mame/src/devices/machine/am79c90.cpp
2018-09-10 18:14:17 +02:00

571 lines
18 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Ryan Holtz
/*****************************************************************************
AMD Am79C90 CMOS Local Area Network Controller for Ethernet (C-LANCE)
TODO:
- Communication with the outside world
- Error handling
- Clocks
*****************************************************************************/
#include "emu.h"
#include "am79c90.h"
DEFINE_DEVICE_TYPE(AM79C90, am79c90_device, "am79c90", "Am79C90 LANCE Ethernet Controller")
am79c90_device::am79c90_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
: device_t(mconfig, AM79C90, tag, owner, clock)
, m_receive_timer(nullptr)
//, m_receive_poll_timer(nullptr)
, m_transmit_timer(nullptr)
, m_transmit_poll_timer(nullptr)
, m_irq_out_cb(*this)
, m_dma_out_cb(*this)
, m_dma_in_cb(*this)
{
}
void am79c90_device::device_start()
{
m_irq_out_cb.resolve_safe();
m_dma_out_cb.resolve_safe(); // TODO: Should be read/write16!
m_dma_in_cb.resolve_safe(0);
m_transmit_poll_timer = timer_alloc(TIMER_TRANSMIT_POLL);
m_transmit_poll_timer->adjust(attotime::never);
m_transmit_timer = timer_alloc(TIMER_TRANSMIT);
m_transmit_timer->adjust(attotime::never);
m_receive_timer = timer_alloc(TIMER_RECEIVE);
m_receive_timer->adjust(attotime::never);
save_item(NAME(m_curr_transmit_desc.m_tmd01));
save_item(NAME(m_curr_transmit_desc.m_tmd23));
save_item(NAME(m_next_transmit_desc.m_tmd01));
save_item(NAME(m_next_transmit_desc.m_tmd23));
save_item(NAME(m_curr_recv_desc.m_tmd01));
save_item(NAME(m_curr_recv_desc.m_tmd23));
save_item(NAME(m_next_recv_desc.m_tmd01));
save_item(NAME(m_next_recv_desc.m_tmd23));
save_item(NAME(m_rap));
save_item(NAME(m_csr));
save_item(NAME(m_mode));
save_item(NAME(m_logical_addr_filter));
save_item(NAME(m_physical_addr));
save_item(NAME(m_recv_message_count));
save_item(NAME(m_recv_ring_addr));
save_item(NAME(m_recv_buf_addr));
save_item(NAME(m_recv_buf_count));
save_item(NAME(m_recv_ring_length));
save_item(NAME(m_recv_ring_pos));
save_item(NAME(m_recv_fifo));
save_item(NAME(m_recv_fifo_write));
save_item(NAME(m_recv_fifo_read));
save_item(NAME(m_receiving));
save_item(NAME(m_transmit_ring_addr));
save_item(NAME(m_transmit_buf_addr));
save_item(NAME(m_transmit_buf_count));
save_item(NAME(m_transmit_ring_length));
save_item(NAME(m_transmit_ring_pos));
save_item(NAME(m_transmit_fifo));
save_item(NAME(m_transmit_fifo_write));
save_item(NAME(m_transmit_fifo_read));
save_item(NAME(m_transmitting));
}
void am79c90_device::device_reset()
{
memset(&m_curr_transmit_desc, 0, sizeof(ring_descriptor));
memset(&m_next_transmit_desc, 0, sizeof(ring_descriptor));
memset(&m_curr_recv_desc, 0, sizeof(ring_descriptor));
memset(&m_next_recv_desc, 0, sizeof(ring_descriptor));
m_rap = 0;
memset(m_csr, 0, sizeof(uint16_t) * 4);
m_csr[0] = CSR0_STOP;
m_mode = 0;
m_logical_addr_filter = 0;
m_physical_addr = 0;
m_recv_message_count = 0;
m_recv_ring_addr = 0;
m_recv_buf_addr = 0;
m_recv_buf_count = 0;
m_recv_ring_length = 0;
m_recv_ring_pos = 0;
memset(m_recv_fifo, 0, sizeof(uint32_t) * ARRAY_LENGTH(m_recv_fifo));
m_recv_fifo_write = 0;
m_recv_fifo_read = 0;
m_receiving = false;
m_transmit_ring_addr = 0;
m_transmit_buf_addr = 0;
m_transmit_buf_count = 0;
m_transmit_ring_length = 0;
m_transmit_ring_pos = 0;
memset(m_transmit_fifo, 0, sizeof(uint32_t) * ARRAY_LENGTH(m_transmit_fifo));
m_transmit_fifo_write = 0;
m_transmit_fifo_read = 0;
m_transmitting = false;
}
void am79c90_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
switch (id)
{
case TIMER_TRANSMIT_POLL:
poll_transmit();
break;
case TIMER_TRANSMIT:
transmit();
break;
case TIMER_RECEIVE:
receive();
break;
}
}
void am79c90_device::fetch_transmit_descriptor()
{
const uint32_t next_addr = (m_transmit_ring_addr >> 2) + (m_transmit_ring_pos << 1);
ring_descriptor &next = m_next_transmit_desc;
next.m_tmd01 = m_dma_in_cb(next_addr, ~0);
next.m_tmd23 = m_dma_in_cb(next_addr + 1, ~0);
}
void am79c90_device::fetch_receive_descriptor()
{
const uint32_t next_addr = (m_recv_ring_addr >> 2) + (m_recv_ring_pos << 1);
ring_descriptor &next = m_next_recv_desc;
next.m_rmd01 = m_dma_in_cb(next_addr, ~0);
next.m_rmd23 = m_dma_in_cb(next_addr + 1, ~0);
}
void am79c90_device::recv_fifo_push(uint32_t value)
{
// TODO: Poll for the FIFO at 1.6ms, don't instantly start receiving!
