c6280.cpp : Fix noise, Volume calculation, Interface behavior related to manual, Modernize save states (#6092)

* c6280.cpp : Fix noise, Volume calculation, Interface behavior related to manual, Modernize save states
Fix spacings/Namings, Use correct / shorter type values, Add notes, Reduce unnecessary lines
reference : https://archive.org/stream/PCEDev/HuC6280%20-%20CMOS%20Programmable%20Sound%20Generator%20Manual

* c6280.cpp : Use shared index between wavefrom writing and sound playback, Add notes

* c6280.cpp : Add notes
This commit is contained in:
cam900 2019-12-25 05:36:18 +09:00 committed by R. Belmont
parent 6b13952587
commit df7fab4133
2 changed files with 162 additions and 132 deletions

View File

@ -24,12 +24,7 @@
- Verify LFO frequency from real hardware.
- Add shared index for waveform playback and sample writes. Almost every
game will reset the index prior to playback so this isn't an issue.
- While the noise emulation is complete, the data for the pseudo-random
bitstream is calculated by machine().rand() and is not a representation of what
the actual hardware does.
- Noise generating algorithm is shared in all channels?
For some background on Hudson Soft's C62 chipset:
@ -45,75 +40,65 @@
#include "emu.h"
#include "c6280.h"
#include <algorithm>
void c6280_device::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples)
{
static const int scale_tab[] = {
0x00, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
0x10, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1D, 0x1F
};
int lmal = (m_balance >> 4) & 0x0F;
int rmal = (m_balance >> 0) & 0x0F;
lmal = scale_tab[lmal];
rmal = scale_tab[rmal];
const u8 lmal = (m_balance >> 4) & 0x0f;
const u8 rmal = (m_balance >> 0) & 0x0f;
/* Clear buffer */
for (int i = 0; i < samples; i++)
{
outputs[0][i] = 0;
outputs[1][i] = 0;
}
std::fill_n(&outputs[0][0], samples, 0);
std::fill_n(&outputs[1][0], samples, 0);
for (int ch = 0; ch < 6; ch++)
{
channel *chan = &m_channel[ch];
/* Only look at enabled channels */
if(m_channel[ch].m_control & 0x80)
if (chan->control & 0x80)
{
int lal = (m_channel[ch].m_balance >> 4) & 0x0F;
int ral = (m_channel[ch].m_balance >> 0) & 0x0F;
int al = m_channel[ch].m_control & 0x1F;
const u8 lal = (chan->balance >> 4) & 0x0f;
const u8 ral = (chan->balance >> 0) & 0x0f;
const u8 al = (chan->control >> 1) & 0x0f; // only high 4 bit is affected to calculating volume, low 1 bit is independent
lal = scale_tab[lal];
ral = scale_tab[ral];
// verified from both patent and manual
int vll = (0xf - lmal) + (0xf - al) + (0xf - lal);
if (vll > 0xf) vll = 0xf;
/* Calculate volume just as the patent says */
int vll = (0x1F - lal) + (0x1F - al) + (0x1F - lmal);
if(vll > 0x1F) vll = 0x1F;
int vlr = (0xf - rmal) + (0xf - al) + (0xf - ral);
if (vlr > 0xf) vlr = 0xf;
int vlr = (0x1F - ral) + (0x1F - al) + (0x1F - rmal);
if(vlr > 0x1F) vlr = 0x1F;
vll = m_volume_table[vll];
vlr = m_volume_table[vlr];
vll = m_volume_table[(vll << 1) | (chan->control & 1)];
vlr = m_volume_table[(vlr << 1) | (chan->control & 1)];
/* Check channel mode */
if((ch >= 4) && (m_channel[ch].m_noise_control & 0x80))
if ((ch >= 4) && (chan->noise_control & 0x80))
{
/* Noise mode */
uint32_t step = (m_channel[ch].m_noise_control & 0x1F) ^ 0x1F;
const u32 step = (chan->noise_control & 0x1f) ^ 0x1f;
for (int i = 0; i < samples; i += 1)
{
static int data = 0;
if(m_channel[ch].m_noise_counter <= 0)
s16 data = BIT(chan->noise_seed, 0) ? 0x1f : 0;
chan->noise_counter--;
if (chan->noise_counter <= 0)
{
m_channel[ch].m_noise_counter = step << 2;
data = (machine().rand() & 1) ? 0x1F : 0;
chan->noise_counter = step << 6; // 32 * 2
const u32 seed = chan->noise_seed;
// based on Charles MacDonald's research
chan->noise_seed = (seed >> 1) | ((BIT(seed, 0) ^ BIT(seed, 1) ^ BIT(seed, 11) ^ BIT(seed, 12) ^ BIT(seed, 17)) << 17);
}
m_channel[ch].m_noise_counter--;
outputs[0][i] += (int16_t)(vll * (data - 16));
outputs[1][i] += (int16_t)(vlr * (data - 16));
outputs[0][i] += (s16)(vll * (data - 16));
outputs[1][i] += (s16)(vlr * (data - 16));
}
}
else
if(m_channel[ch].m_control & 0x40)
if (chan->control & 0x40)
{
/* DDA mode */
for (int i = 0; i < samples; i++)
{
