AM_READWRITE(psx_biu_r, psx_biu_w)
ADDRESS_MAP_END
static ADDRESS_MAP_START( cxd8661r_internal_map, ADDRESS_SPACE_PROGRAM, 32 )
AM_RANGE(0x01000000, 0x1effffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0x1f800400, 0x1f800fff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0x20000000, 0x7fffffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0x81000000, 0x9effffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0xa1000000, 0xbeffffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0xc0000000, 0xfffdffff) AM_READWRITE(psx_berr_r, psx_berr_w)
AM_RANGE(0xfffe0130, 0xfffe0133) AM_READWRITE(psx_biu_r, psx_biu_w)
ADDRESS_MAP_END
/****************************************************************************
* Return a formatted string for a register
****************************************************************************/
#ifdef ENABLE_DEBUGGER
static offs_t mips_dasm(char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram)
{
return DasmMIPS( buffer, pc, opram );
}
#endif /* ENABLE_DEBUGGER */
static UINT32 getcp1dr( int reg )
{
/* if a mtc/ctc precedes then this will get the value moved (which cop1 register is irrelevant). */
/* if a mfc/cfc follows then it will get the same value as this one. */
return program_read_dword_32le( mipscpu.pc + 4 );
}
static void setcp1dr( int reg, UINT32 value )
{
}
static UINT32 getcp1cr( int reg )
{
/* if a mtc/ctc precedes then this will get the value moved (which cop1 register is irrelevant). */
/* if a mfc/cfc follows then it will get the same value as this one. */
return program_read_dword_32le( mipscpu.pc + 4 );
}
static void setcp1cr( int reg, UINT32 value )
{
}
static UINT32 getcp3dr( int reg )
{
/* if you have mtc/ctc with an mfc/cfc directly afterwards then you get the value that was moved. */
/* if you have an lwc with an mfc/cfc somewhere after it then you get the value that is loaded */
/* otherwise you get the next opcode. which register you transfer to or from is irrelevant. */
return program_read_dword_32le( mipscpu.pc + 4 );
}
static void setcp3dr( int reg, UINT32 value )
{
}
static UINT32 getcp3cr( int reg )
{
/* if you have mtc/ctc with an mfc/cfc directly afterwards then you get the value that was moved. */
/* if you have an lwc with an mfc/cfc somewhere after it then you get the value that is loaded */
/* otherwise you get the next opcode. which register you transfer to or from is irrelevant. */
return program_read_dword_32le( mipscpu.pc + 4 );
}
static void setcp3cr( int reg, UINT32 value )
{
}
/* preliminary gte code */
#define VXY0 ( mipscpu.cp2dr[ 0 ].d )
#define VX0 ( mipscpu.cp2dr[ 0 ].w.l )
#define VY0 ( mipscpu.cp2dr[ 0 ].w.h )
#define VZ0 ( mipscpu.cp2dr[ 1 ].w.l )
#define VXY1 ( mipscpu.cp2dr[ 2 ].d )
#define VX1 ( mipscpu.cp2dr[ 2 ].w.l )
#define VY1 ( mipscpu.cp2dr[ 2 ].w.h )
#define VZ1 ( mipscpu.cp2dr[ 3 ].w.l )
#define VXY2 ( mipscpu.cp2dr[ 4 ].d )
#define VX2 ( mipscpu.cp2dr[ 4 ].w.l )
#define VY2 ( mipscpu.cp2dr[ 4 ].w.h )
#define VZ2 ( mipscpu.cp2dr[ 5 ].w.l )
#define RGB ( mipscpu.cp2dr[ 6 ].d )
#define R ( mipscpu.cp2dr[ 6 ].b.l )
#define G ( mipscpu.cp2dr[ 6 ].b.h )
#define B ( mipscpu.cp2dr[ 6 ].b.h2 )
#define CODE ( mipscpu.cp2dr[ 6 ].b.h3 )
#define OTZ ( mipscpu.cp2dr[ 7 ].w.l )
#define IR0 ( mipscpu.cp2dr[ 8 ].sw.l )
#define IR1 ( mipscpu.cp2dr[ 9 ].sw.l )
#define IR2 ( mipscpu.cp2dr[ 10 ].sw.l )
#define IR3 ( mipscpu.cp2dr[ 11 ].sw.l )
#define SXY0 ( mipscpu.cp2dr[ 12 ].d )
#define SX0 ( mipscpu.cp2dr[ 12 ].sw.l )
#define SY0 ( mipscpu.cp2dr[ 12 ].sw.h )
#define SXY1 ( mipscpu.cp2dr[ 13 ].d )
#define SX1 ( mipscpu.cp2dr[ 13 ].sw.l )
#define SY1 ( mipscpu.cp2dr[ 13 ].sw.h )
#define SXY2 ( mipscpu.cp2dr[ 14 ].d )
#define SX2 ( mipscpu.cp2dr[ 14 ].sw.l )
#define SY2 ( mipscpu.cp2dr[ 14 ].sw.h )
#define SXYP ( mipscpu.cp2dr[ 15 ].d )
#define SXP ( mipscpu.cp2dr[ 15 ].sw.l )
#define SYP ( mipscpu.cp2dr[ 15 ].sw.h )
#define SZ0 ( mipscpu.cp2dr[ 16 ].w.l )
#define SZ1 ( mipscpu.cp2dr[ 17 ].w.l )
#define SZ2 ( mipscpu.cp2dr[ 18 ].w.l )
#define SZ3 ( mipscpu.cp2dr[ 19 ].w.l )
#define RGB0 ( mipscpu.cp2dr[ 20 ].d )
#define R0 ( mipscpu.cp2dr[ 20 ].b.l )
#define G0 ( mipscpu.cp2dr[ 20 ].b.h )
#define B0 ( mipscpu.cp2dr[ 20 ].b.h2 )
#define CD0 ( mipscpu.cp2dr[ 20 ].b.h3 )
#define RGB1 ( mipscpu.cp2dr[ 21 ].d )
#define R1 ( mipscpu.cp2dr[ 21 ].b.l )
#define G1 ( mipscpu.cp2dr[ 21 ].b.h )
#define B1 ( mipscpu.cp2dr[ 21 ].b.h2 )
#define CD1 ( mipscpu.cp2dr[ 21 ].b.h3 )
#define RGB2 ( mipscpu.cp2dr[ 22 ].d )
#define R2 ( mipscpu.cp2dr[ 22 ].b.l )
#define G2 ( mipscpu.cp2dr[ 22 ].b.h )
#define B2 ( mipscpu.cp2dr[ 22 ].b.h2 )
#define CD2 ( mipscpu.cp2dr[ 22 ].b.h3 )
#define RES1 ( mipscpu.cp2dr[ 23 ].d )
#define MAC0 ( mipscpu.cp2dr[ 24 ].d )
#define MAC1 ( mipscpu.cp2dr[ 25 ].sd )
#define MAC2 ( mipscpu.cp2dr[ 26 ].sd )
#define MAC3 ( mipscpu.cp2dr[ 27 ].sd )
#define IRGB ( mipscpu.cp2dr[ 28 ].d )
#define ORGB ( mipscpu.cp2dr[ 29 ].d )
#define LZCS ( mipscpu.cp2dr[ 30 ].d )
#define LZCR ( mipscpu.cp2dr[ 31 ].d )
#define R11 ( mipscpu.cp2cr[ 0 ].sw.l )
#define R12 ( mipscpu.cp2cr[ 0 ].sw.h )
#define R13 ( mipscpu.cp2cr[ 1 ].sw.l )
#define R21 ( mipscpu.cp2cr[ 1 ].sw.h )
#define R22 ( mipscpu.cp2cr[ 2 ].sw.l )
#define R23 ( mipscpu.cp2cr[ 2 ].sw.h )
#define R31 ( mipscpu.cp2cr[ 3 ].sw.l )
#define R32 ( mipscpu.cp2cr[ 3 ].sw.h )
#define R33 ( mipscpu.cp2cr[ 4 ].sw.l )
#define TRX ( mipscpu.cp2cr[ 5 ].sd )
#define TRY ( mipscpu.cp2cr[ 6 ].sd )
#define TRZ ( mipscpu.cp2cr[ 7 ].sd )
#define L11 ( mipscpu.cp2cr[ 8 ].sw.l )
#define L12 ( mipscpu.cp2cr[ 8 ].sw.h )
#define L13 ( mipscpu.cp2cr[ 9 ].sw.l )
#define L21 ( mipscpu.cp2cr[ 9 ].sw.h )
#define L22 ( mipscpu.cp2cr[ 10 ].sw.l )
#define L23 ( mipscpu.cp2cr[ 10 ].sw.h )
#define L31 ( mipscpu.cp2cr[ 11 ].sw.l )
#define L32 ( mipscpu.cp2cr[ 11 ].sw.h )
#define L33 ( mipscpu.cp2cr[ 12 ].sw.l )
#define RBK ( mipscpu.cp2cr[ 13 ].sd )
#define GBK ( mipscpu.cp2cr[ 14 ].sd )
#define BBK ( mipscpu.cp2cr[ 15 ].sd )
#define LR1 ( mipscpu.cp2cr[ 16 ].sw.l )
#define LR2 ( mipscpu.cp2cr[ 16 ].sw.h )
#define LR3 ( mipscpu.cp2cr[ 17 ].sw.l )
#define LG1 ( mipscpu.cp2cr[ 17 ].sw.h )
#define LG2 ( mipscpu.cp2cr[ 18 ].sw.l )
#define LG3 ( mipscpu.cp2cr[ 18 ].sw.h )
#define LB1 ( mipscpu.cp2cr[ 19 ].sw.l )
#define LB2 ( mipscpu.cp2cr[ 19 ].sw.h )
#define LB3 ( mipscpu.cp2cr[ 20 ].sw.l )
#define RFC ( mipscpu.cp2cr[ 21 ].sd )
#define GFC ( mipscpu.cp2cr[ 22 ].sd )
#define BFC ( mipscpu.cp2cr[ 23 ].sd )
#define OFX ( mipscpu.cp2cr[ 24 ].d )
#define OFY ( mipscpu.cp2cr[ 25 ].d )
#define H ( mipscpu.cp2cr[ 26 ].w.l )
#define DQA ( mipscpu.cp2cr[ 27 ].w.l )
#define DQB ( mipscpu.cp2cr[ 28 ].d )
#define ZSF3 ( mipscpu.cp2cr[ 29 ].sw.l )
#define ZSF4 ( mipscpu.cp2cr[ 30 ].sw.l )
#define FLAG ( mipscpu.cp2cr[ 31 ].d )
INLINE INT32 LIM( INT32 value, INT32 max, INT32 min, UINT32 flag )
{
if( value > max )
{
FLAG |= flag;
return max;
}
else if( value < min )
{
FLAG |= flag;
return min;
}
return value;
}
static UINT32 getcp2dr( int reg )
{
switch( reg )
{
case 1:
case 3:
case 5:
case 8:
case 9:
case 10:
case 11:
mipscpu.cp2dr[ reg ].d = (INT32)mipscpu.cp2dr[ reg ].sw.l;
break;
case 7:
case 16:
case 17:
case 18:
case 19:
mipscpu.cp2dr[ reg ].d = (UINT32)mipscpu.cp2dr[ reg ].w.l;
break;
case 15:
mipscpu.cp2dr[ reg ].d = SXY2;
break;
case 28:
case 29:
mipscpu.cp2dr[ reg ].d = LIM( (INT16)IR1 >> 7, 0x1f, 0, 0 ) | ( LIM( (INT16)IR2 >> 7, 0x1f, 0, 0 ) << 5 ) | ( LIM( (INT16)IR3 >> 7, 0x1f, 0, 0 ) << 10 );
break;
}
GTELOG( "get CP2DR%u=%08x", reg, mipscpu.cp2dr[ reg ].d );
return mipscpu.cp2dr[ reg ].d;
}
static void setcp2dr( int reg, UINT32 value )
{
GTELOG( "set CP2DR%u=%08x", reg, value );
switch( reg )
{
case 15:
SXY0 = SXY1;
SXY1 = SXY2;
SXY2 = value;
break;
case 28:
IR1 = ( value & 0x1f ) << 7;
IR2 = ( value & 0x3e0 ) << 2;
IR3 = ( value & 0x7c00 ) >> 3;
break;
case 30:
{
UINT32 lzcs = value;
UINT32 lzcr = 0;
if( ( lzcs & 0x80000000 ) == 0 )
{
lzcs = ~lzcs;
}
while( ( lzcs & 0x80000000 ) != 0 )
{
lzcr++;
lzcs <<= 1;
}
LZCR = lzcr;
break;
}
case 31:
value = mipscpu.cp2dr[ reg ].d;
break;
}
mipscpu.cp2dr[ reg ].d = value;
}
static UINT32 getcp2cr( int reg )
{
GTELOG( "get CP2CR%u=%08x", reg, mipscpu.cp2cr[ reg ].d );
return mipscpu.cp2cr[ reg ].d;
}
static void setcp2cr( int reg, UINT32 value )
{
