read/write handlers to take an address_space & instead
of an address_space *. Also update pretty much all other
functions to take a reference where appropriate.
[Aaron Giles]
and set_state() to set_state_int() for consistency.
Update all callers. Also add set_pc() helper and updated
all callers to use that instead of set_state_int(STATE_GENPC)
[Aaron Giles]
Added device_t::state() method to get the state interface.
Added redundant device_state_interface::state() method to
catch redundant use of it. [Aaron Giles]
Removed cpu_get_reg() and cpu_set_reg() macros in favor of
using the above methods. [Aaron Giles]
memory_region management into the memory manager instead
of directly in the machine. Hid the global region method;
now all regions must be looked up relative to a device.
If you're a member function, you can just use memregion("tag")
directly. If you're a global function or a device referencing
global regions, use machine().root_device().memregion("tag")
to look up regions relative to the root.
S&R to convert all references:
machine([()]*)\.region
machine\1\.root_device\(\).subregion
Then remove redundant machine().root_device() within src/mame:
([ \t])machine\(\)\.root_device\(\)\.
\1
And use state->memregion() if we have a state variable present:
(state *= *[^;]+driver_data[^}]+)([^ \t]*)machine[()]*\.root_device\(\)\.
\1state->
Finally some cleanup:
screen.state->
state->
device->state->
state->
space->state->
state->
And a few hand-tweaks.
and paths consistently for devices, I/O ports, memory
regions, memory banks, and memory shares. [Aaron Giles]
NOTE: there are likely regressions lurking here, mostly
due to devices not being properly found. I have temporarily
added more logging to -verbose to help understand what's
going on. Please let me know ASAP if anything that is being
actively worked on got broken.
As before, the driver device is the root device and all
other devices are owned by it. Previously all devices
were kept in a single master list, and the hierarchy was
purely logical. With this change, each device owns its
own list of subdevices, and the hierarchy is explicitly
manifest. This means when a device is removed, all of its
subdevices are automatically removed as well.
A side effect of this is that walking the device list is
no longer simple. To address this, a new set of iterator
classes is provided, which walks the device tree in a depth
first manner. There is a general device_iterator class for
walking all devices, plus templates for a device_type_iterator
and a device_interface_iterator which are used to build
iterators for identifying only devices of a given type or
with a given interface. Typedefs for commonly-used cases
(e.g., screen_device_iterator, memory_interface_iterator)
are provided. Iterators can also provide counts, and can
perform indexed lookups.
All device name lookups are now done relative to another
device. The maching_config and running_machine classes now
have a root_device() method to get the root of the hierarchy.
The existing machine->device("name") is now equivalent to
machine->root_device().subdevice("name").
A proper and normalized device path structure is now
supported. Device names that start with a colon are
treated as absolute paths from the root device. Device
names can also use a caret (^) to refer to the owning
device. Querying the device's tag() returns the device's
full path from the root. A new method basetag() returns
just the final tag.
The new pathing system is built on top of the
device_t::subtag() method, so anyone using that will
automatically support the new pathing rules. Each device
has its own internal map to cache successful lookups so
that subsequent lookups should be very fast.
Updated every place I could find that referenced devices,
memory regions, I/O ports, memory banks and memory shares
to leverage subtag/subdevice (or siblingtag/siblingdevice
which are built on top).
Removed the device_list class, as it doesn't apply any
more. Moved some of its methods into running_machine
instead.
Simplified the device callback system since the new
pathing can describe all of the special-case devices that
were previously handled manually.
Changed the core output function callbacks to be delegates.
Completely rewrote the validity checking mechanism. The
validity checker is now a proper C++ class, and temporarily
takes over the error and warning outputs. All errors and
warnings are collected during a session, and then output in
a consistent manner, with an explicit driver and source file
listed for each one, as well as additional device and/or
I/O port contexts where appropriate. Validity checkers
should no longer explicitly output this information, just
the error, assuming that the context is provided.
Rewrote the software_list_device as a modern device, getting
rid of the software_list_config abstraction and simplifying
things.
Changed the way FLAC compiles so that it works like other
external libraries, and also compiles successfully for MSVC
builds.
- non-device timer callbacks
- machine state changing callbacks
- configuration callbacks
- per-screen VBLANK callbacks
- DRC backend callbacks
For the timer case only, I added wrappers for the old-style functions.
Over time, drivers should switch to device timers instead, reducing the
number of timers that are directly allocated through the scheduler.
existing modern devices and the legacy wrappers to work in this
environment. This in general greatly simplifies writing a modern
device. [Aaron Giles]
General notes:
* some more cleanup probably needs to happen behind this change,
but I needed to get it in before the next device modernization
or import from MESS :)
* new template function device_creator which automatically defines
the static function that creates the device; use this instead of
creating a static_alloc_device_config function
* added device_stop() method which is called at around the time
the previous device_t's destructor was called; if you auto_free
anything, do it here because the machine is gone when the
destructor is called
* changed the static_set_* calls to pass a device_t & instead of
a device_config *
* for many devices, the static config structure member names over-
lapped the device's names for devcb_* functions; in these cases
the members in the interface were renamed to have a _cb suffix
* changed the driver_enumerator to only cache 100 machine_configs
because caching them all took a ton of memory; fortunately this
implementation detail is completely hidden behind the
driver_enumerator interface
* got rid of the macros for creating derived classes; doing it
manually is now clean enough that it isn't worth hiding the
details in a macro
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
to private member variables with accessors:
machine->m_respool ==> machine->respool()
machine->config ==> machine->config()
machine->gamedrv ==> machine->system()
machine->m_regionlist ==> machine->first_region()
machine->sample_rate ==> machine->sample_rate()
Also converted internal lists to use simple_list.
space by index. Update functions and methods that accepted an
address space index to take an address_spacenum instead. Note that
this means you can't use a raw integer in ADDRESS_SPACE macros, so
instead of 0 use the enumerated AS_0.
