RTL VHDL (xHDL)

This commit is contained in:
dj Apendix 2025-07-31 16:36:09 +03:00 committed by GitHub
parent fb547c4e93
commit 1335b5f10d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 596 additions and 0 deletions

View File

@ -0,0 +1,207 @@
-- Copyright (C) 1991-2013 Altera Corporation
-- Your use of Altera Corporation's design tools, logic functions
-- and other software and tools, and its AMPP partner logic
-- functions, and any output files from any of the foregoing
-- (including device programming or simulation files), and any
-- associated documentation or information are expressly subject
-- to the terms and conditions of the Altera Program License
-- Subscription Agreement, Altera MegaCore Function License
-- Agreement, or other applicable license agreement, including,
-- without limitation, that your use is for the sole purpose of
-- programming logic devices manufactured by Altera and sold by
-- Altera or its authorized distributors. Please refer to the
-- applicable agreement for further details.
--
-- This is a Quartus II output file. It is for reporting purposes only, and is
-- not intended for use as a Quartus II input file. This file cannot be used
-- to make Quartus II pin assignments - for instructions on how to make pin
-- assignments, please see Quartus II help.
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
-- NC : No Connect. This pin has no internal connection to the device.
-- DNU : Do Not Use. This pin MUST NOT be connected.
-- VCCINT : Dedicated power pin, which MUST be connected to VCC (3.3V).
-- VCCIO : Dedicated power pin, which MUST be connected to VCC
-- of its bank.
-- GND : Dedicated ground pin. Dedicated GND pins MUST be connected to GND.
-- It can also be used to report unused dedicated pins. The connection
-- on the board for unused dedicated pins depends on whether this will
-- be used in a future design. One example is device migration. When
-- using device migration, refer to the device pin-tables. If it is a
-- GND pin in the pin table or if it will not be used in a future design
-- for another purpose the it MUST be connected to GND. If it is an unused
-- dedicated pin, then it can be connected to a valid signal on the board
-- (low, high, or toggling) if that signal is required for a different
-- revision of the design.
-- GND+ : Unused input pin. It can also be used to report unused dual-purpose pins.
-- This pin should be connected to GND. It may also be connected to a
-- valid signal on the board (low, high, or toggling) if that signal
-- is required for a different revision of the design.
-- GND* : Unused I/O pin. Connect each pin marked GND* directly to GND
-- or leave it unconnected.
-- RESERVED : Unused I/O pin, which MUST be left unconnected.
-- RESERVED_INPUT : Pin is tri-stated and should be connected to the board.
-- RESERVED_INPUT_WITH_WEAK_PULLUP : Pin is tri-stated with internal weak pull-up resistor.
-- RESERVED_INPUT_WITH_BUS_HOLD : Pin is tri-stated with bus-hold circuitry.
-- RESERVED_OUTPUT_DRIVEN_HIGH : Pin is output driven high.
-- NON_MIGRATABLE: This pin cannot be migrated.
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
-- Pin directions (input, output or bidir) are based on device operating in user mode.