// "...If the C-LANCE does not own it, it will poll the ring once every 1.6ms until
// it owns it."
logerror("%s: LANCE pushing %08x onto receive FIFO\n", machine().describe_context(), value);
if (!m_receiving && !(m_mode & MODE_LOOP))
{
begin_receiving();
}
if (m_recv_fifo_write >= ARRAY_LENGTH(m_recv_fifo))
{
logerror("%s: LANCE can't push onto receive FIFO, %d >= %d\n", machine().describe_context(), value, m_recv_fifo_write, ARRAY_LENGTH(m_recv_fifo));
// TODO: Do something
return;
}
m_recv_fifo[m_recv_fifo_write] = value;
m_recv_fifo_write++;
if (m_recv_fifo_write == ARRAY_LENGTH(m_recv_fifo))
{
// TODO: Do something
}
}
void am79c90_device::begin_receiving()
{
fetch_receive_descriptor();
m_curr_recv_desc = m_next_recv_desc;
ring_descriptor &curr = m_curr_recv_desc;
if (curr.m_rmd01 & RMD1_OWN)
{
logerror("%s: LANCE owns the current buffer, activating receive timer, RMD0123 is %08x %08x\n", machine().describe_context(), curr.m_rmd01, curr.m_rmd23);
m_receiving = true;
m_recv_buf_addr = (((curr.m_rmd01 << 16) | (curr.m_rmd01 >> 16)) & 0x00ffffff) | 0xff000000;
const int32_t rmd2 = (int16_t)(curr.m_rmd23 >> 16);
m_recv_buf_count = (uint16_t)((-rmd2) & 0x00000fff);
if (m_recv_buf_count == 0)
m_recv_buf_count = 0x1000;
if (m_mode & MODE_LOOP)
{
m_recv_buf_count = (m_mode & MODE_DTCR) ? 32 : 36;
}
if (curr.m_rmd01 & RMD1_STP)
{
m_recv_message_count = 0;
}
m_receive_timer->adjust(attotime::from_hz(10'000'000), 0, attotime::from_hz(10'000'000));
}
else
{
logerror("%s: LANCE does not own the current buffer, deactivating receive timer\n", machine().describe_context());
m_receiving = false;
m_receive_timer->adjust(attotime::never);
}
}
void am79c90_device::receive()
{
const uint32_t received_value = (m_recv_fifo_write == 0) ? 0 : m_recv_fifo[m_recv_fifo_read];
m_recv_fifo_read++;
if (m_recv_fifo_read >= m_recv_fifo_write)
{
m_recv_fifo_read = 0;
m_recv_fifo_write = 0;
}
if (m_recv_buf_count >= 4)
{
logerror("%s: LANCE receiving %08x to address %08x, remaining %d\n", machine().describe_context(), received_value, m_recv_buf_addr, m_recv_buf_count - 4);
m_dma_out_cb(m_recv_buf_addr >> 2, received_value, ~0);
m_recv_buf_addr += 4;
m_recv_message_count += 4;
m_recv_buf_count -= 4;
}
else
{
const uint32_t mask = 0xffffffff << (m_recv_buf_count << 3);
logerror("%s: LANCE receiving %08x & %08x to address %08x, remaining %d\n", machine().describe_context(), received_value, mask, m_recv_buf_addr, 0);
m_dma_out_cb(m_recv_buf_addr >> 2, received_value, mask);
m_recv_buf_addr += m_recv_buf_count;
m_recv_message_count += m_recv_buf_count;
m_recv_buf_count = 0;
}
if (m_recv_buf_count == 0)
{
logerror("%s: LANCE has completed receiving a buffer, clearing OWN bit and advancing receive ring position\n", machine().describe_context());
ring_descriptor &curr = m_curr_recv_desc;
curr.m_rmd01 &= ~RMD1_OWN;
const uint32_t addr = (m_recv_ring_addr >> 2) + (m_recv_ring_pos << 1);
logerror("%s: LANCE is writing new RMD01: %08x\n", machine().describe_context(), curr.m_rmd01);
m_dma_out_cb(addr, curr.m_rmd01, ~0);
if (curr.m_rmd01 & TMD1_ENP)
{
curr.m_rmd23 &= 0xfffff000;
if (m_recv_message_count != 0x1000)
{
curr.m_rmd23 |= m_recv_message_count & 0xfff;
}