outputs[0][i] += (int16_t)(vll * (m_channel[ch].m_dda - 16));
outputs[1][i] += (int16_t)(vlr * (m_channel[ch].m_dda - 16));
outputs[0][i] += (s16)(vll * (chan->dda - 16));
outputs[1][i] += (s16)(vlr * (chan->dda - 16));
}
}
else
@ -123,56 +108,55 @@ void c6280_device::sound_stream_update(sound_stream &stream, stream_sample_t **i
if (ch == 0) // CH 0 only, CH 1 is muted
{
/* Waveform mode with LFO */
uint16_t lfo_step = m_channel[1].m_frequency ? m_channel[1].m_frequency : 0x1000;
channel *lfo_srcchan = &m_channel[1];
channel *lfo_dstchan = &m_channel[0];
const u16 lfo_step = lfo_srcchan->frequency ? lfo_srcchan->frequency : 0x1000;
for (int i = 0; i < samples; i += 1)
{
int32_t step = m_channel[0].m_frequency ? m_channel[0].m_frequency : 0x1000;
s32 step = lfo_dstchan->frequency ? lfo_dstchan->frequency : 0x1000;
if (m_lfo_control & 0x80) // reset LFO
{
m_channel[1].m_tick = lfo_step * m_lfo_frequency;
m_channel[1].m_counter = 0;
lfo_srcchan->tick = lfo_step * m_lfo_frequency;
lfo_srcchan->index = 0;
}
else
{
int lfooffset = m_channel[1].m_counter;
m_channel[1].m_tick--;
if (m_channel[1].m_tick <= 0)
const s16 lfo_data = lfo_srcchan->waveform[lfo_srcchan->index];
lfo_srcchan->tick--;
if (lfo_srcchan->tick <= 0)
{
m_channel[1].m_tick = lfo_step * m_lfo_frequency; // TODO : multiply? verify this from real hardware.
m_channel[1].m_counter = (m_channel[1].m_counter + 1) & 0x1f;
lfo_srcchan->tick = lfo_step * m_lfo_frequency; // verified from manual
lfo_srcchan->index = (lfo_srcchan->index + 1) & 0x1f;
}
int16_t lfo_data = m_channel[1].m_waveform[lfooffset];
step += ((lfo_data - 16) << (((m_lfo_control & 3)-1)<<1)); // verified from patent, TODO : same in real hardware?
step += ((lfo_data - 16) << (((m_lfo_control & 3)-1)<<1)); // verified from manual
}
int offset = m_channel[0].m_counter;
m_channel[0].m_tick--;
if (m_channel[0].m_tick <= 0)
const s16 data = lfo_dstchan->waveform[lfo_dstchan->index];
lfo_dstchan->tick--;
if (lfo_dstchan->tick <= 0)
{
m_channel[0].m_tick = step;
m_channel[0].m_counter = (m_channel[0].m_counter + 1) & 0x1f;
lfo_dstchan->tick = step;
lfo_dstchan->index = (lfo_dstchan->index + 1) & 0x1f;
}
int16_t data = m_channel[0].m_waveform[offset];
outputs[0][i] += (int16_t)(vll * (data - 16));
outputs[1][i] += (int16_t)(vlr * (data - 16));
outputs[0][i] += (s16)(vll * (data - 16));
outputs[1][i] += (s16)(vlr * (data - 16));
}
}
}
else
{
/* Waveform mode */
uint32_t step = m_channel[ch].m_frequency ? m_channel[ch].m_frequency : 0x1000;
const u32 step = chan->frequency ? chan->frequency : 0x1000;
for (int i = 0; i < samples; i += 1)
{
int offset = m_channel[ch].m_counter;
m_channel[ch].m_tick--;
if (m_channel[ch].m_tick <= 0)
const s16 data = chan->waveform[chan->index];
chan->tick--;
if (chan->tick <= 0)
{
m_channel[ch].m_tick = step;
m_channel[ch].m_counter = (m_channel[ch].m_counter + 1) & 0x1f;
chan->tick = step;
chan->index = (chan->index + 1) & 0x1f;
}
int16_t data = m_channel[ch].m_waveform[offset];
outputs[0][i] += (int16_t)(vll * (data - 16));
outputs[1][i] += (int16_t)(vlr * (data - 16));
outputs[0][i] += (s16)(vll * (data - 16));
outputs[1][i] += (s16)(vlr * (data - 16));
}
}
}
@ -185,6 +169,50 @@ void c6280_device::sound_stream_update(sound_stream &stream, stream_sample_t **i
/* MAME specific code */
/*--------------------------------------------------------------------------*/
/* Write Register Layout
76543210
00 -----xxx Channel Select
-----000 Channel 0
-----001 Channel 1
-----010 Channel 2
-----011 Channel 3
-----100 Channel 4
-----101 Channel 5
01 xxxx---- Overall Left Volume
----xxxx Overall Right Volume
02 xxxxxxxx Frequency (Low 8 bits)
03 ----xxxx Frequency (High 4 bits)
04 x------- Channel Enable
-x------ Direct D/A
00------ Write Data
01------ Reset Counter
10------ Mixing (Sound Output)
11------ Direct D/A
---xxxxx Channel Master Volume
05 xxxx---- Channel Left Volume
----xxxx Channel Right Volume
06 ---xxxxx Waveform Data
07 x------- Noise Enable (channel 5, 6 only)
---xxxxx Noise Frequency ^ 0x1f
08 xxxxxxxx LFO Frequency
09 x------- LFO Reset
------xx LFO Control
------00 LFO off
------01 Direct Addition
------10 2 bit Shift Addition
------11 4 bit Shift Addition
*/
WRITE8_MEMBER( c6280_device::c6280_w )