GTELOG( "set CP2CR%u=%08x", reg, value );
switch( reg )
{
case 4:
case 12:
case 20:
case 26:
case 27:
case 29:
case 30:
value = (INT32)(INT16) value;
break;
case 31:
value = value & 0x7ffff000;
if( ( value & 0x7f87e000 ) != 0 )
{
value |= 0x80000000;
}
break;
}
mipscpu.cp2cr[ reg ].d = value;
}
INLINE INT64 BOUNDS( INT64 n_value, INT64 n_max, int n_maxflag, INT64 n_min, int n_minflag )
{
if( n_value > n_max )
{
FLAG |= n_maxflag;
}
else if( n_value < n_min )
{
FLAG |= n_minflag;
}
return n_value;
}
/* Setting bits 12 & 19-22 in FLAG does not set bit 31 */
#define A1( a ) BOUNDS( ( a ), 0x7fffffff, ( 1 << 30 ), -(INT64)0x80000000, ( 1 << 31 ) | ( 1 << 27 ) )
#define A2( a ) BOUNDS( ( a ), 0x7fffffff, ( 1 << 29 ), -(INT64)0x80000000, ( 1 << 31 ) | ( 1 << 26 ) )
#define A3( a ) BOUNDS( ( a ), 0x7fffffff, ( 1 << 28 ), -(INT64)0x80000000, ( 1 << 31 ) | ( 1 << 25 ) )
#define Lm_B1( a, l ) LIM( ( a ), 0x7fff, -0x8000 * !l, ( 1 << 31 ) | ( 1 << 24 ) )
#define Lm_B2( a, l ) LIM( ( a ), 0x7fff, -0x8000 * !l, ( 1 << 31 ) | ( 1 << 23 ) )
#define Lm_B3( a, l ) LIM( ( a ), 0x7fff, -0x8000 * !l, ( 1 << 22 ) )
#define Lm_C1( a ) LIM( ( a ), 0x00ff, 0x0000, ( 1 << 21 ) )
#define Lm_C2( a ) LIM( ( a ), 0x00ff, 0x0000, ( 1 << 20 ) )
#define Lm_C3( a ) LIM( ( a ), 0x00ff, 0x0000, ( 1 << 19 ) )
#define Lm_D( a ) LIM( ( a ), 0xffff, 0x0000, ( 1 << 31 ) | ( 1 << 18 ) )
INLINE UINT32 Lm_E( UINT32 n_z )
{
if( n_z <= H / 2 )
{
n_z = H / 2;
FLAG |= ( 1 << 31 ) | ( 1 << 17 );
}
if( n_z == 0 )
{
n_z = 1;
}
return n_z;
}
#define F( a ) BOUNDS( ( a ), 0x7fffffff, ( 1 << 31 ) | ( 1 << 16 ), -(INT64)0x80000000, ( 1 << 31 ) | ( 1 << 15 ) )
#define Lm_G1( a ) LIM( ( a ), 0x3ff, -0x400, ( 1 << 31 ) | ( 1 << 14 ) )
#define Lm_G2( a ) LIM( ( a ), 0x3ff, -0x400, ( 1 << 31 ) | ( 1 << 13 ) )
#define Lm_H( a ) LIM( ( a ), 0xfff, 0x000, ( 1 << 12 ) )
static void docop2( int gteop )
{
int shift;
int n_v;
int lm;
int n_pass;
UINT16 n_v1;
UINT16 n_v2;
UINT16 n_v3;
const INT16 *const *p_n_mx;
const INT32 *const *p_n_cv;
static const INT16 n_zm = 0;
static const INT32 n_zc = 0;
static const UINT16 *const p_n_vx[] = { &VX0, &VX1, &VX2 };
static const UINT16 *const p_n_vy[] = { &VY0, &VY1, &VY2 };
static const UINT16 *const p_n_vz[] = { &VZ0, &VZ1, &VZ2 };
static const INT16 *const p_n_rm[] = { &R11, &R12, &R13, &R21, &R22, &R23, &R31, &R32, &R33 };
static const INT16 *const p_n_lm[] = { &L11, &L12, &L13, &L21, &L22, &L23, &L31, &L32, &L33 };
static const INT16 *const p_n_cm[] = { &LR1, &LR2, &LR3, &LG1, &LG2, &LG3, &LB1, &LB2, &LB3 };
static const INT16 *const p_n_zm[] = { &n_zm, &n_zm, &n_zm, &n_zm, &n_zm, &n_zm, &n_zm, &n_zm, &n_zm };
static const INT16 *const *const p_p_n_mx[] = { p_n_rm, p_n_lm, p_n_cm, p_n_zm };
static const INT32 *const p_n_tr[] = { &TRX, &TRY, &TRZ };
static const INT32 *const p_n_bk[] = { &RBK, &GBK, &BBK };
static const INT32 *const p_n_fc[] = { &RFC, &GFC, &BFC };
static const INT32 *const p_n_zc[] = { &n_zc, &n_zc, &n_zc };
static const INT32 *const *const p_p_n_cv[] = { p_n_tr, p_n_bk, p_n_fc, p_n_zc };
INT64 mac0;
switch( GTE_FUNCT( gteop ) )
{
case 0x01:
if( gteop == 0x0180001 )
{
GTELOG( "RTPS" );
FLAG = 0;
MAC1 = A1( ( ( (INT64)(INT32)TRX << 12 ) + ( (INT16)R11 * (INT16)VX0 ) + ( (INT16)R12 * (INT16)VY0 ) + ( (INT16)R13 * (INT16)VZ0 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)(INT32)TRY << 12 ) + ( (INT16)R21 * (INT16)VX0 ) + ( (INT16)R22 * (INT16)VY0 ) + ( (INT16)R23 * (INT16)VZ0 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)(INT32)TRZ << 12 ) + ( (INT16)R31 * (INT16)VX0 ) + ( (INT16)R32 * (INT16)VY0 ) + ( (INT16)R33 * (INT16)VZ0 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 0 );
IR2 = Lm_B2( (INT32)MAC2, 0 );
IR3 = Lm_B3( (INT32)MAC3, 0 );
SZ0 = SZ1;
SZ1 = SZ2;
SZ2 = SZ3;
SZ3 = Lm_D( (INT32)MAC3 );
SXY0 = SXY1;
SXY1 = SXY2;
SX2 = Lm_G1( F( (INT64)(INT32)OFX + ( (INT64)(INT16)IR1 * ( ( (UINT32)H << 16 ) / Lm_E( SZ3 ) ) ) ) >> 16 );
SY2 = Lm_G2( F( (INT64)(INT32)OFY + ( (INT64)(INT16)IR2 * ( ( (UINT32)H << 16 ) / Lm_E( SZ3 ) ) ) ) >> 16 );
MAC0 = F( (INT64)(INT32)DQB + ( (INT64)(INT16)DQA * ( ( (UINT32)H << 16 ) / Lm_E( SZ3 ) ) ) );
IR0 = Lm_H( (INT32)MAC0 >> 12 );
return;
}
break;
case 0x06:
GTELOG( "NCLIP" );
FLAG = 0;
MAC0 = F( (INT64)( SX0 * SY1 ) + ( SX1 * SY2 ) + ( SX2 * SY0 ) - ( SX0 * SY2 ) - ( SX1 * SY0 ) - ( SX2 * SY1 ) );
return;
case 0x0c:
GTELOG( "OP" );
FLAG = 0;
shift = 12 * GTE_SF( gteop );
lm = GTE_LM( gteop );
MAC1 = A1( ( (INT64) ( R22 * IR3 ) - ( R33 * IR2 ) ) >> shift );
MAC2 = A2( ( (INT64) ( R33 * IR1 ) - ( R11 * IR3 ) ) >> shift );
MAC3 = A3( ( (INT64) ( R11 * IR2 ) - ( R22 * IR1 ) ) >> shift );
IR1 = Lm_B1( MAC1, lm );
IR2 = Lm_B2( MAC2, lm );
IR3 = Lm_B3( MAC3, lm );
return;
case 0x10:
GTELOG( "DPCS" );
FLAG = 0;
shift = 12 * GTE_SF( gteop );
lm = GTE_LM( gteop );
MAC1 = ( ( R << 16 ) + ( IR0 * Lm_B1( A1( (INT64) RFC - ( R << 4 ) ) << ( 12 - shift ), 0 ) ) ) >> shift;
MAC2 = ( ( G << 16 ) + ( IR0 * Lm_B2( A2( (INT64) GFC - ( G << 4 ) ) << ( 12 - shift ), 0 ) ) ) >> shift;
MAC3 = ( ( B << 16 ) + ( IR0 * Lm_B3( A3( (INT64) BFC - ( B << 4 ) ) << ( 12 - shift ), 0 ) ) ) >> shift;
IR1 = Lm_B1( MAC1, lm );
IR2 = Lm_B2( MAC2, lm );
IR3 = Lm_B3( MAC3, lm );
RGB0 = RGB1;
RGB1 = RGB2;
CD2 = CODE;
R2 = Lm_C1( MAC1 >> 4 );
G2 = Lm_C2( MAC2 >> 4 );
B2 = Lm_C3( MAC3 >> 4 );
return;
case 0x11:
GTELOG( "INTPL" );
FLAG = 0;
shift = 12 * GTE_SF( gteop );
lm = GTE_LM( gteop );
MAC1 = ( ( IR1 << 12 ) + ( IR0 * Lm_B1( A1( (INT64) RFC - IR1 ) << ( 12 - shift ), 0 ) ) ) >> shift;
MAC2 = ( ( IR2 << 12 ) + ( IR0 * Lm_B2( A2( (INT64) GFC - IR2 ) << ( 12 - shift ), 0 ) ) ) >> shift;
MAC3 = ( ( IR3 << 12 ) + ( IR0 * Lm_B3( A3( (INT64) BFC - IR3 ) << ( 12 - shift ), 0 ) ) ) >> shift;
IR1 = Lm_B1( MAC1, lm );
IR2 = Lm_B2( MAC2, lm );
IR3 = Lm_B3( MAC3, lm );
RGB0 = RGB1;
RGB1 = RGB2;
CD2 = CODE;
R2 = Lm_C1( MAC1 >> 4 );
G2 = Lm_C2( MAC2 >> 4 );
B2 = Lm_C3( MAC3 >> 4 );
return;
case 0x12:
if( GTE_OP( gteop ) == 0x04 )
{
GTELOG( "MVMVA" );
shift = 12 * GTE_SF( gteop );
p_n_mx = p_p_n_mx[ GTE_MX( gteop ) ];
n_v = GTE_V( gteop );
if( n_v < 3 )
{
n_v1 = *p_n_vx[ n_v ];
n_v2 = *p_n_vy[ n_v ];
n_v3 = *p_n_vz[ n_v ];
}
else
{
n_v1 = IR1;
n_v2 = IR2;
n_v3 = IR3;
}
p_n_cv = p_p_n_cv[ GTE_CV( gteop ) ];
lm = GTE_LM( gteop );
FLAG = 0;
MAC1 = A1( ( ( (INT64)(INT32)*p_n_cv[ 0 ] << 12 ) + ( (INT16)*p_n_mx[ 0 ] * (INT16)n_v1 ) + ( (INT16)*p_n_mx[ 1 ] * (INT16)n_v2 ) + ( (INT16)*p_n_mx[ 2 ] * (INT16)n_v3 ) ) >> shift );
MAC2 = A2( ( ( (INT64)(INT32)*p_n_cv[ 1 ] << 12 ) + ( (INT16)*p_n_mx[ 3 ] * (INT16)n_v1 ) + ( (INT16)*p_n_mx[ 4 ] * (INT16)n_v2 ) + ( (INT16)*p_n_mx[ 5 ] * (INT16)n_v3 ) ) >> shift );
MAC3 = A3( ( ( (INT64)(INT32)*p_n_cv[ 2 ] << 12 ) + ( (INT16)*p_n_mx[ 6 ] * (INT16)n_v1 ) + ( (INT16)*p_n_mx[ 7 ] * (INT16)n_v2 ) + ( (INT16)*p_n_mx[ 8 ] * (INT16)n_v3 ) ) >> shift );
IR1 = Lm_B1( (INT32)MAC1, lm );
IR2 = Lm_B2( (INT32)MAC2, lm );
IR3 = Lm_B3( (INT32)MAC3, lm );
return;
}
break;
case 0x13:
if( gteop == 0x0e80413 )
{
GTELOG( "NCDS" );
FLAG = 0;
MAC1 = A1( ( ( (INT64)(INT16)L11 * (INT16)VX0 ) + ( (INT16)L12 * (INT16)VY0 ) + ( (INT16)L13 * (INT16)VZ0 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)(INT16)L21 * (INT16)VX0 ) + ( (INT16)L22 * (INT16)VY0 ) + ( (INT16)L23 * (INT16)VZ0 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)(INT16)L31 * (INT16)VX0 ) + ( (INT16)L32 * (INT16)VY0 ) + ( (INT16)L33 * (INT16)VZ0 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( ( (INT64)RBK << 12 ) + ( (INT16)LR1 * (INT16)IR1 ) + ( (INT16)LR2 * (INT16)IR2 ) + ( (INT16)LR3 * (INT16)IR3 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)GBK << 12 ) + ( (INT16)LG1 * (INT16)IR1 ) + ( (INT16)LG2 * (INT16)IR2 ) + ( (INT16)LG3 * (INT16)IR3 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)BBK << 12 ) + ( (INT16)LB1 * (INT16)IR1 ) + ( (INT16)LB2 * (INT16)IR2 ) + ( (INT16)LB3 * (INT16)IR3 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( ( ( (INT64)R << 4 ) * (INT16)IR1 ) + ( (INT16)IR0 * Lm_B1( (INT32)RFC - ( ( R * (INT16)IR1 ) >> 8 ), 0 ) ) ) >> 12 );
MAC2 = A2( ( ( ( (INT64)G << 4 ) * (INT16)IR2 ) + ( (INT16)IR0 * Lm_B2( (INT32)GFC - ( ( G * (INT16)IR2 ) >> 8 ), 0 ) ) ) >> 12 );
MAC3 = A3( ( ( ( (INT64)B << 4 ) * (INT16)IR3 ) + ( (INT16)IR0 * Lm_B3( (INT32)BFC - ( ( B * (INT16)IR3 ) >> 8 ), 0 ) ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