m_dma_out_cb(addr + 1, curr.m_rmd23, ~0);
logerror("%s: LANCE has completed receiving a message, total message length %d bytes, new RMD23 %08x\n", machine().describe_context(), m_recv_message_count, curr.m_rmd23);
}
m_recv_ring_pos++;
m_recv_ring_pos &= m_recv_ring_length - 1;
if (!(m_mode & MODE_LOOP))
{
begin_receiving();
}
else
{
logerror("%s: LANCE loopback test receive finished, setting RINT and stopping timer.\n", machine().describe_context());
m_csr[0] |= CSR0_RINT;
update_interrupts();
m_receiving = false;
m_receive_timer->adjust(attotime::never);
}
}
}
void am79c90_device::transmit()
{
logerror("%s: LANCE transmit, fetching from %08x\n", machine().describe_context(), m_transmit_buf_addr >> 2);
uint32_t transmit_value = 0;
const bool dtcr = m_mode & MODE_DTCR;
if (m_transmit_buf_count > 4 || dtcr)
{
transmit_value = m_dma_in_cb(m_transmit_buf_addr >> 2, ~0);
if (!dtcr)
{
m_crc32.append(&transmit_value, sizeof(uint32_t));
}
}
else
{
transmit_value = (uint32_t)m_crc32.finish();
}
const bool loopback = (m_mode & MODE_LOOP);
if (loopback)
{
// TODO: Differentiate between internal and external loopback
recv_fifo_push(transmit_value);
}
else
{
// TODO: Send data to an actual network interface and/or our real transmit FIFO
}
if (m_transmit_buf_count >= 4)
{
m_transmit_buf_addr += 4;
m_transmit_buf_count -= 4;
}
else
{
m_transmit_buf_addr += m_transmit_buf_count;
m_transmit_buf_count = 0;
}
if (m_transmit_buf_count == 0)
{
const uint32_t base_addr = (m_transmit_ring_addr >> 2) + (m_transmit_ring_pos << 1);
ring_descriptor &curr = m_curr_transmit_desc;
curr.m_tmd01 &= ~TMD1_OWN;
m_dma_out_cb(base_addr, curr.m_tmd01, ~0);
if (!(curr.m_tmd01 & TMD1_ENP))
{
fetch_transmit_descriptor();
m_curr_transmit_desc = m_next_transmit_desc;
if (!(curr.m_tmd01 & TMD1_OWN))
{
logerror("%s: LANCE is done transmitting a buffer of this descriptor ring, next ring unowned, resuming polling.\n", machine().describe_context());
m_transmitting = false;
m_transmit_timer->adjust(attotime::never);
m_transmit_poll_timer->adjust(attotime::from_usec(1600), 0, attotime::from_usec(1600));
}
else
{
logerror("%s: LANCE is done transmitting a buffer of this descriptor ring, preparing to transmit next buffer.\n", machine().describe_context());
prepare_transmit_buf();
}
}
else
{
logerror("%s: LANCE is done transmitting the last buffer of this descriptor ring, raising TINT and resuming polling.\n", machine().describe_context());
if (m_mode & MODE_LOOP)
{
begin_receiving();
}
m_csr[0] |= CSR0_TINT;
update_interrupts();
m_transmitting = false;
m_transmit_timer->adjust(attotime::never);
m_transmit_poll_timer->adjust(attotime::from_usec(1600), 0, attotime::from_usec(1600));
}
}
}
void am79c90_device::prepare_transmit_buf()
{
ring_descriptor &curr = m_curr_transmit_desc;
m_transmit_buf_addr = ((curr.m_tmd01 << 16) | ((curr.m_tmd01 >> 16) & 0x00ffffff)) | 0xff000000;
const int32_t tmd2 = (int16_t)(curr.m_tmd23 >> 16);
m_transmit_buf_count = (uint16_t)((-tmd2) & 0x00000fff);
if (m_transmit_buf_count == 0)
m_transmit_buf_count = 0x1000;
if (!(m_mode & MODE_DTCR))
{
m_transmit_buf_count += 4;
}
logerror("%s: LANCE: Valid transmit descriptors found, preparing to transmit %d bytes\n", machine().describe_context(), m_transmit_buf_count);
