- all ui functions now expect a render_container
- removed all macros referencing render_container_get_ui
- ui_menu_alloc now is passed a container to which to render the menu.
This is a first round of changes to allow using ui_* functions in a more generic way.
- Created new central header "emu.h"; this should be included
by pretty much any driver or device as the first include. This
file in turn includes pretty much everything a driver or device
will need, minus any other devices it references. Note that
emu.h should *never* be included by another header file.
- Updated all files in the core (src/emu) to use emu.h.
- Removed a ton of redundant and poorly-tracked header includes
from within other header files.
- Temporarily changed driver.h to map to emu.h until we update
files outside of the core.
Added class wrapper around tagmap so it can be directly included
and accessed within objects that need it. Updated all users to
embed tagmap objects and changed them to call through the class.
Added nicer functions for finding devices, ports, and regions in
a machine:
machine->device("tag") -- return the named device, or NULL
machine->port("tag") -- return the named port, or NULL
machine->region("tag"[, &length[, &flags]]) -- return the
named region and optionally its length and flags
Made the device tag an astring. This required touching a lot of
code that printed the device to explicitly fetch the C-string
from it. (Thank you gcc for flagging that issue!)
osd_free(). They take the same parameters as malloc() and free().
Renamed mamecore.h -> emucore.h.
New C++-aware memory manager, implemented in emualloc.*. This is a
simple manager that allows you to add any type of object to a
resource pool. Most commonly, allocated objects are added, and so
a set of allocation macros is provided to allow you to manage
objects in a particular pool:
pool_alloc(p, t) = allocate object of type 't' and add to pool 'p'
pool_alloc_clear(p, t) = same as above, but clear the memory first
pool_alloc_array(p, t, c) = allocate an array of 'c' objects of type
't' and add to pool 'p'
pool_alloc_array_clear(p, t, c) = same, but with clearing
pool_free(p, v) = free object 'v' and remove it from the pool
Note that pool_alloc[_clear] is roughly equivalent to "new t" and
pool_alloc_array[_clear] is roughly equivalent to "new t[c]". Also
note that pool_free works for single objects and arrays.
There is a single global_resource_pool defined which should be used
for any global allocations. It has equivalent macros to the pool_*
macros above that automatically target the global pool.
In addition, the memory module defines global new/delete overrides
that access file and line number parameters so that allocations can
be tracked. Currently this tracking is only done if MAME_DEBUG is
enabled. In debug builds, any unfreed memory will be printed at
the end of the session.
emualloc.h also has #defines to disable malloc/free/realloc/calloc.
Since emualloc.h is included by emucore.h, this means pretty much
all code within the emulator is forced to use the new allocators.
Although straight new/delete do work, their use is discouraged, as
any allocations made with them will not be tracked.
Changed the familar auto_alloc_* macros to map to the resource pool
model described above. The running_machine is now a class and contains
a resource pool which is automatically destructed upon deletion. If
you are a driver writer, all your allocations should be done with
auto_alloc_*.
Changed all drivers and files in the core using malloc/realloc or the
old alloc_*_or_die macros to use (preferably) the auto_alloc_* macros
instead, or the global_alloc_* macros if necessary.
Added simple C++ wrappers for astring and bitmap_t, as these need
proper constructors/destructors to be used for auto_alloc_astring and
auto_alloc_bitmap.
Removed references to the winalloc prefix file. Most of its
functionality has moved into the core, save for the guard page
allocations, which are now implemented in osd_alloc and osd_free.
mechanism; instead, you must access the sliders via the main menu. While in
the menu, you can use the ~ key to turn off the menu display and leave only
the bar display, in order to see more of the screen.
item will be visible but not selectable.
Fixed bug that prevented the cheat engine from working when the
debugger was disabled.
Modified xmlfile.c to accept integer values in decimal or hex. The
default is decimal. Numbers may be prefixed by '#' for decimal
values, or by '$' or '0x' to indicate hexadecimal values. Also
added function xml_get_attribute_int_format() to return the format
of the attribute, so that it can be later replicated.
Updated cheat parser to preserve the format of attribute values
used for cheat parameters and items.
Added support for information-only cheat items, which will be
displayed in the menu but which are not selectable and have no
action associated with them. Empty information-only items are
automatically converted to menu separators.