return;
}
break;
case 0x14:
if( gteop == 0x1280414 )
{
GTELOG( "CDP" );
FLAG = 0;
MAC1 = A1( ( ( (INT64)RBK << 12 ) + ( (INT16)LR1 * (INT16)IR1 ) + ( (INT16)LR2 * (INT16)IR2 ) + ( (INT16)LR3 * (INT16)IR3 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)GBK << 12 ) + ( (INT16)LG1 * (INT16)IR1 ) + ( (INT16)LG2 * (INT16)IR2 ) + ( (INT16)LG3 * (INT16)IR3 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)BBK << 12 ) + ( (INT16)LB1 * (INT16)IR1 ) + ( (INT16)LB2 * (INT16)IR2 ) + ( (INT16)LB3 * (INT16)IR3 ) ) >> 12 );
IR1 = Lm_B1( MAC1, 1 );
IR2 = Lm_B2( MAC2, 1 );
IR3 = Lm_B3( MAC3, 1 );
MAC1 = A1( ( ( ( (INT64)R << 4 ) * (INT16)IR1 ) + ( (INT16)IR0 * Lm_B1( (INT32)RFC - ( ( R * (INT16)IR1 ) >> 8 ), 0 ) ) ) >> 12 );
MAC2 = A2( ( ( ( (INT64)G << 4 ) * (INT16)IR2 ) + ( (INT16)IR0 * Lm_B2( (INT32)GFC - ( ( G * (INT16)IR2 ) >> 8 ), 0 ) ) ) >> 12 );
MAC3 = A3( ( ( ( (INT64)B << 4 ) * (INT16)IR3 ) + ( (INT16)IR0 * Lm_B3( (INT32)BFC - ( ( B * (INT16)IR3 ) >> 8 ), 0 ) ) ) >> 12 );
IR1 = Lm_B1( MAC1, 1 );
IR2 = Lm_B2( MAC2, 1 );
IR3 = Lm_B3( MAC3, 1 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
return;
}
break;
case 0x16:
if( gteop == 0x0f80416 )
{
GTELOG( "NCDT" );
FLAG = 0;
for( n_v = 0; n_v < 3; n_v++ )
{
MAC1 = A1( ( ( (INT64)(INT16)L11 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)L12 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)L13 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
MAC2 = A2( ( ( (INT64)(INT16)L21 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)L22 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)L23 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
MAC3 = A3( ( ( (INT64)(INT16)L31 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)L32 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)L33 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( ( (INT64)RBK << 12 ) + ( (INT16)LR1 * (INT16)IR1 ) + ( (INT16)LR2 * (INT16)IR2 ) + ( (INT16)LR3 * (INT16)IR3 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)GBK << 12 ) + ( (INT16)LG1 * (INT16)IR1 ) + ( (INT16)LG2 * (INT16)IR2 ) + ( (INT16)LG3 * (INT16)IR3 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)BBK << 12 ) + ( (INT16)LB1 * (INT16)IR1 ) + ( (INT16)LB2 * (INT16)IR2 ) + ( (INT16)LB3 * (INT16)IR3 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( ( ( (INT64)R << 4 ) * (INT16)IR1 ) + ( (INT16)IR0 * Lm_B1( (INT32)RFC - ( ( R * (INT16)IR1 ) >> 8 ), 0 ) ) ) >> 12 );
MAC2 = A2( ( ( ( (INT64)G << 4 ) * (INT16)IR2 ) + ( (INT16)IR0 * Lm_B2( (INT32)GFC - ( ( G * (INT16)IR2 ) >> 8 ), 0 ) ) ) >> 12 );
MAC3 = A3( ( ( ( (INT64)B << 4 ) * (INT16)IR3 ) + ( (INT16)IR0 * Lm_B3( (INT32)BFC - ( ( B * (INT16)IR3 ) >> 8 ), 0 ) ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
}
return;
}
break;
case 0x1b:
if( gteop == 0x108041b || gteop == 0x118041b )
{
GTELOG( "NCCS" );
FLAG = 0;
MAC1 = A1( ( ( (INT64)(INT16)L11 * (INT16)VX0 ) + ( (INT16)L12 * (INT16)VY0 ) + ( (INT16)L13 * (INT16)VZ0 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)(INT16)L21 * (INT16)VX0 ) + ( (INT16)L22 * (INT16)VY0 ) + ( (INT16)L23 * (INT16)VZ0 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)(INT16)L31 * (INT16)VX0 ) + ( (INT16)L32 * (INT16)VY0 ) + ( (INT16)L33 * (INT16)VZ0 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( ( (INT64)RBK << 12 ) + ( (INT16)LR1 * (INT16)IR1 ) + ( (INT16)LR2 * (INT16)IR2 ) + ( (INT16)LR3 * (INT16)IR3 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)GBK << 12 ) + ( (INT16)LG1 * (INT16)IR1 ) + ( (INT16)LG2 * (INT16)IR2 ) + ( (INT16)LG3 * (INT16)IR3 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)BBK << 12 ) + ( (INT16)LB1 * (INT16)IR1 ) + ( (INT16)LB2 * (INT16)IR2 ) + ( (INT16)LB3 * (INT16)IR3 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( (INT64)R * (INT16)IR1 ) >> 8 );
MAC2 = A2( ( (INT64)G * (INT16)IR2 ) >> 8 );
MAC3 = A3( ( (INT64)B * (INT16)IR3 ) >> 8 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
return;
}
break;
case 0x1c:
if( gteop == 0x138041c )
{
GTELOG( "CC" );
FLAG = 0;
MAC1 = A1( ( ( (INT64)RBK << 12 ) + ( (INT16)LR1 * (INT16)IR1 ) + ( (INT16)LR2 * (INT16)IR2 ) + ( (INT16)LR3 * (INT16)IR3 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)GBK << 12 ) + ( (INT16)LG1 * (INT16)IR1 ) + ( (INT16)LG2 * (INT16)IR2 ) + ( (INT16)LG3 * (INT16)IR3 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)BBK << 12 ) + ( (INT16)LB1 * (INT16)IR1 ) + ( (INT16)LB2 * (INT16)IR2 ) + ( (INT16)LB3 * (INT16)IR3 ) ) >> 12 );
IR1 = Lm_B1( MAC1, 1 );
IR2 = Lm_B2( MAC2, 1 );
IR3 = Lm_B3( MAC3, 1 );
MAC1 = A1( ( (INT64)R * (INT16)IR1 ) >> 8 );
MAC2 = A2( ( (INT64)G * (INT16)IR2 ) >> 8 );
MAC3 = A3( ( (INT64)B * (INT16)IR3 ) >> 8 );
IR1 = Lm_B1( MAC1, 1 );
IR2 = Lm_B2( MAC2, 1 );
IR3 = Lm_B3( MAC3, 1 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
return;
}
break;
case 0x1e:
if( gteop == 0x0c8041e )
{
GTELOG( "NCS" );
FLAG = 0;
MAC1 = A1( ( ( (INT64)(INT16)L11 * (INT16)VX0 ) + ( (INT16)L12 * (INT16)VY0 ) + ( (INT16)L13 * (INT16)VZ0 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)(INT16)L21 * (INT16)VX0 ) + ( (INT16)L22 * (INT16)VY0 ) + ( (INT16)L23 * (INT16)VZ0 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)(INT16)L31 * (INT16)VX0 ) + ( (INT16)L32 * (INT16)VY0 ) + ( (INT16)L33 * (INT16)VZ0 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( ( (INT64)RBK << 12 ) + ( (INT16)LR1 * (INT16)IR1 ) + ( (INT16)LR2 * (INT16)IR2 ) + ( (INT16)LR3 * (INT16)IR3 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)GBK << 12 ) + ( (INT16)LG1 * (INT16)IR1 ) + ( (INT16)LG2 * (INT16)IR2 ) + ( (INT16)LG3 * (INT16)IR3 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)BBK << 12 ) + ( (INT16)LB1 * (INT16)IR1 ) + ( (INT16)LB2 * (INT16)IR2 ) + ( (INT16)LB3 * (INT16)IR3 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
return;
}
break;
case 0x20:
if( gteop == 0x0d80420 )
{
GTELOG( "NCT" );
FLAG = 0;
for( n_v = 0; n_v < 3; n_v++ )
{
MAC1 = A1( ( ( (INT64)(INT16)L11 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)L12 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)L13 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
MAC2 = A2( ( ( (INT64)(INT16)L21 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)L22 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)L23 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
MAC3 = A3( ( ( (INT64)(INT16)L31 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)L32 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)L33 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( ( (INT64)RBK << 12 ) + ( (INT16)LR1 * (INT16)IR1 ) + ( (INT16)LR2 * (INT16)IR2 ) + ( (INT16)LR3 * (INT16)IR3 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)GBK << 12 ) + ( (INT16)LG1 * (INT16)IR1 ) + ( (INT16)LG2 * (INT16)IR2 ) + ( (INT16)LG3 * (INT16)IR3 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)BBK << 12 ) + ( (INT16)LB1 * (INT16)IR1 ) + ( (INT16)LB2 * (INT16)IR2 ) + ( (INT16)LB3 * (INT16)IR3 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
}
return;
}
break;
case 0x28:
GTELOG( "SQR" );
FLAG = 0;
shift = 12 * GTE_SF( gteop );
lm = GTE_LM( gteop );
MAC1 = A1( ( IR1 * IR1 ) >> shift );
MAC2 = A2( ( IR2 * IR2 ) >> shift );
MAC3 = A3( ( IR3 * IR3 ) >> shift );
IR1 = Lm_B1( MAC1, lm );
IR2 = Lm_B2( MAC2, lm );
IR3 = Lm_B3( MAC3, lm );
return;
// DCPL 0x29
case 0x2a:
if( gteop == 0x0f8002a )
{
GTELOG( "DPCT" );
FLAG = 0;
for( n_pass = 0; n_pass < 3; n_pass++ )
{
MAC1 = A1( ( ( (INT64)R0 << 16 ) + ( (INT64)(INT16)IR0 * ( Lm_B1( (INT32)RFC - ( R0 << 4 ), 0 ) ) ) ) >> 12 );
MAC2 = A2( ( ( (INT64)G0 << 16 ) + ( (INT64)(INT16)IR0 * ( Lm_B1( (INT32)GFC - ( G0 << 4 ), 0 ) ) ) ) >> 12 );
MAC3 = A3( ( ( (INT64)B0 << 16 ) + ( (INT64)(INT16)IR0 * ( Lm_B1( (INT32)BFC - ( B0 << 4 ), 0 ) ) ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 0 );
IR2 = Lm_B2( (INT32)MAC2, 0 );
IR3 = Lm_B3( (INT32)MAC3, 0 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
}
return;
}
break;
case 0x2d:
GTELOG( "AVSZ3" );
FLAG = 0;
mac0 = F( (INT64)( ZSF3 * SZ1 ) + ( ZSF3 * SZ2 ) + ( ZSF3 * SZ3 ) );
OTZ = Lm_D( mac0 >> 12 );
MAC0 = mac0;
return;
case 0x2e:
GTELOG( "AVSZ4" );
FLAG = 0;
mac0 = F( (INT64)( ZSF4 * SZ0 ) + ( ZSF4 * SZ1 ) + ( ZSF4 * SZ2 ) + ( ZSF4 * SZ3 ) );
OTZ = Lm_D( mac0 >> 12 );
MAC0 = mac0;
return;
