mame/src/emu/diserial.h

271 lines
7.4 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Carl, Miodrag Milanovic, Vas Crabb
#pragma once
#ifndef __EMU_H__
#error Dont include this file directly; include emu.h instead.
#endif
#ifndef MAME_EMU_DISERIAL_H
#define MAME_EMU_DISERIAL_H
// Windows headers are crap, let me count the ways
#undef PARITY_NONE
#undef PARITY_ODD
#undef PARITY_EVEN
#undef PARITY_MARK
#undef PARITY_SPACE
// ======================> device_serial_interface
class device_serial_interface : public device_interface
{
public:
enum
{
/* receive is waiting for start bit. The transition from high-low indicates
start of start bit. This is used to synchronise with the data being transferred */
RECEIVE_REGISTER_WAITING_FOR_START_BIT = 0x01,
/* receive is synchronised with data, data bits will be clocked in */
RECEIVE_REGISTER_SYNCHRONISED = 0x02,
/* set if receive register has been filled */
RECEIVE_REGISTER_FULL = 0x04
};
enum
{
/* register is empty and ready to be filled with data */
TRANSMIT_REGISTER_EMPTY = 0x0001
};
/* parity selections */
/* if all the bits are added in a byte, if the result is:
even -> parity is even
odd -> parity is odd
*/
enum parity_t
{
PARITY_NONE, /* no parity. a parity bit will not be in the transmitted/received data */
PARITY_ODD, /* odd parity */
PARITY_EVEN, /* even parity */
PARITY_MARK, /* one parity */
PARITY_SPACE /* zero parity */
};
enum stop_bits_t
{
STOP_BITS_0,
STOP_BITS_1 = 1,
STOP_BITS_1_5 = 2,
STOP_BITS_2 = 3
};
/* Communication lines. Beware, everything is active high */
enum
{
CTS = 0x0001, /* Clear to Send. (INPUT) Other end of connection is ready to accept data */
RTS = 0x0002, /* Request to Send. (OUTPUT) This end is ready to send data, and requests if the other */
/* end is ready to accept it */
DSR = 0x0004, /* Data Set ready. (INPUT) Other end of connection has data */
DTR = 0x0008, /* Data terminal Ready. (OUTPUT) TX contains new data. */
RX = 0x0010, /* Receive data. (INPUT) */
TX = 0x0020 /* TX = Transmit data. (OUTPUT) */
};
// construction/destruction
device_serial_interface(const machine_config &mconfig, device_t &device);
virtual ~device_serial_interface();
DECLARE_WRITE_LINE_MEMBER(rx_w);
DECLARE_WRITE_LINE_MEMBER(tx_clock_w);
DECLARE_WRITE_LINE_MEMBER(rx_clock_w);
DECLARE_WRITE_LINE_MEMBER(clock_w);
protected:
void set_data_frame(int start_bit_count, int data_bit_count, parity_t parity, stop_bits_t stop_bits);
void receive_register_reset();
void receive_register_update_bit(int bit);
void receive_register_extract();
void set_rcv_rate(const attotime &rate);
void set_tra_rate(const attotime &rate);
void set_rcv_rate(u32 clock, int div) { set_rcv_rate((clock && div) ? (attotime::from_hz(clock) * div) : attotime::never); }
void set_tra_rate(u32 clock, int div) { set_tra_rate((clock && div) ? (attotime::from_hz(clock) * div) : attotime::never); }
void set_rcv_rate(int baud) { set_rcv_rate(baud ? attotime::from_hz(baud) : attotime::never); }
void set_tra_rate(int baud) { set_tra_rate(baud ? attotime::from_hz(baud) : attotime::never); }
void set_rate(const attotime &rate) { set_rcv_rate(rate); set_tra_rate(rate); }
void set_rate(u32 clock, int div) { set_rcv_rate(clock, div); set_tra_rate(clock, div); }
void set_rate(int baud) { set_rcv_rate(baud); set_tra_rate(baud); }
void transmit_register_reset();
void transmit_register_add_bit(int bit);
void transmit_register_setup(u8 data_byte);
u8 transmit_register_get_data_bit();
u8 serial_helper_get_parity(u8 data) { return m_serial_parity_table[data]; }
bool is_receive_register_full();
bool is_transmit_register_empty();