EEPROM data, and the size is in terms of units, not bytes. Updated all
drivers accordingly.
Changed the ROM loading code to actually alter the region flags based
on the CPU endianness and bus width when creating the region, rather
than fixing them up on the fly. This means that callers to
memory_region_flags() will get the correct results.
Changed the expression engine to use two callbacks for read/write rather
than relying on externally defined functions.
Expanded memory access support in the expression engine. Memory accesses
can now be specified as [space][num]<size>@<address>. 'space' can be
one of the following:
p = program address space of CPU #num (default)
d = data address space of CPU #num
i = I/O address space of CPU #num
o = opcode address space of CPU #num (R/W access to decrypted opcodes)
r = direct RAM space of CPU #num (always allows writes, even for ROM)
e = EEPROM index #num
c = direct REGION_CPU#num access
u = direct REGION_USER#num access
g = direct REGION_GFX#num access
s = direct REGION_SOUND#num access
The 'num' field is optional for p/d/i/o/r, where is defaults to the
current CPU, and for e, where it defaults to EEPROM #0. 'num' is required
for all region-related prefixes. Some examples:
w@curpc = word at 'curpc' in the active CPU's program address space
dd@0 = dword at 0x0 in the active CPU's data address space
r2b@100 = byte at 0x100 from a RAM/ROM region in CPU #2's program space
ew@7f = word from EEPROM address 0x7f
u2q@40 = qword from REGION_USER2, offset 0x40
The 'size' field is always required, and can be b/w/d/q for byte, word,
dword, and qword accesses.
lurking. If you run into anything odd, please let me know.
Added new module uiinput.c which manages input for the user interface.
The OSD is responsible for pushing mouse events and character events
to this interface in order to support mouse movement and text-based
input (currently only used for the select game menu). Added support
for navigating through the menus using the mouse.
[Nathan Woods, Aaron Giles]
Redesigned the UI menus so that they can maintain a richer state. Now
the menus can be generated once and reused, rather than requiring them
to be regenerated on each frame. All menus also share a comment eventing
system and navigation through them is managed centrally. Rewrote all the
menus to use the new system, apart from the cheat menus, which are now
disabled. Reorganized the video menu to make it easier to understand.
[Aaron Giles]
* Input ports are now maintained hierarchically. At the top
level are input ports, which contain a list of fields. Each
field represents one or more bits of the port. Certain fields
such as DIP switches and configuration switches contain a
list of settings, which can be selected. DIP switch fields
can also contain a list of DIP switch locations.
* Normalized behavior of port overrides (via PORT_INCLUDE or
by defining multiple overlapping bits). All fields within a
port are kept in strict increasing bit order, so altered DIP
switches are now kept in the appropriate order. This addresses
MAMETesters bug 01671.
* Live port state is now fully separate from configured
state. This is manifested in a similar way to devices, where
a const list of ports can be managed either offline or live.
Each port has a pointer to an opaque set of live state which
is NULL when offline or valid when live. Each port also has
a running_machine * which is also NULL when offline.
* Because of this new arrangement, the conversion from tokens
to a list of ports now requires reasonably complex memory
allocation, so these port lists must be explicitly allocated
and freed (they are not mantained by automatic resource
allocation).
* Custom and changed callbacks now take a pointer to a field
config instead of a running machine. This provides more
information about what field triggered the change notification.
The machine can be found by referenced field->port->machine.
* The inptport.c module has been cleaned up and many
ambiguities resolved. Most of this is internal, though it did
result in osd_customize_inputport_list() being changed to
osd_customize_input_type_list(). The parameter to this function
is now a linked list instead of an array, and the structures
referenced have been reorganized somewhat.
* Updated config.c to pass machine parameters to its callbacks.
* Updated validity checks, XML output, and UI system to handle
the new structures.
* Moved large table of default input settings to a separate
include file inpttype.h.
* Removed gross hacks in trackfld and hyperspt NVRAM. These
may be broken as a result.
suffixed with _func. Did this throughout the core and
drivers I was familiar with.
Fixed gcc compiler error with recent render.c changes.
gcc does not like explicit (int) casts on float or
double functions. This is fracking annoying and stupid,
but there you have it.
- removed years from copyright notices
- removed redundant (c) from copyright notices
- updated "the MAME Team" to be "Nicola Salmoria and the MAME Team"