---------------------------------------------------------------------------------
Quartus II 64-Bit Version 13.0.1 Build 232 06/12/2013 Service Pack 1 SJ Web Edition
CHIP "divmmc" ASSIGNED TO AN: EPM3256ATC144-10
Pin Name/Usage : Location : Dir. : I/O Standard : Voltage : I/O Bank : User Assignment
-------------------------------------------------------------------------------------------------------------
A[15] : 1 : input : 3.3-V LVTTL : : : Y
A[14] : 2 : input : 3.3-V LVTTL : : : Y
GND : 3 : gnd : : : :
TDI : 4 : input : 3.3-V LVTTL : : : N
A[13] : 5 : input : 3.3-V LVTTL : : : Y
A[12] : 6 : input : 3.3-V LVTTL : : : Y
RESERVED_INPUT : 7 : : : : :
RESERVED_INPUT : 8 : : : : :
RESERVED_INPUT : 9 : : : : :
RESERVED_INPUT : 10 : : : : :
RESERVED_INPUT : 11 : : : : :
iorq : 12 : input : 3.3-V LVTTL : : : Y
GND : 13 : gnd : : : :
rd : 14 : input : 3.3-V LVTTL : : : Y
wr : 15 : input : 3.3-V LVTTL : : : Y
reset : 16 : input : 3.3-V LVTTL : : : Y
GND : 17 : gnd : : : :
romcs : 18 : output : 3.3-V LVTTL : : : Y
RESERVED_INPUT : 19 : : : : :
TMS : 20 : input : 3.3-V LVTTL : : : N
RESERVED_INPUT : 21 : : : : :
m1 : 22 : input : 3.3-V LVTTL : : : Y
RESERVED_INPUT : 23 : : : : :
VCCIO : 24 : power : : 3.3V : :
RESERVED_INPUT : 25 : : : : :
GND : 26 : gnd : : : :
RESERVED_INPUT : 27 : : : : :
RESERVED_INPUT : 28 : : : : :
RESERVED_INPUT : 29 : : : : :
romoe : 30 : output : 3.3-V LVTTL : : : Y
D[4] : 31 : bidir : 3.3-V LVTTL : : : Y
D[3] : 32 : bidir : 3.3-V LVTTL : : : Y
GND : 33 : gnd : : : :
RESERVED_INPUT : 34 : : : : :
RESERVED_INPUT : 35 : : : : :
mreq : 36 : input : 3.3-V LVTTL : : : Y
RESERVED_INPUT : 37 : : : : :
RESERVED_INPUT : 38 : : : : :
RESERVED_INPUT : 39 : : : : :
RESERVED_INPUT : 40 : : : : :
RESERVED_INPUT : 41 : : : : :
RESERVED_INPUT : 42 : : : : :
D[2] : 43 : bidir : 3.3-V LVTTL : : : Y
D[5] : 44 : bidir : 3.3-V LVTTL : : : Y
D[1] : 45 : bidir : 3.3-V LVTTL : : : Y
D[6] : 46 : bidir : 3.3-V LVTTL : : : Y
D[0] : 47 : bidir : 3.3-V LVTTL : : : Y
D[7] : 48 : bidir : 3.3-V LVTTL : : : Y
ramoe : 49 : output : 3.3-V LVTTL : : : Y
VCCIO : 50 : power : : 3.3V : :
VCCINT : 51 : power : : 3.3V : :
GND : 52 : gnd : : : :
A[0] : 53 : input : 3.3-V LVTTL : : : Y
A[1] : 54 : input : 3.3-V LVTTL : : : Y
A[10] : 55 : input : 3.3-V LVTTL : : : Y
A[2] : 56 : input : 3.3-V LVTTL : : : Y
GND : 57 : gnd : : : :
VCCINT : 58 : power : : 3.3V : :
GND : 59 : gnd : : : :
RESERVED_INPUT : 60 : : : : :
A[3] : 61 : input : 3.3-V LVTTL : : : Y
A[11] : 62 : input : 3.3-V LVTTL : : : Y
A[4] : 63 : input : 3.3-V LVTTL : : : Y
GND : 64 : gnd : : : :
A[9] : 65 : input : 3.3-V LVTTL : : : Y
A[5] : 66 : input : 3.3-V LVTTL : : : Y
A[8] : 67 : input : 3.3-V LVTTL : : : Y
A[6] : 68 : input : 3.3-V LVTTL : : : Y
RESERVED_INPUT : 69 : : : : :
RESERVED_INPUT : 70 : : : : :
RESERVED_INPUT : 71 : : : : :
RESERVED_INPUT : 72 : : : : :
VCCIO : 73 : power : : 3.3V : :
RESERVED_INPUT : 74 : : : : :
A[7] : 75 : input : 3.3-V LVTTL : : : Y
VCCIO : 76 : power : : 3.3V : :
GND : 77 : gnd : : : :
RESERVED_INPUT : 78 : : : : :
RESERVED_INPUT : 79 : : : : :
romwr : 80 : output : 3.3-V LVTTL : : : Y
bankout[1] : 81 : output : 3.3-V LVTTL : : : Y
bankout[3] : 82 : output : 3.3-V LVTTL : : : Y
bankout[5] : 83 : output : 3.3-V LVTTL : : : Y
ramwr : 84 : output : 3.3-V LVTTL : : : Y