{
channel *chan = &m_channel[m_select];
@ -192,7 +220,7 @@ WRITE8_MEMBER( c6280_device::c6280_w )
/* Update stream */
m_stream->update();
switch(offset & 0x0F)
switch (offset & 0x0f)
{
case 0x00: /* Channel select */
m_select = data & 0x07;
@ -203,59 +231,50 @@ WRITE8_MEMBER( c6280_device::c6280_w )
break;
case 0x02: /* Channel frequency (LSB) */
chan->m_frequency = (chan->m_frequency & 0x0F00) | data;
chan->m_frequency &= 0x0FFF;
chan->frequency = (chan->frequency & 0x0f00) | data;
break;
case 0x03: /* Channel frequency (MSB) */
chan->m_frequency = (chan->m_frequency & 0x00FF) | (data << 8);
chan->m_frequency &= 0x0FFF;
chan->frequency = (chan->frequency & 0x00ff) | ((data << 8) & 0x0f00);
break;
case 0x04: /* Channel control (key-on, DDA mode, volume) */
/* 1-to-0 transition of DDA bit resets waveform index */
if((chan->m_control & 0x40) && ((data & 0x40) == 0))
if ((chan->control & 0x40) && ((data & 0x40) == 0))
{
chan->m_index = 0;
chan->index = 0;
}
if(((chan->m_control & 0x80) == 0) && (data & 0x80))
if (((chan->control & 0x80) == 0) && (data & 0x80))
{
chan->m_tick = chan->m_frequency;
chan->tick = chan->frequency;
}
chan->m_control = data;
chan->control = data;
break;
case 0x05: /* Channel balance */
chan->m_balance = data;
chan->balance = data;
break;
case 0x06: /* Channel waveform data */
switch(chan->m_control & 0xC0)
switch (chan->control & 0x40)
{
case 0x00:
chan->m_waveform[chan->m_index & 0x1F] = data & 0x1F;
chan->m_index = (chan->m_index + 1) & 0x1F;
case 0x00: // Waveform
chan->waveform[chan->index & 0x1f] = data & 0x1f;
if (!(chan->control & 0x80)) // TODO : wave pointer is increased at writing data when sound playback is off??
chan->index = (chan->index + 1) & 0x1f;
break;
case 0x40:
break;
case 0x80:
chan->m_waveform[chan->m_index & 0x1F] = data & 0x1F;
chan->m_index = (chan->m_index + 1) & 0x1F;
break;
case 0xC0:
chan->m_dda = data & 0x1F;
case 0x40: // Direct D/A
chan->dda = data & 0x1f;
break;
}
break;
case 0x07: /* Noise control (enable, frequency) */
chan->m_noise_control = data;
chan->noise_control = data;
break;
case 0x08: /* LFO frequency */
@ -273,7 +292,7 @@ WRITE8_MEMBER( c6280_device::c6280_w )
DEFINE_DEVICE_TYPE(C6280, c6280_device, "c6280", "Hudson Soft HuC6280 PSG")
c6280_device::c6280_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
c6280_device::c6280_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock)
: device_t(mconfig, C6280, tag, owner, clock)
, device_sound_interface(mconfig, *this)
{
@ -305,28 +324,37 @@ void c6280_device::device_start()
/* Make volume table */
/* PSG has 48dB volume range spread over 32 steps */
double step = 48.0 / 32.0;
for (int i = 0; i < 31; i++)
for (int i = 0; i < 30; i++)
{
m_volume_table[i] = (uint16_t)level;
m_volume_table[i] = (u16)level;
level /= pow(10.0, step / 20.0);
}
m_volume_table[31] = 0;
m_volume_table[30] = m_volume_table[31] = 0;
save_item(NAME(m_select));
save_item(NAME(m_balance));
save_item(NAME(m_lfo_frequency));
save_item(NAME(m_lfo_control));
for (int chan = 0; chan < 8; chan++)
save_item(STRUCT_MEMBER(m_channel, frequency));
save_item(STRUCT_MEMBER(m_channel, control));
save_item(STRUCT_MEMBER(m_channel, balance));
save_item(STRUCT_MEMBER(m_channel, waveform));
save_item(STRUCT_MEMBER(m_channel, index));
save_item(STRUCT_MEMBER(m_channel, dda));
save_item(STRUCT_MEMBER(m_channel, noise_control));
save_item(STRUCT_MEMBER(m_channel, noise_counter));
save_item(STRUCT_MEMBER(m_channel, noise_seed));
save_item(STRUCT_MEMBER(m_channel, tick));
}
void c6280_device::device_reset()
{
for (int ch = 0; ch < 6; ch++)
{
save_item(NAME(m_channel[chan].m_frequency), chan);
save_item(NAME(m_channel[chan].m_control), chan);
save_item(NAME(m_channel[chan].m_balance), chan);
save_item(NAME(m_channel[chan].m_waveform), chan);
save_item(NAME(m_channel[chan].m_index), chan);
save_item(NAME(m_channel[chan].m_dda), chan);
save_item(NAME(m_channel[chan].m_noise_control), chan);
save_item(NAME(m_channel[chan].m_noise_counter), chan);
save_item(NAME(m_channel[chan].m_counter), chan);
save_item(NAME(m_channel[chan].m_tick), chan);
channel *chan = &m_channel[ch];
chan->index = 0;
if (ch >= 4)
chan->noise_seed = 1;
}
}