case 0x30:
if( gteop == 0x0280030 )
{
GTELOG( "RTPT" );
FLAG = 0;
for( n_v = 0; n_v < 3; n_v++ )
{
MAC1 = A1( ( ( (INT64)(INT32)TRX << 12 ) + ( (INT16)R11 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)R12 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)R13 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
MAC2 = A2( ( ( (INT64)(INT32)TRY << 12 ) + ( (INT16)R21 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)R22 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)R23 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
MAC3 = A3( ( ( (INT64)(INT32)TRZ << 12 ) + ( (INT16)R31 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)R32 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)R33 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 0 );
IR2 = Lm_B2( (INT32)MAC2, 0 );
IR3 = Lm_B3( (INT32)MAC3, 0 );
SZ0 = SZ1;
SZ1 = SZ2;
SZ2 = SZ3;
SZ3 = Lm_D( (INT32)MAC3 );
SXY0 = SXY1;
SXY1 = SXY2;
SX2 = Lm_G1( F( ( (INT64)(INT32)OFX + ( (INT64)(INT16)IR1 * ( ( (UINT32)H << 16 ) / Lm_E( SZ3 ) ) ) ) >> 16 ) );
SY2 = Lm_G2( F( ( (INT64)(INT32)OFY + ( (INT64)(INT16)IR2 * ( ( (UINT32)H << 16 ) / Lm_E( SZ3 ) ) ) ) >> 16 ) );
MAC0 = F( (INT64)(INT32)DQB + ( (INT64)(INT16)DQA * ( ( (UINT32)H << 16 ) / Lm_E( SZ3 ) ) ) );
IR0 = Lm_H( (INT32)MAC0 >> 12 );
}
return;
}
break;
case 0x3d:
if( GTE_OP( gteop ) == 0x09 ||
GTE_OP( gteop ) == 0x19 )
{
GTELOG( "GPF" );
shift = 12 * GTE_SF( gteop );
FLAG = 0;
MAC1 = A1( ( (INT64)(INT16)IR0 * (INT16)IR1 ) >> shift );
MAC2 = A2( ( (INT64)(INT16)IR0 * (INT16)IR2 ) >> shift );
MAC3 = A3( ( (INT64)(INT16)IR0 * (INT16)IR3 ) >> shift );
IR1 = Lm_B1( (INT32)MAC1, 0 );
IR2 = Lm_B2( (INT32)MAC2, 0 );
IR3 = Lm_B3( (INT32)MAC3, 0 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
return;
}
break;
case 0x3e:
if( GTE_OP( gteop ) == 0x1a )
{
GTELOG( "GPL" );
shift = 12 * GTE_SF( gteop );
FLAG = 0;
MAC1 = A1( ( ( (INT64)(INT32)MAC1 << shift ) + ( (INT16)IR0 * (INT16)IR1 ) ) >> shift );
MAC2 = A2( ( ( (INT64)(INT32)MAC2 << shift ) + ( (INT16)IR0 * (INT16)IR2 ) ) >> shift );
MAC3 = A3( ( ( (INT64)(INT32)MAC3 << shift ) + ( (INT16)IR0 * (INT16)IR3 ) ) >> shift );
IR1 = Lm_B1( (INT32)MAC1, 0 );
IR2 = Lm_B2( (INT32)MAC2, 0 );
IR3 = Lm_B3( (INT32)MAC3, 0 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
return;
}
break;
case 0x3f:
if( gteop == 0x108043f ||
gteop == 0x118043f )
{
GTELOG( "NCCT" );
FLAG = 0;
for( n_v = 0; n_v < 3; n_v++ )
{
MAC1 = A1( ( ( (INT64)(INT16)L11 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)L12 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)L13 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
MAC2 = A2( ( ( (INT64)(INT16)L21 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)L22 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)L23 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
MAC3 = A3( ( ( (INT64)(INT16)L31 * (INT16)*p_n_vx[ n_v ] ) + ( (INT16)L32 * (INT16)*p_n_vy[ n_v ] ) + ( (INT16)L33 * (INT16)*p_n_vz[ n_v ] ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( ( (INT64)RBK << 12 ) + ( (INT16)LR1 * (INT16)IR1 ) + ( (INT16)LR2 * (INT16)IR2 ) + ( (INT16)LR3 * (INT16)IR3 ) ) >> 12 );
MAC2 = A2( ( ( (INT64)GBK << 12 ) + ( (INT16)LG1 * (INT16)IR1 ) + ( (INT16)LG2 * (INT16)IR2 ) + ( (INT16)LG3 * (INT16)IR3 ) ) >> 12 );
MAC3 = A3( ( ( (INT64)BBK << 12 ) + ( (INT16)LB1 * (INT16)IR1 ) + ( (INT16)LB2 * (INT16)IR2 ) + ( (INT16)LB3 * (INT16)IR3 ) ) >> 12 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
MAC1 = A1( ( (INT64)R * (INT16)IR1 ) >> 8 );
MAC2 = A2( ( (INT64)G * (INT16)IR2 ) >> 8 );
MAC3 = A3( ( (INT64)B * (INT16)IR3 ) >> 8 );
IR1 = Lm_B1( (INT32)MAC1, 1 );
IR2 = Lm_B2( (INT32)MAC2, 1 );
IR3 = Lm_B3( (INT32)MAC3, 1 );
CD0 = CD1;
CD1 = CD2;
CD2 = CODE;
R0 = R1;
R1 = R2;
R2 = Lm_C1( (INT32)MAC1 >> 4 );
G0 = G1;
G1 = G2;
G2 = Lm_C2( (INT32)MAC2 >> 4 );
B0 = B1;
B1 = B2;
B2 = Lm_C3( (INT32)MAC3 >> 4 );
}
return;
}
break;
}
popmessage( "unknown GTE op %08x", gteop );
logerror( "%08x: unknown GTE op %08x\n", mipscpu.pc, gteop );
mips_stop();
}
/**************************************************************************
* Generic set_info
**************************************************************************/
static void mips_set_info(UINT32 state, cpuinfo *info)
{
switch (state)
{
/* --- the following bits of info are set as 64-bit signed integers --- */
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ0: set_irq_line(MIPS_IRQ0, info->i); break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ1: set_irq_line(MIPS_IRQ1, info->i); break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ2: set_irq_line(MIPS_IRQ2, info->i); break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ3: set_irq_line(MIPS_IRQ3, info->i); break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ4: set_irq_line(MIPS_IRQ4, info->i); break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ5: set_irq_line(MIPS_IRQ5, info->i); break;
case CPUINFO_INT_PC: mips_set_pc( info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_PC: mips_set_pc( info->i ); break;
case CPUINFO_INT_SP: /* no stack */ break;
case CPUINFO_INT_REGISTER + MIPS_DELAYV: mipscpu.delayv = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_DELAYR: if( info->i <= MIPS_DELAYR_NOTPC ) mipscpu.delayr = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_HI: mipscpu.hi = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_LO: mipscpu.lo = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_BIU: mipscpu.biu = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R0: mipscpu.r[ 0 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R1: mipscpu.r[ 1 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R2: mipscpu.r[ 2 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R3: mipscpu.r[ 3 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R4: mipscpu.r[ 4 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R5: mipscpu.r[ 5 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R6: mipscpu.r[ 6 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R7: mipscpu.r[ 7 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R8: mipscpu.r[ 8 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R9: mipscpu.r[ 9 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R10: mipscpu.r[ 10 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R11: mipscpu.r[ 11 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R12: mipscpu.r[ 12 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R13: mipscpu.r[ 13 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R14: mipscpu.r[ 14 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R15: mipscpu.r[ 15 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R16: mipscpu.r[ 16 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R17: mipscpu.r[ 17 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R18: mipscpu.r[ 18 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R19: mipscpu.r[ 19 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R20: mipscpu.r[ 20 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R21: mipscpu.r[ 21 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R22: mipscpu.r[ 22 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R23: mipscpu.r[ 23 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R24: mipscpu.r[ 24 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R25: mipscpu.r[ 25 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R26: mipscpu.r[ 26 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R27: mipscpu.r[ 27 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R28: mipscpu.r[ 28 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R29: mipscpu.r[ 29 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R30: mipscpu.r[ 30 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_R31: mipscpu.r[ 31 ] = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R0: mips_set_cp0r( 0, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R1: mips_set_cp0r( 1, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R2: mips_set_cp0r( 2, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R3: mips_set_cp0r( 3, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R4: mips_set_cp0r( 4, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R5: mips_set_cp0r( 5, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R6: mips_set_cp0r( 6, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R7: mips_set_cp0r( 7, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R8: mips_set_cp0r( 8, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R9: mips_set_cp0r( 9, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R10: mips_set_cp0r( 10, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R11: mips_set_cp0r( 11, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R12: mips_set_cp0r( 12, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R13: mips_set_cp0r( 13, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R14: mips_set_cp0r( 14, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP0R15: mips_set_cp0r( 15, info->i ); break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR0: mipscpu.cp2dr[ 0 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR1: mipscpu.cp2dr[ 1 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR2: mipscpu.cp2dr[ 2 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR3: mipscpu.cp2dr[ 3 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR4: mipscpu.cp2dr[ 4 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR5: mipscpu.cp2dr[ 5 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR6: mipscpu.cp2dr[ 6 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR7: mipscpu.cp2dr[ 7 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR8: mipscpu.cp2dr[ 8 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR9: mipscpu.cp2dr[ 9 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR10: mipscpu.cp2dr[ 10 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR11: mipscpu.cp2dr[ 11 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR12: mipscpu.cp2dr[ 12 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR13: mipscpu.cp2dr[ 13 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR14: mipscpu.cp2dr[ 14 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR15: mipscpu.cp2dr[ 15 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR16: mipscpu.cp2dr[ 16 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR17: mipscpu.cp2dr[ 17 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR18: mipscpu.cp2dr[ 18 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR19: mipscpu.cp2dr[ 19 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR20: mipscpu.cp2dr[ 20 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR21: mipscpu.cp2dr[ 21 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR22: mipscpu.cp2dr[ 22 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR23: mipscpu.cp2dr[ 23 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR24: mipscpu.cp2dr[ 24 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR25: mipscpu.cp2dr[ 25 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR26: mipscpu.cp2dr[ 26 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR27: mipscpu.cp2dr[ 27 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR28: mipscpu.cp2dr[ 28 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR29: mipscpu.cp2dr[ 29 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR30: mipscpu.cp2dr[ 30 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR31: mipscpu.cp2dr[ 31 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR0: mipscpu.cp2cr[ 0 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR1: mipscpu.cp2cr[ 1 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR2: mipscpu.cp2cr[ 2 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR3: mipscpu.cp2cr[ 3 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR4: mipscpu.cp2cr[ 4 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR5: mipscpu.cp2cr[ 5 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR6: mipscpu.cp2cr[ 6 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR7: mipscpu.cp2cr[ 7 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR8: mipscpu.cp2cr[ 8 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR9: mipscpu.cp2cr[ 9 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR10: mipscpu.cp2cr[ 10 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR11: mipscpu.cp2cr[ 11 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR12: mipscpu.cp2cr[ 12 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR13: mipscpu.cp2cr[ 13 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR14: mipscpu.cp2cr[ 14 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR15: mipscpu.cp2cr[ 15 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR16: mipscpu.cp2cr[ 16 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR17: mipscpu.cp2cr[ 17 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR18: mipscpu.cp2cr[ 18 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR19: mipscpu.cp2cr[ 19 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR20: mipscpu.cp2cr[ 20 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR21: mipscpu.cp2cr[ 21 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR22: mipscpu.cp2cr[ 22 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR23: mipscpu.cp2cr[ 23 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR24: mipscpu.cp2cr[ 24 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR25: mipscpu.cp2cr[ 25 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR26: mipscpu.cp2cr[ 26 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR27: mipscpu.cp2cr[ 27 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR28: mipscpu.cp2cr[ 28 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR29: mipscpu.cp2cr[ 29 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR30: mipscpu.cp2cr[ 30 ].d = info->i; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR31: mipscpu.cp2cr[ 31 ].d = info->i; break;
}
}
/**************************************************************************
* Generic get_info
**************************************************************************/
static void mips_get_info(UINT32 state, cpuinfo *info)
{
switch (state)
{
/* --- the following bits of info are returned as 64-bit signed integers --- */
case CPUINFO_INT_CONTEXT_SIZE: info->i = sizeof(mipscpu); break;
case CPUINFO_INT_INPUT_LINES: info->i = 6; break;
case CPUINFO_INT_DEFAULT_IRQ_VECTOR: info->i = 0; break;
case CPUINFO_INT_ENDIANNESS: info->i = CPU_IS_LE; break;
case CPUINFO_INT_CLOCK_MULTIPLIER: info->i = 1; break;
case CPUINFO_INT_CLOCK_DIVIDER: info->i = 2 * 2; break;
case CPUINFO_INT_MIN_INSTRUCTION_BYTES: info->i = 4; break;
case CPUINFO_INT_MAX_INSTRUCTION_BYTES: info->i = 4; break;
case CPUINFO_INT_MIN_CYCLES: info->i = 1; break;
case CPUINFO_INT_MAX_CYCLES: info->i = 40; break;
case CPUINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_PROGRAM: info->i = 32; break;
case CPUINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_PROGRAM: info->i = 32; break;
case CPUINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_PROGRAM: info->i = 0; break;
case CPUINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_DATA: info->i = 0; break;
case CPUINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_DATA: info->i = 0; break;
case CPUINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_DATA: info->i = 0; break;
case CPUINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_IO: info->i = 0; break;
case CPUINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_IO: info->i = 0; break;
case CPUINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_IO: info->i = 0; break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ0: info->i = (mipscpu.cp0r[ CP0_CAUSE ] & 0x400) ? ASSERT_LINE : CLEAR_LINE; break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ1: info->i = (mipscpu.cp0r[ CP0_CAUSE ] & 0x800) ? ASSERT_LINE : CLEAR_LINE; break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ2: info->i = (mipscpu.cp0r[ CP0_CAUSE ] & 0x1000) ? ASSERT_LINE : CLEAR_LINE; break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ3: info->i = (mipscpu.cp0r[ CP0_CAUSE ] & 0x2000) ? ASSERT_LINE : CLEAR_LINE; break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ4: info->i = (mipscpu.cp0r[ CP0_CAUSE ] & 0x4000) ? ASSERT_LINE : CLEAR_LINE; break;
case CPUINFO_INT_INPUT_STATE + MIPS_IRQ5: info->i = (mipscpu.cp0r[ CP0_CAUSE ] & 0x8000) ? ASSERT_LINE : CLEAR_LINE; break;
case CPUINFO_INT_PREVIOUSPC: /* not implemented */ break;
case CPUINFO_INT_PC: info->i = mipscpu.pc; break;
case CPUINFO_INT_REGISTER + MIPS_PC: info->i = mipscpu.pc; break;
case CPUINFO_INT_SP:
/* because there is no hardware stack and the pipeline causes the cpu to execute the
instruction after a subroutine call before the subroutine is executed there is little
chance of cmd_step_over() in mamedbg.c working. */
info->i = 0; break;
case CPUINFO_INT_REGISTER + MIPS_DELAYV: info->i = mipscpu.delayv; break;
case CPUINFO_INT_REGISTER + MIPS_DELAYR: info->i = mipscpu.delayr; break;
case CPUINFO_INT_REGISTER + MIPS_HI: info->i = mipscpu.hi; break;
case CPUINFO_INT_REGISTER + MIPS_LO: info->i = mipscpu.lo; break;
case CPUINFO_INT_REGISTER + MIPS_BIU: info->i = mipscpu.biu; break;
case CPUINFO_INT_REGISTER + MIPS_R0: info->i = mipscpu.r[ 0 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R1: info->i = mipscpu.r[ 1 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R2: info->i = mipscpu.r[ 2 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R3: info->i = mipscpu.r[ 3 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R4: info->i = mipscpu.r[ 4 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R5: info->i = mipscpu.r[ 5 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R6: info->i = mipscpu.r[ 6 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R7: info->i = mipscpu.r[ 7 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R8: info->i = mipscpu.r[ 8 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R9: info->i = mipscpu.r[ 9 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R10: info->i = mipscpu.r[ 10 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R11: info->i = mipscpu.r[ 11 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R12: info->i = mipscpu.r[ 12 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R13: info->i = mipscpu.r[ 13 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R14: info->i = mipscpu.r[ 14 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R15: info->i = mipscpu.r[ 15 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R16: info->i = mipscpu.r[ 16 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R17: info->i = mipscpu.r[ 17 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R18: info->i = mipscpu.r[ 18 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R19: info->i = mipscpu.r[ 19 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R20: info->i = mipscpu.r[ 20 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R21: info->i = mipscpu.r[ 21 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R22: info->i = mipscpu.r[ 22 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R23: info->i = mipscpu.r[ 23 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R24: info->i = mipscpu.r[ 24 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R25: info->i = mipscpu.r[ 25 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R26: info->i = mipscpu.r[ 26 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R27: info->i = mipscpu.r[ 27 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R28: info->i = mipscpu.r[ 28 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R29: info->i = mipscpu.r[ 29 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R30: info->i = mipscpu.r[ 30 ]; break;
case CPUINFO_INT_REGISTER + MIPS_R31: info->i = mipscpu.r[ 31 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R0: info->i = mipscpu.cp0r[ 0 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R1: info->i = mipscpu.cp0r[ 1 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R2: info->i = mipscpu.cp0r[ 2 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R3: info->i = mipscpu.cp0r[ 3 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R4: info->i = mipscpu.cp0r[ 4 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R5: info->i = mipscpu.cp0r[ 5 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R6: info->i = mipscpu.cp0r[ 6 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R7: info->i = mipscpu.cp0r[ 7 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R8: info->i = mipscpu.cp0r[ 8 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R9: info->i = mipscpu.cp0r[ 9 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R10: info->i = mipscpu.cp0r[ 10 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R11: info->i = mipscpu.cp0r[ 11 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R12: info->i = mipscpu.cp0r[ 12 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R13: info->i = mipscpu.cp0r[ 13 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R14: info->i = mipscpu.cp0r[ 14 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP0R15: info->i = mipscpu.cp0r[ 15 ]; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR0: info->i = mipscpu.cp2dr[ 0 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR1: info->i = mipscpu.cp2dr[ 1 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR2: info->i = mipscpu.cp2dr[ 2 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR3: info->i = mipscpu.cp2dr[ 3 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR4: info->i = mipscpu.cp2dr[ 4 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR5: info->i = mipscpu.cp2dr[ 5 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR6: info->i = mipscpu.cp2dr[ 6 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR7: info->i = mipscpu.cp2dr[ 7 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR8: info->i = mipscpu.cp2dr[ 8 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR9: info->i = mipscpu.cp2dr[ 9 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR10: info->i = mipscpu.cp2dr[ 10 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR11: info->i = mipscpu.cp2dr[ 11 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR12: info->i = mipscpu.cp2dr[ 12 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR13: info->i = mipscpu.cp2dr[ 13 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR14: info->i = mipscpu.cp2dr[ 14 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR15: info->i = mipscpu.cp2dr[ 15 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR16: info->i = mipscpu.cp2dr[ 16 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR17: info->i = mipscpu.cp2dr[ 17 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR18: info->i = mipscpu.cp2dr[ 18 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR19: info->i = mipscpu.cp2dr[ 19 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR20: info->i = mipscpu.cp2dr[ 20 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR21: info->i = mipscpu.cp2dr[ 21 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR22: info->i = mipscpu.cp2dr[ 22 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR23: info->i = mipscpu.cp2dr[ 23 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR24: info->i = mipscpu.cp2dr[ 24 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR25: info->i = mipscpu.cp2dr[ 25 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR26: info->i = mipscpu.cp2dr[ 26 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR27: info->i = mipscpu.cp2dr[ 27 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR28: info->i = mipscpu.cp2dr[ 28 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR29: info->i = mipscpu.cp2dr[ 29 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR30: info->i = mipscpu.cp2dr[ 30 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2DR31: info->i = mipscpu.cp2dr[ 31 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR0: info->i = mipscpu.cp2cr[ 0 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR1: info->i = mipscpu.cp2cr[ 1 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR2: info->i = mipscpu.cp2cr[ 2 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR3: info->i = mipscpu.cp2cr[ 3 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR4: info->i = mipscpu.cp2cr[ 4 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR5: info->i = mipscpu.cp2cr[ 5 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR6: info->i = mipscpu.cp2cr[ 6 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR7: info->i = mipscpu.cp2cr[ 7 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR8: info->i = mipscpu.cp2cr[ 8 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR9: info->i = mipscpu.cp2cr[ 9 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR10: info->i = mipscpu.cp2cr[ 10 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR11: info->i = mipscpu.cp2cr[ 11 