GND : 85 : gnd : : : :
RESERVED_INPUT : 86 : : : : :
bankout[0] : 87 : output : 3.3-V LVTTL : : : Y
bankout[4] : 88 : output : 3.3-V LVTTL : : : Y
TCK : 89 : input : 3.3-V LVTTL : : : N
bankout[2] : 90 : output : 3.3-V LVTTL : : : Y
RESERVED_INPUT : 91 : : : : :
RESERVED_INPUT : 92 : : : : :
RESERVED_INPUT : 93 : : : : :
GND : 94 : gnd : : : :
VCCIO : 95 : power : : 3.3V : :
card[1] : 96 : output : 3.3-V LVTTL : : : Y
card[0] : 97 : output : 3.3-V LVTTL : : : Y
spi_clock : 98 : output : 3.3-V LVTTL : : : Y
spi_dataout : 99 : output : 3.3-V LVTTL : : : Y
spi_datain : 100 : input : 3.3-V LVTTL : : : Y
RESERVED_INPUT : 101 : : : : :
RESERVED_INPUT : 102 : : : : :
RESERVED_INPUT : 103 : : : : :
TDO : 104 : output : 3.3-V LVTTL : : : N
GND : 105 : gnd : : : :
RESERVED_INPUT : 106 : : : : :
RESERVED_INPUT : 107 : : : : :
RESERVED_INPUT : 108 : : : : :
RESERVED_INPUT : 109 : : : : :
RESERVED_INPUT : 110 : : : : :
RESERVED_INPUT : 111 : : : : :
RESERVED_INPUT : 112 : : : : :
RESERVED_INPUT : 113 : : : : :
GND : 114 : gnd : : : :
VCCIO : 115 : power : : 3.3V : :
RESERVED_INPUT : 116 : : : : :
RESERVED_INPUT : 117 : : : : :
RESERVED_INPUT : 118 : : : : :
RESERVED_INPUT : 119 : : : : :
RESERVED_INPUT : 120 : : : : :
RESERVED_INPUT : 121 : : : : :
RESERVED_INPUT : 122 : : : : :
VCCINT : 123 : power : : 3.3V : :
GND : 124 : gnd : : : :
clock : 125 : input : 3.3-V LVTTL : : : Y
GND+ : 126 : : : : :
GND+ : 127 : : : : :
GND+ : 128 : : : : :
GND : 129 : gnd : : : :
VCCINT : 130 : power : : 3.3V : :
RESERVED_INPUT : 131 : : : : :
RESERVED_INPUT : 132 : : : : :
RESERVED_INPUT : 133 : : : : :
RESERVED_INPUT : 134 : : : : :
GND : 135 : gnd : : : :
mapcondout : 136 : output : 3.3-V LVTTL : : : Y
poweron : 137 : input : 3.3-V LVTTL : : : Y
eprom : 138 : input : 3.3-V LVTTL : : : Y
RESERVED_INPUT : 139 : : : : :
RESERVED_INPUT : 140 : : : : :
RESERVED_INPUT : 141 : : : : :
RESERVED_INPUT : 142 : : : : :
RESERVED_INPUT : 143 : : : : :
VCCIO : 144 : power : : 3.3V : :

Binary file not shown.

View File

@ -0,0 +1,30 @@
# -------------------------------------------------------------------------- #
#
# Copyright (C) 1991-2013 Altera Corporation
# Your use of Altera Corporation's design tools, logic functions
# and other software and tools, and its AMPP partner logic
# functions, and any output files from any of the foregoing
# (including device programming or simulation files), and any
# associated documentation or information are expressly subject
# to the terms and conditions of the Altera Program License
# Subscription Agreement, Altera MegaCore Function License
# Agreement, or other applicable license agreement, including,
# without limitation, that your use is for the sole purpose of
# programming logic devices manufactured by Altera and sold by
# Altera or its authorized distributors. Please refer to the
# applicable agreement for further details.
#
# -------------------------------------------------------------------------- #
#
# Quartus II 64-Bit
# Version 13.0.1 Build 232 06/12/2013 Service Pack 1 SJ Web Edition
# Date created = 22:21:41 July 29, 2025
#
# -------------------------------------------------------------------------- #
QUARTUS_VERSION = "13.0"
DATE = "22:21:41 July 29, 2025"
# Revisions
PROJECT_REVISION = "divmmc"

View File