}
void am79c90_device::poll_transmit()
{
ring_descriptor &curr = m_curr_transmit_desc;
const uint32_t base_addr = (m_transmit_ring_addr >> 2) + (m_transmit_ring_pos << 1);
//logerror("%s: LANCE polling for packets from %08x\n", machine().describe_context(), base_addr);
curr.m_tmd01 = m_dma_in_cb(base_addr, ~0);
const uint16_t tmd1 = (uint16_t)curr.m_tmd01;
if (!(tmd1 & TMD1_OWN))
return;
if (!(tmd1 & TMD1_STP) && !m_transmitting)
{
// "The STP bit must be set in the first buffer of the packet, or the C-LANCE will skip over this
// descriptor and poll the next descriptor(s) until the OWN and STP bits are set."
m_transmit_ring_pos++;
m_transmit_ring_pos &= m_transmit_ring_length - 1;
logerror("%s: LANCE: No STP on this entry and not transmitting, skipping to next entry\n", machine().describe_context());
return;
}
//logerror("%s: LANCE: Starting transmitting\n", machine().describe_context());
m_transmit_poll_timer->adjust(attotime::never);
m_transmitting = true;
m_crc32.reset();
// TMD0's value is retrieved from the value fetched above, but per the AMD Am79C90 manual, page 30:
// "The C-LANCE will read TMD0 and TMD2 to get the rest of the buffer address and the buffer byte count
// when it owns the descriptor. Each of these memory reads is done separately with a new arbitration
// cycle for each transfer."
m_dma_in_cb(base_addr, ~0);
curr.m_tmd23 = m_dma_in_cb(base_addr + 1, ~0);
m_transmit_ring_pos++;
m_transmit_ring_pos &= m_transmit_ring_length - 1;
if (!(tmd1 & TMD1_ENP))
{
logerror("%s: LANCE: No EOP on this entry, caching next entry and checking ownership\n", machine().describe_context());
// "BUFFER ERROR is set by the C-LANCE during transmission when the C-LANCE does not find the ENP
// flag in the current buffer and does not own the next buffer."
fetch_transmit_descriptor();
ring_descriptor &next = m_next_transmit_desc;
if (!((next.m_tmd01 >> 16) & TMD1_OWN))
{
logerror("%s: LANCE: No EOP on this entry, but we don't own the next one; setting BUFF\n", machine().describe_context());
curr.m_tmd23 |= TMD3_BUFF;
m_dma_out_cb(base_addr + 1, curr.m_tmd23, ~0);
m_csr[0] &= ~CSR0_TXON;
m_transmitting = false;
return;
}
}
prepare_transmit_buf();
m_transmit_timer->adjust(attotime::from_hz(10'000'000), 0, attotime::from_hz(10'000'000));
}
void am79c90_device::update_interrupts()
{
if (m_csr[0] & CSR0_ANY_INTR)
{
m_csr[0] |= CSR0_INTR;
}
else
{
m_csr[0] &= ~CSR0_INTR;
}
m_irq_out_cb((m_csr[0] & CSR0_INTR) ? 1 : 0);
}
READ16_MEMBER(am79c90_device::regs_r)
{
uint16_t ret = 0;
if (offset)
{
ret = m_rap;
logerror("%s: lance_r: RAP = %04x\n", machine().describe_context(), ret);
}
else
{
ret = m_csr[m_rap];
logerror("%s: lance_r: CSR%d = %04x\n", machine().describe_context(), m_rap, ret);
}
return ret;
}
WRITE16_MEMBER(am79c90_device::regs_w)
{
if (offset)
{
logerror("%s: lance_r: RAP = %d\n", machine().describe_context(), data & 3);
m_rap = data & 3;
}
else
{
logerror("%s: lance_w: CSR%d = %04x\n", machine().describe_context(), m_rap, data);
switch (m_rap)
{
case 0: // Control/Status
m_csr[0] &= ~(data & (CSR0_ANY_ERR | CSR0_IDON));
if (m_csr[0] & CSR0_ANY_ERR)
m_csr[0] |= CSR0_ERR;
else
m_csr[0] &= ~CSR0_ERR;