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR12: info->i = mipscpu.cp2cr[ 12 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR13: info->i = mipscpu.cp2cr[ 13 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR14: info->i = mipscpu.cp2cr[ 14 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR15: info->i = mipscpu.cp2cr[ 15 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR16: info->i = mipscpu.cp2cr[ 16 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR17: info->i = mipscpu.cp2cr[ 17 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR18: info->i = mipscpu.cp2cr[ 18 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR19: info->i = mipscpu.cp2cr[ 19 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR20: info->i = mipscpu.cp2cr[ 20 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR21: info->i = mipscpu.cp2cr[ 21 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR22: info->i = mipscpu.cp2cr[ 22 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR23: info->i = mipscpu.cp2cr[ 23 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR24: info->i = mipscpu.cp2cr[ 24 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR25: info->i = mipscpu.cp2cr[ 25 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR26: info->i = mipscpu.cp2cr[ 26 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR27: info->i = mipscpu.cp2cr[ 27 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR28: info->i = mipscpu.cp2cr[ 28 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR29: info->i = mipscpu.cp2cr[ 29 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR30: info->i = mipscpu.cp2cr[ 30 ].d; break;
case CPUINFO_INT_REGISTER + MIPS_CP2CR31: info->i = mipscpu.cp2cr[ 31 ].d; break;
/* --- the following bits of info are returned as pointers to data or functions --- */
case CPUINFO_PTR_SET_INFO: info->setinfo = mips_set_info; break;
case CPUINFO_PTR_GET_CONTEXT: info->getcontext = mips_get_context; break;
case CPUINFO_PTR_SET_CONTEXT: info->setcontext = mips_set_context; break;
case CPUINFO_PTR_INIT: info->init = mips_init; break;
case CPUINFO_PTR_RESET: info->reset = mips_reset; break;
case CPUINFO_PTR_EXIT: info->exit = mips_exit; break;
case CPUINFO_PTR_EXECUTE: info->execute = mips_execute; break;
case CPUINFO_PTR_BURN: info->burn = NULL; break;
#ifdef ENABLE_DEBUGGER
case CPUINFO_PTR_DISASSEMBLE: info->disassemble = mips_dasm; break;
#endif /* ENABLE_DEBUGGER */
case CPUINFO_PTR_INSTRUCTION_COUNTER: info->icount = &mips_ICount; break;
case CPUINFO_PTR_INTERNAL_MEMORY_MAP + ADDRESS_SPACE_PROGRAM: info->internal_map32 = address_map_psxcpu_internal_map; break;
case CPUINFO_PTR_INTERNAL_MEMORY_MAP + ADDRESS_SPACE_DATA: info->internal_map32 = 0; break;
case CPUINFO_PTR_INTERNAL_MEMORY_MAP + ADDRESS_SPACE_IO: info->internal_map32 = 0; break;
/* --- the following bits of info are returned as NULL-terminated strings --- */
case CPUINFO_STR_NAME: strcpy(info->s, "PSX CPU"); break;
case CPUINFO_STR_CORE_FAMILY: strcpy(info->s, "MIPS"); break;
case CPUINFO_STR_CORE_VERSION: strcpy(info->s, "2.0"); break;
case CPUINFO_STR_CORE_FILE: strcpy(info->s, __FILE__); break;
case CPUINFO_STR_CORE_CREDITS: strcpy(info->s, "Copyright 2008 smf"); break;
case CPUINFO_STR_FLAGS: strcpy(info->s, " "); break;
case CPUINFO_STR_REGISTER + MIPS_PC: sprintf( info->s, "pc :%08x", mipscpu.pc ); break;
case CPUINFO_STR_REGISTER + MIPS_DELAYV: sprintf( info->s, "delayv :%08x", mipscpu.delayv ); break;
case CPUINFO_STR_REGISTER + MIPS_DELAYR: sprintf( info->s, "delayr :%02x %s", mipscpu.delayr, delayn[ mipscpu.delayr ] ); break;
case CPUINFO_STR_REGISTER + MIPS_HI: sprintf( info->s, "hi :%08x", mipscpu.hi ); break;
case CPUINFO_STR_REGISTER + MIPS_LO: sprintf( info->s, "lo :%08x", mipscpu.lo ); break;
case CPUINFO_STR_REGISTER + MIPS_BIU: sprintf( info->s, "biu :%08x", mipscpu.biu ); break;
case CPUINFO_STR_REGISTER + MIPS_R0: sprintf( info->s, "zero :%08x", mipscpu.r[ 0 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R1: sprintf( info->s, "at :%08x", mipscpu.r[ 1 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R2: sprintf( info->s, "v0 :%08x", mipscpu.r[ 2 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R3: sprintf( info->s, "v1 :%08x", mipscpu.r[ 3 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R4: sprintf( info->s, "a0 :%08x", mipscpu.r[ 4 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R5: sprintf( info->s, "a1 :%08x", mipscpu.r[ 5 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R6: sprintf( info->s, "a2 :%08x", mipscpu.r[ 6 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R7: sprintf( info->s, "a3 :%08x", mipscpu.r[ 7 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R8: sprintf( info->s, "t0 :%08x", mipscpu.r[ 8 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R9: sprintf( info->s, "t1 :%08x", mipscpu.r[ 9 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R10: sprintf( info->s, "t2 :%08x", mipscpu.r[ 10 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R11: sprintf( info->s, "t3 :%08x", mipscpu.r[ 11 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R12: sprintf( info->s, "t4 :%08x", mipscpu.r[ 12 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R13: sprintf( info->s, "t5 :%08x", mipscpu.r[ 13 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R14: sprintf( info->s, "t6 :%08x", mipscpu.r[ 14 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R15: sprintf( info->s, "t7 :%08x", mipscpu.r[ 15 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R16: sprintf( info->s, "s0 :%08x", mipscpu.r[ 16 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R17: sprintf( info->s, "s1 :%08x", mipscpu.r[ 17 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R18: sprintf( info->s, "s2 :%08x", mipscpu.r[ 18 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R19: sprintf( info->s, "s3 :%08x", mipscpu.r[ 19 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R20: sprintf( info->s, "s4 :%08x", mipscpu.r[ 20 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R21: sprintf( info->s, "s5 :%08x", mipscpu.r[ 21 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R22: sprintf( info->s, "s6 :%08x", mipscpu.r[ 22 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R23: sprintf( info->s, "s7 :%08x", mipscpu.r[ 23 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R24: sprintf( info->s, "t8 :%08x", mipscpu.r[ 24 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R25: sprintf( info->s, "t9 :%08x", mipscpu.r[ 25 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R26: sprintf( info->s, "k0 :%08x", mipscpu.r[ 26 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R27: sprintf( info->s, "k1 :%08x", mipscpu.r[ 27 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R28: sprintf( info->s, "gp :%08x", mipscpu.r[ 28 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R29: sprintf( info->s, "sp :%08x", mipscpu.r[ 29 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R30: sprintf( info->s, "fp :%08x", mipscpu.r[ 30 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_R31: sprintf( info->s, "ra :%08x", mipscpu.r[ 31 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R0: sprintf( info->s, "!Index :%08x", mipscpu.cp0r[ 0 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R1: sprintf( info->s, "!Random :%08x", mipscpu.cp0r[ 1 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R2: sprintf( info->s, "!EntryLo:%08x", mipscpu.cp0r[ 2 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R3: sprintf( info->s, "BPC :%08x", mipscpu.cp0r[ 3 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R4: sprintf( info->s, "!Context:%08x", mipscpu.cp0r[ 4 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R5: sprintf( info->s, "BDA :%08x", mipscpu.cp0r[ 5 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R6: sprintf( info->s, "TAR :%08x", mipscpu.cp0r[ 6 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R7: sprintf( info->s, "DCIC :%08x", mipscpu.cp0r[ 7 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R8: sprintf( info->s, "BadA :%08x", mipscpu.cp0r[ 8 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R9: sprintf( info->s, "BDAM :%08x", mipscpu.cp0r[ 9 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R10: sprintf( info->s, "!EntryHi:%08x", mipscpu.cp0r[ 10 