bool is_receive_register_synchronized() const { return m_rcv_flags & RECEIVE_REGISTER_SYNCHRONISED; }
bool is_receive_register_shifting() const { return m_rcv_bit_count_received > 0; }
bool is_receive_framing_error() const { return m_rcv_framing_error; }
bool is_receive_parity_error() const { return m_rcv_parity_error; }
u8 get_received_char() const { return m_rcv_byte_received; }
virtual void tra_callback() { }
virtual void rcv_callback() { receive_register_update_bit(m_rcv_line); }
virtual void tra_complete() { }
virtual void rcv_complete() { }
// interface-level overrides
virtual void interface_pre_start() override;
// Must be called from device_timer in the underlying device
virtual void device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr);
bool m_start_bit_hack_for_external_clocks;
const char *parity_tostring(parity_t stop_bits);
const char *stop_bits_tostring(stop_bits_t stop_bits);
void register_save_state(save_manager &save, device_t *device);
private:
enum { TRA_TIMER_ID = 10000, RCV_TIMER_ID };
u8 m_serial_parity_table[256];
// Data frame
// number of start bits
int m_df_start_bit_count;
// length of word in bits
u8 m_df_word_length;
// parity state
u8 m_df_parity;
// number of stop bits
u8 m_df_stop_bit_count;
// Receive register
/* data */
u16 m_rcv_register_data;
/* flags */
u8 m_rcv_flags;
/* bit count received */
u8 m_rcv_bit_count_received;
/* length of data to receive - includes data bits, parity bit and stop bit */
u8 m_rcv_bit_count;
/* the byte of data received */
u8 m_rcv_byte_received;
bool m_rcv_framing_error;
bool m_rcv_parity_error;
// Transmit register
/* data */
u16 m_tra_register_data;
/* flags */
u8 m_tra_flags;
/* number of bits transmitted */
u8 m_tra_bit_count_transmitted;
/* length of data to send */
u8 m_tra_bit_count;
emu_timer *m_rcv_clock;
emu_timer *m_tra_clock;
attotime m_rcv_rate;
attotime m_tra_rate;
u8 m_rcv_line;
int m_tra_clock_state, m_rcv_clock_state;
void tra_edge();
void rcv_edge();
};
template <u32 FIFO_LENGTH>
class device_buffered_serial_interface : public device_serial_interface
{
protected:
using device_serial_interface::device_serial_interface;
virtual void tra_complete() override
{
assert(!m_empty || (m_head == m_tail));
assert(m_head < ARRAY_LENGTH(m_fifo));
assert(m_tail < ARRAY_LENGTH(m_fifo));
if (!m_empty)
{
transmit_register_setup(m_fifo[m_head]);
m_head = (m_head + 1U) % FIFO_LENGTH;
m_empty = (m_head == m_tail) ? 1U : 0U;
}
}
virtual void rcv_complete() override
{
receive_register_extract();
received_byte(get_received_char());
}
void clear_fifo()
{
m_head = m_tail = 0U;
m_empty = 1U;
}
void transmit_byte(u8 byte)
{
assert(!m_empty || (m_head == m_tail));
assert(m_head < ARRAY_LENGTH(m_fifo));
assert(m_tail < ARRAY_LENGTH(m_fifo));
if (m_empty && is_transmit_register_empty())
{
transmit_register_setup(byte);
}
else if (m_empty || (m_head != m_tail))
{
m_fifo[m_tail] = byte;
m_tail = (m_tail + 1U) % FIFO_LENGTH;
m_empty = 0U;
}
else
{
device().logerror("FIFO overrun (byte = 0x%02x)", byte);
}
}
bool fifo_full() const
{
return !m_empty && (m_head == m_tail);
}
void register_save_state(save_manager &save, device_t *device)
{
device_serial_interface::register_save_state(save, device);
char const *const module(device->name());
char const *const tag(device->tag());
save.save_item(device, module, tag, 0, NAME(m_fifo));
save.save_item(device, module, tag, 0, NAME(m_head));
save.save_item(device, module, tag, 0, NAME(m_tail));
save.save_item(device, module, tag, 0, NAME(m_empty));
}
private:
virtual void received_byte(u8 byte) = 0;
u8 m_fifo[FIFO_LENGTH];
u32 m_head = 0U, m_tail = 0U;
u8 m_empty = 1U;
};
#endif // MAME_EMU_DISERIAL_H