@ -0,0 +1,103 @@
# -------------------------------------------------------------------------- #
#
# Copyright (C) 1991-2013 Altera Corporation
# Your use of Altera Corporation's design tools, logic functions
# and other software and tools, and its AMPP partner logic
# functions, and any output files from any of the foregoing
# (including device programming or simulation files), and any
# associated documentation or information are expressly subject
# to the terms and conditions of the Altera Program License
# Subscription Agreement, Altera MegaCore Function License
# Agreement, or other applicable license agreement, including,
# without limitation, that your use is for the sole purpose of
# programming logic devices manufactured by Altera and sold by
# Altera or its authorized distributors. Please refer to the
# applicable agreement for further details.
#
# -------------------------------------------------------------------------- #
#
# Quartus II 64-Bit
# Version 13.0.1 Build 232 06/12/2013 Service Pack 1 SJ Web Edition
# Date created = 22:21:41 July 29, 2025
#
# -------------------------------------------------------------------------- #
#
# Notes:
#
# 1) The default values for assignments are stored in the file:
# divmmc_assignment_defaults.qdf
# If this file doesn't exist, see file:
# assignment_defaults.qdf
#
# 2) Altera recommends that you do not modify this file. This
# file is updated automatically by the Quartus II software
# and any changes you make may be lost or overwritten.
#
# -------------------------------------------------------------------------- #
set_global_assignment -name FAMILY MAX3000A
set_global_assignment -name DEVICE "EPM3256ATC144-10"
set_global_assignment -name TOP_LEVEL_ENTITY divmmc
set_global_assignment -name ORIGINAL_QUARTUS_VERSION "13.0 SP1"
set_global_assignment -name PROJECT_CREATION_TIME_DATE "22:21:41 JULY 29, 2025"
set_global_assignment -name LAST_QUARTUS_VERSION "13.0 SP1"
set_global_assignment -name VHDL_FILE divmmc.vhd
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output_files
set_global_assignment -name DEVICE_FILTER_PIN_COUNT 144
set_global_assignment -name ERROR_CHECK_FREQUENCY_DIVISOR "-1"
set_global_assignment -name MIN_CORE_JUNCTION_TEMP 0
set_global_assignment -name MAX_CORE_JUNCTION_TEMP 85
set_global_assignment -name MAX7000_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_location_assignment PIN_53 -to A[0]
set_location_assignment PIN_54 -to A[1]
set_location_assignment PIN_48 -to D[7]
set_location_assignment PIN_47 -to D[0]
set_location_assignment PIN_46 -to D[6]
set_location_assignment PIN_45 -to D[1]
set_location_assignment PIN_1 -to A[15]
set_location_assignment PIN_2 -to A[14]
set_location_assignment PIN_5 -to A[13]
set_location_assignment PIN_6 -to A[12]
set_location_assignment PIN_44 -to D[5]
set_location_assignment PIN_43 -to D[2]
set_location_assignment PIN_22 -to m1
set_location_assignment PIN_49 -to ramoe
set_location_assignment PIN_32 -to D[3]
set_location_assignment PIN_31 -to D[4]
set_location_assignment PIN_30 -to romoe
set_location_assignment PIN_18 -to romcs
set_location_assignment PIN_16 -to reset
set_location_assignment PIN_15 -to wr
set_location_assignment PIN_14 -to rd
set_location_assignment PIN_12 -to iorq
set_location_assignment PIN_90 -to bankout[2]
set_location_assignment PIN_96 -to card[1]
set_location_assignment PIN_97 -to card[0]
set_location_assignment PIN_55 -to A[10]
set_location_assignment PIN_56 -to A[2]
set_location_assignment PIN_61 -to A[3]
set_location_assignment PIN_62 -to A[11]
set_location_assignment PIN_63 -to A[4]
set_location_assignment PIN_65 -to A[9]
set_location_assignment PIN_98 -to spi_clock
set_location_assignment PIN_99 -to spi_dataout
set_location_assignment PIN_100 -to spi_datain
set_location_assignment PIN_81 -to bankout[1]
set_location_assignment PIN_68 -to A[6]
set_location_assignment PIN_80 -to romwr
set_location_assignment PIN_66 -to A[5]
set_location_assignment PIN_67 -to A[8]
set_location_assignment PIN_82 -to bankout[3]
set_location_assignment PIN_83 -to bankout[5]
set_location_assignment PIN_84 -to ramwr
set_location_assignment PIN_87 -to bankout[0]
set_location_assignment PIN_88 -to bankout[4]