View File

@ -10,7 +10,7 @@ class c6280_device : public device_t, public device_sound_interface
public:
static constexpr feature_type imperfect_features() { return feature::SOUND; } // Incorrect / Not verified noise / LFO output
c6280_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock);
c6280_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock);
// write only
DECLARE_WRITE8_MEMBER( c6280_w );
@ -18,6 +18,7 @@ public:
protected:
// device-level overrides
virtual void device_start() override;
virtual void device_reset() override;
virtual void device_clock_changed() override;
// sound stream update overrides
@ -25,26 +26,27 @@ protected:
private:
struct channel {
uint16_t m_frequency;
uint8_t m_control;
uint8_t m_balance;
uint8_t m_waveform[32];
uint8_t m_index;
int16_t m_dda;
uint8_t m_noise_control;
int32_t m_noise_counter;
uint32_t m_counter;
int32_t m_tick;
u16 frequency;
u8 control;
u8 balance;
u8 waveform[32];
u8 index;
s16 dda;
u8 noise_control;
s32 noise_counter;
u32 noise_frequency;
u32 noise_seed;
s32 tick;
};
// internal state
sound_stream *m_stream;
uint8_t m_select;
uint8_t m_balance;
uint8_t m_lfo_frequency;
uint8_t m_lfo_control;
u8 m_select;
u8 m_balance;
u8 m_lfo_frequency;
u8 m_lfo_control;
channel m_channel[8];
int16_t m_volume_table[32];
s16 m_volume_table[32];
};
DECLARE_DEVICE_TYPE(C6280, c6280_device)