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R11: sprintf( info->s, "BPCM :%08x", mipscpu.cp0r[ 11 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R12: sprintf( info->s, "SR :%08x", mipscpu.cp0r[ 12 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R13: sprintf( info->s, "Cause :%08x", mipscpu.cp0r[ 13 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R14: sprintf( info->s, "EPC :%08x", mipscpu.cp0r[ 14 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP0R15: sprintf( info->s, "PRId :%08x", mipscpu.cp0r[ 15 ] ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR0: sprintf( info->s, "vxy0 :%08x", mipscpu.cp2dr[ 0 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR1: sprintf( info->s, "vz0 :%08x", mipscpu.cp2dr[ 1 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR2: sprintf( info->s, "vxy1 :%08x", mipscpu.cp2dr[ 2 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR3: sprintf( info->s, "vz1 :%08x", mipscpu.cp2dr[ 3 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR4: sprintf( info->s, "vxy2 :%08x", mipscpu.cp2dr[ 4 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR5: sprintf( info->s, "vz2 :%08x", mipscpu.cp2dr[ 5 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR6: sprintf( info->s, "rgb :%08x", mipscpu.cp2dr[ 6 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR7: sprintf( info->s, "otz :%08x", mipscpu.cp2dr[ 7 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR8: sprintf( info->s, "ir0 :%08x", mipscpu.cp2dr[ 8 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR9: sprintf( info->s, "ir1 :%08x", mipscpu.cp2dr[ 9 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR10: sprintf( info->s, "ir2 :%08x", mipscpu.cp2dr[ 10 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR11: sprintf( info->s, "ir3 :%08x", mipscpu.cp2dr[ 11 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR12: sprintf( info->s, "sxy0 :%08x", mipscpu.cp2dr[ 12 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR13: sprintf( info->s, "sxy1 :%08x", mipscpu.cp2dr[ 13 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR14: sprintf( info->s, "sxy2 :%08x", mipscpu.cp2dr[ 14 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR15: sprintf( info->s, "sxyp :%08x", mipscpu.cp2dr[ 15 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR16: sprintf( info->s, "sz0 :%08x", mipscpu.cp2dr[ 16 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR17: sprintf( info->s, "sz1 :%08x", mipscpu.cp2dr[ 17 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR18: sprintf( info->s, "sz2 :%08x", mipscpu.cp2dr[ 18 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR19: sprintf( info->s, "sz3 :%08x", mipscpu.cp2dr[ 19 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR20: sprintf( info->s, "rgb0 :%08x", mipscpu.cp2dr[ 20 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR21: sprintf( info->s, "rgb1 :%08x", mipscpu.cp2dr[ 21 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR22: sprintf( info->s, "rgb2 :%08x", mipscpu.cp2dr[ 22 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR23: sprintf( info->s, "res1 :%08x", mipscpu.cp2dr[ 23 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR24: sprintf( info->s, "mac0 :%08x", mipscpu.cp2dr[ 24 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR25: sprintf( info->s, "mac1 :%08x", mipscpu.cp2dr[ 25 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR26: sprintf( info->s, "mac2 :%08x", mipscpu.cp2dr[ 26 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR27: sprintf( info->s, "mac3 :%08x", mipscpu.cp2dr[ 27 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR28: sprintf( info->s, "irgb :%08x", mipscpu.cp2dr[ 28 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR29: sprintf( info->s, "orgb :%08x", mipscpu.cp2dr[ 29 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR30: sprintf( info->s, "lzcs :%08x", mipscpu.cp2dr[ 30 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2DR31: sprintf( info->s, "lzcr :%08x", mipscpu.cp2dr[ 31 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR0: sprintf( info->s, "r11r12 :%08x", mipscpu.cp2cr[ 0 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR1: sprintf( info->s, "r13r21 :%08x", mipscpu.cp2cr[ 1 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR2: sprintf( info->s, "r22r23 :%08x", mipscpu.cp2cr[ 2 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR3: sprintf( info->s, "r31r32 :%08x", mipscpu.cp2cr[ 3 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR4: sprintf( info->s, "r33 :%08x", mipscpu.cp2cr[ 4 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR5: sprintf( info->s, "trx :%08x", mipscpu.cp2cr[ 5 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR6: sprintf( info->s, "try :%08x", mipscpu.cp2cr[ 6 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR7: sprintf( info->s, "trz :%08x", mipscpu.cp2cr[ 7 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR8: sprintf( info->s, "l11l12 :%08x", mipscpu.cp2cr[ 8 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR9: sprintf( info->s, "l13l21 :%08x", mipscpu.cp2cr[ 9 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR10: sprintf( info->s, "l22l23 :%08x", mipscpu.cp2cr[ 10 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR11: sprintf( info->s, "l31l32 :%08x", mipscpu.cp2cr[ 11 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR12: sprintf( info->s, "l33 :%08x", mipscpu.cp2cr[ 12 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR13: sprintf( info->s, "rbk :%08x", mipscpu.cp2cr[ 13 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR14: sprintf( info->s, "gbk :%08x", mipscpu.cp2cr[ 14 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR15: sprintf( info->s, "bbk :%08x", mipscpu.cp2cr[ 15 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR16: sprintf( info->s, "lr1lr2 :%08x", mipscpu.cp2cr[ 16 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR17: sprintf( info->s, "lr31g1 :%08x", mipscpu.cp2cr[ 17 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR18: sprintf( info->s, "lg2lg3 :%08x", mipscpu.cp2cr[ 18 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR19: sprintf( info->s, "lb1lb2 :%08x", mipscpu.cp2cr[ 19 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR20: sprintf( info->s, "lb3 :%08x", mipscpu.cp2cr[ 20 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR21: sprintf( info->s, "rfc :%08x", mipscpu.cp2cr[ 21 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR22: sprintf( info->s, "gfc :%08x", mipscpu.cp2cr[ 22 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR23: sprintf( info->s, "bfc :%08x", mipscpu.cp2cr[ 23 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR24: sprintf( info->s, "ofx :%08x", mipscpu.cp2cr[ 24 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR25: sprintf( info->s, "ofy :%08x", mipscpu.cp2cr[ 25 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR26: sprintf( info->s, "h :%08x", mipscpu.cp2cr[ 26 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR27: sprintf( info->s, "dqa :%08x", mipscpu.cp2cr[ 27 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR28: sprintf( info->s, "dqb :%08x", mipscpu.cp2cr[ 28 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR29: sprintf( info->s, "zsf3 :%08x", mipscpu.cp2cr[ 29 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR30: sprintf( info->s, "zsf4 :%08x", mipscpu.cp2cr[ 30 ].d ); break;
case CPUINFO_STR_REGISTER + MIPS_CP2CR31: sprintf( info->s, "flag :%08x", mipscpu.cp2cr[ 31 ].d ); break;
}
}
#if (HAS_PSXCPU)
/**************************************************************************
* CPU-specific set_info
**************************************************************************/
void psxcpu_get_info(UINT32 state, cpuinfo *info)
{
switch (state)
{
/* --- the following bits of info are returned as NULL-terminated strings --- */
case CPUINFO_STR_NAME: strcpy(info->s, "PSX CPU"); break;
default:
mips_get_info(state, info);
break;
}
}
#endif
#if (HAS_CXD8661R)
void cxd8661r_get_info(UINT32 state, cpuinfo *info)
{
switch (state)
{
case CPUINFO_PTR_INTERNAL_MEMORY_MAP + ADDRESS_SPACE_PROGRAM: info->internal_map32 = address_map_cxd8661r_internal_map; break;
/* --- the following bits of info are returned as NULL-terminated strings --- */
case CPUINFO_STR_NAME: strcpy(info->s, "CXD8661R"); break;
default:
mips_get_info(state, info);
break;
}
}
#endif