set_location_assignment PIN_138 -to eprom
set_location_assignment PIN_137 -to poweron
set_location_assignment PIN_136 -to mapcondout
set_location_assignment PIN_75 -to A[7]
set_location_assignment PIN_125 -to clock
set_location_assignment PIN_36 -to mreq
set_global_assignment -name USE_CONFIGURATION_DEVICE ON
set_global_assignment -name RESERVE_ALL_UNUSED_PINS_NO_OUTPUT_GND "AS INPUT TRI-STATED"

View File

@ -0,0 +1,256 @@
----------------------------------------------------------------------------------
-- Inital version 1.0 for xc9572xl-vq64
-- Engineer: Mario Prato
-- Create Date: 10:07:18 11/22/2012
--
-- Modified for Altera EPM3256ATC144-10N
-- Redesign Date: 02:54:18 11/22/2020
--
-- Module Name: divmmc - Behavioral
-- Project Name: divmmc CPLD
-- Target Devices: EPM3256ATC144-10N
-- Tool versions: Quartus II 13.0SP1
-- Description: zx spectrum mmc sd interface
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- ============================================================================================================
entity divmmc is
Port (
-- z80 cpu signals
A : in std_logic_vector (15 downto 0);
D : inout std_logic_vector (7 downto 0);
iorq : in std_logic;
mreq : in std_logic;
wr : in std_logic;
rd : in std_logic;
m1 : in std_logic;
reset : in std_logic;
clock : in std_logic; -- Z80 Clock from ula chip (must be negated from edge connector signal)
-- ram/rom signals
romcs : out STD_LOGIC; -- 1 -> page out spectrum rom
romoe : out STD_LOGIC; -- eeprom oe pin
romwr : out STD_LOGIC; -- eeprom wr pin
ramoe : out STD_LOGIC; -- ram oe pin
ramwr : out STD_LOGIC; -- ram wr pin
bankout : out STD_LOGIC_VECTOR (5 downto 0); --ram bank no.
-- spi interface
card : out std_logic_vector(1 downto 0) :="11"; -- Cards CS
spi_clock : out std_logic :='1'; -- card clock
spi_dataout : out std_logic :='1'; -- card data in
spi_datain : in std_logic :='1'; -- card data out
-- various
poweron : in STD_LOGIC; -- low pulse on poweron
eprom : in STD_LOGIC; -- eprom jumper
mapcondout : out std_logic -- hi when divmmc mem paged in
);
end divmmc;
-- ============================================================================================================
architecture Behavioral of divmmc is
signal address : std_logic_vector(7 downto 0);
signal zxmmcio : std_logic;
signal divideio : std_logic;
signal bank : std_logic_vector (5 downto 0) := "000000";
signal mapterm : std_logic := '0';
signal mapcond : std_logic := '0';
signal conmem : std_logic := '0';
signal mapram : std_logic := '0';
signal automap : std_logic := '0';
signal map3DXX : std_logic;
signal map1F00 : std_logic;
signal bank3 : std_logic;
-- Transmission states
type transStates is (
IDLE, -- Wait for a WR or RD request on port 0xEB
SAMPLE, -- As there is an I/O request, prepare the transmission; sample the CPU databus if required
TRANSMIT); -- Transmission (SEND or RECEIVE)
signal transState : transStates := IDLE; -- Transmission state (initially IDLE)
signal TState : unsigned(3 downto 0) := (others => '0'); -- Counts the T-States during transmission
signal fromSDByte : std_logic_vector(7 downto 0) := (others => '1'); -- Byte received from SD
signal toSDByte : std_logic_vector(7 downto 0) := (others => '1'); -- Byte to send to SD
signal toCPUByte : std_logic_vector(7 downto 0) := (others => '1'); -- Byte seen by the CPU after a byte read
-- dichiarazioni constanti
constant divide_control_port : std_logic_vector(7 downto 0) := x"E3"; -- port %11100011
constant zxmmc_control_port : std_logic_vector(7 downto 0) := x"E7"; -- era la porta 31 nella zxmmc+
constant zxmmc_spi_port : std_logic_vector(7 downto 0) := x"EB"; -- era la porta 63 nella zxmmc+
attribute PWR_MODE: string;
attribute FAST: string;
attribute BUFG: string;
-- ============================================================================================================
begin
address <= A(7 downto 0);
bank3 <= '1' when bank ="000011" else '0';
-- ROM RAM read write signals
romoe <= rd or A(15) or A(14) or A(13) or (not conmem and mapram) or (not conmem and not automap) or (not conmem and eprom);
romwr <= '0' when wr ='0' and a(13)='0' and a(14)='0' and a(15)='0' and eprom='1' and conmem='1' else '1';