if (data & CSR0_STOP)
{
data &= ~(CSR0_RXON | CSR0_TXON | CSR0_TDMD | CSR0_STRT | CSR0_INIT);
m_csr[0] &= ~(CSR0_IDON | CSR0_RXON | CSR0_TXON | CSR0_TDMD | CSR0_STRT | CSR0_INIT);
m_csr[0] |= CSR0_STOP;
m_csr[3] = 0;
m_receive_timer->adjust(attotime::never);
m_transmit_timer->adjust(attotime::never);
m_transmit_poll_timer->adjust(attotime::never);
}
if (data & CSR0_INIT)
{
uint32_t init_addr = 0xff000000 | m_csr[1] | (m_csr[2] << 16);
uint16_t init_block[12];
logerror("%s: LANCE Init block:\n", machine().describe_context());
for (uint32_t i = 0; i < 6; i++)
{
uint32_t value = m_dma_in_cb((init_addr >> 2) + i, ~0);
init_block[i*2 + 0] = (uint16_t)(value >> 16);
init_block[i*2 + 1] = (uint16_t)value;
logerror("%s: IADR +%02d: %04x\n", machine().describe_context(), i*4, init_block[i*2 + 0]);
logerror("%s: IADR +%02d: %04x\n", machine().describe_context(), i*4 + 2, init_block[i*2 + 1]);
}
m_mode = init_block[0];
m_physical_addr = ((uint64_t)init_block[3] << 32) | ((uint64_t)init_block[2] << 16) | (uint64_t)init_block[1];
m_logical_addr_filter = ((uint64_t)init_block[7] << 48) | ((uint64_t)init_block[6] << 32)
| ((uint64_t)init_block[5] << 16) | (uint64_t)init_block[4];
m_recv_ring_addr = (((uint32_t)init_block[9] << 16) | (uint32_t)init_block[8]) & 0x00fffff8;
m_recv_ring_addr |= 0xff000000;
m_transmit_ring_addr = (((uint32_t)init_block[11] << 16) | (uint32_t)init_block[10]) & 0x00fffff8;
m_transmit_ring_addr |= 0xff000000;
m_recv_ring_length = 1 << ((init_block[9] >> 13) & 7);
m_transmit_ring_length = 1 << ((init_block[11] >> 13) & 7);
m_transmit_ring_pos = 0;
m_recv_ring_pos = 0;
logerror("%s: Mode: %04x\n", machine().describe_context(), m_mode);
logerror("%s: Physical Address: %08x%08x\n", machine().describe_context(),
(uint32_t)(m_physical_addr >> 32), (uint32_t)m_physical_addr);
logerror("%s: Logical Address Filter: %08x%08x\n", machine().describe_context(),
(uint32_t)(m_logical_addr_filter >> 32), (uint32_t)m_logical_addr_filter);
logerror("%s: Receive Ring Address: %08x\n", machine().describe_context(), m_recv_ring_addr);
logerror("%s: Receive Ring Length: %04x\n", machine().describe_context(), m_recv_ring_length);
logerror("%s: Transmit Ring Address: %08x\n", machine().describe_context(), m_transmit_ring_addr);
logerror("%s: Transmit Ring Length: %04x\n", machine().describe_context(), m_transmit_ring_length);
m_csr[0] &= ~CSR0_STOP;
m_csr[0] |= CSR0_IDON | CSR0_INIT | CSR0_TXON | CSR0_RXON;
m_receive_timer->adjust(attotime::never);
m_transmit_timer->adjust(attotime::never);
m_transmit_poll_timer->adjust(attotime::never);
}
if (data & CSR0_STRT)
{
m_csr[0] &= ~CSR0_STOP;
if (m_mode & MODE_DRX)
m_csr[0] &= ~CSR0_RXON;
if (m_mode & MODE_DTX)
m_csr[0] &= ~CSR0_TXON;
if (m_csr[0] & CSR0_TXON)
m_transmit_poll_timer->adjust(attotime::from_usec(1600), 0, attotime::from_usec(1600));
}
update_interrupts();
if (data & CSR0_TDMD)
{
// TODO: Handle transmit demand
}
break;
case 1: // Least significant 15 bits of the Initialization Block
m_csr[1] = data & 0xfffe;
break;
case 2: // Most significant 8 bits of the Initialization Block
m_csr[2] = data & 0x00ff;
break;
case 3: // Bus master interface
m_csr[3] = data & 0x0007;
break;
}
}
}