ramoe <= rd or A(15) or A(14) or ( not A(13) and not mapram) or ( not A(13) and conmem) or (not conmem and not automap) or (not conmem and eprom and not mapram);
ramwr <= wr or A(15) or A(14) or not a(13) or (not conmem and mapram and bank3 ) or (not conmem and not automap) or (not conmem and eprom and not mapram);
romcs <= '1' when ((automap and not eprom) or (automap and mapram) or conmem )='1' else '0' ; -- RDR
-- ============================================================================================================
-- Divide Automapping logic
mapterm <= '1' when A(15 downto 0) = x"0000" or
A(15 downto 0) = x"0008" or
A(15 downto 0) = x"0038" or
A(15 downto 0) = x"0066" or
A(15 downto 0) = x"04c6" or
A(15 downto 0) = x"0562" else '0';
map3DXX <= '1' when A(15 downto 8) = "00111101" else '0'; -- mappa 3D00 - 3DFF
map1F00 <= '0' when A(15 downto 3) = "0001111111111" else '1'; -- 1ff8 - 1fff
-- ============================================================================================================
process(mreq)
begin
if falling_edge(mreq) then
if m1='0' then
mapcond <= mapterm or map3DXX or (mapcond and map1F00);
automap <= mapcond or map3DXX;
end if;
end if;
end process;
mapcondout <= mapcond;
-- ============================================================================================================
-- divide control port
divideio <='0' when iorq='0' and wr='0' and M1='1' and address = divide_control_port else '1';
process(divideio,poweron)
begin
-- if poweron ='0' then -- originally by M.Prato
if poweron ='0' or reset = '0' then -- patched by valerium
bank <= "000000";
mapram <= '0';
conmem <= '0';
elsif rising_edge(divideio) then
bank(5 downto 0) <= D(5 downto 0);
mapram <= D(6) or mapram;
conmem <= D(7);
end if;
end process;
-- ============================================================================================================
-- ram banks
bankout(0) <= bank(0) or not A(13);
bankout(1) <= bank(1) or not A(13);
bankout(2) <= bank(2) and A(13);
bankout(3) <= bank(3) and A(13);
bankout(4) <= bank(4) and A(13);
bankout(5) <= bank(5) and A(13);
-- ============================================================================================================
-- SD CS signal management
zxmmcio <= '0' when address = zxmmc_control_port and iorq='0' and m1='1' and wr ='0' else '1';
process(reset, zxmmcio)
begin
if reset = '0' then
card(0) <= '1';
card(1) <= '1';
elsif rising_edge(zxmmcio) then
card(0) <= D(0);
card(1) <= D(1);
end if;
end process;
-- ============================================================================================================
-- spi transmission/reception
-- Update transmission state
process(clock, reset)
begin
if reset = '0' then
transState <= IDLE;
TState <= (others => '0');
fromSDByte <= (others => '1');
toSDByte <= (others => '1');
toCPUByte <= (others => '1');
elsif falling_edge(clock) then
case transState is
when IDLE => -- Intercept a new transmission request (port 0x3F)
if address = zxmmc_spi_port and iorq='0' and m1='1' then -- If there is a transmission request, prepare to SAMPLE the databus
transState <= SAMPLE;
end if;
when SAMPLE =>
if wr = '0' then -- If it is a SEND request, sample the CPU data bus
toSDByte <= D;
end if;
transState <= TRANSMIT; -- then start the transmission
when TRANSMIT =>
TState <= TState + 1;
if TState < 15 then
if TState(0) = '1' then
toSDByte <= toSDByte(6 downto 0)&'1';
fromSDByte <= fromSDByte(6 downto 0)& spi_datain;
end if;
else
if TState = 15 then -- transmission is completed; intercept if there is a new transmission request
if address = zxmmc_spi_port and iorq='0' and m1='1'and wr='0' then
toSDByte <= D;
transState <= TRANSMIT;
else -- else we'll go in IDLE state.
transState <= IDLE;
-- TState <= "0000";
end if;
toCPUByte <= fromSDByte(6 downto 0)& spi_datain;
end if;
end if;
when OTHERS =>
null;
end case;
end if;
-- SPI SD Card pins
SPI_clock <= TState(0);
spi_dataout <= toSDByte(7);
end process;
D <= toCPUByte when (address = zxmmc_spi_port) and (iorq = '0') and (rd = '0') and m1='1' else "ZZZZZZZZ";
-- ============================================================================================================
end Behavioral;