Standardized the project on the shortened constants AS_* over the
older ADDRESS_SPACE_*. Removed the latter to prevent confusion.
Also centralized the location of these definitions to memory.h.
functionality in favor of alternate mechanisms. Errors are
now reported via an astring rather than via callbacks. Every
option must now specify a type (command, integer, float, string,
boolean, etc). Command behavior has changed so that only one
command is permitted. [Aaron Giles]
Changed fileio system to accept just a raw searchpath instead of
an options/option name combination. [Aaron Giles]
Created emu_options class dervied from core_options which wraps
core emulator options. Added mechanisms to cleanly change the
system name and add/remove system-specific options, versus the
old way using callbacks. Also added read accessors for all the
options, to ensure consistency in how parameters are handled.
Changed most core systems to access emu_options instead of
core_options. Also changed machine->options() to return emu_options.
[Aaron Giles]
Created cli_options class derived from emu_options which adds the
command-line specific options. Updated clifront code to leverage
the new class and the new core behaviors. cli_execute() now accepts
a cli_options object when called. [Aaron Giles]
Updated both SDL and Windows to have their own options classes,
derived from cli_options, which add the OSD-specific options on
top of everything else. Added accessors for all the options so
that queries are strongly typed and simplified. [Aaron Giles]
Out of whatsnew: I've surely screwed up some stuff, though I have
smoke tested a bunch of things. Let me know if you hit anything odd.
Also I know this change will impact the WINUI stuff, please let me
know if there are issues. All the functionality necessary should
still be present. If it's not obvious, please talk to me before
adding stuff to the core_options class.
to pass a core_options object to the constructor, along with
a search path. This required pushing either a running_machine
or a core_options through some code that wasn't previously
ready to handle it. emu_files can be reused over multiple
open/close sessions, and a lot of core code cleaned up
nicely as things were converted to them.
Also created a file_enumerator class for iterating over files
in a searchpath. This replaces the old mame_openpath functions.
Changed machine->options() to return a reference.
Removed public nvram_open() and fixed jchan/kaneko16 to
stop directly saving NVRAM.
Removed most of the mame_options() calls; this will soon go
away entirely, so don't add any more.
Added core_options to device_validity_check() so they can be
used to validate things.
global functions which are now superceded by the operators and
methods on the class. [Aaron Giles]
Required mappings are:
attotime_make(a,b) => attotime(a,b)
attotime_to_double(t) => t.as_double()
double_to_attotime(d) => attotime::from_double(d)
attotime_to_attoseconds(t) => t.as_attoseconds()
attotime_to_ticks(t,f) => t.as_ticks(f)
ticks_to_attotime(t,f) => attotime::from_ticks(t,f)
attotime_add(a,b) => a + b
attotime_add_attoseconds(a,b) => a + attotime(0, b)
attotime_sub(a,b) => a - b
attotime_sub_attoseconds(a,b) => a - attotime(0, b)
attotime_compare(a,b) == 0 => a == b
attotime_compare(a,b) != 0 => a != b
attotime_compare(a,b) < 0 => a < b
attotime_compare(a,b) <= 0 => a <= b
attotime_compare(a,b) > 0 => a > b
attotime_compare(a,b) >= 0 => a >= b
attotime_mul(a,f) => a * f
attotime_div(a,f) => a / f
attotime_min(a,b) => min(a,b)
attotime_max(a,b) => max(a,b)
attotime_is_never(t) => t.is_never()
attotime_string(t,p) => t.as_string(p)
In addition, some existing #defines still exist but will go away:
attotime_zero => attotime::zero
attotime_never => attotime::never
ATTOTIME_IN_SEC(s) => attotime::from_seconds(s)
ATTOTIME_IN_MSEC(m) => attotime::from_msec(m)
ATTOTIME_IN_USEC(u) => attotime::from_usec(u)
ATTOTIME_IN_NSEC(n) => attotime::from_nsec(n)
ATTOTIME_IN_HZ(h) => attotime::from_hz(h)
Not for whatsnew: I added -Wno-conversion unconditionally to disable the
warnings Thomas reported. That setting is the default for GCC out-of-the-box
but apparently not on NetBSD. As far as I know it shouldn't cause a problem
with any GCC version back to at least 4.0.0 so we're safe even on PPC OSX,
but do let me know if hilarity ensues.
into one file, and separated the speaker device into its own file.
Generalized the concept of dynamically assigned inputs and re-wired the
speaker to work this way, so it is now treated just like any other
sound device. Added methods to the device_sound_interface for controlling
output gain and mapping device inputs/outputs to stream inputs/outputs.
Also made the sound_stream_update() method pure virtual, so all modern
sound devices must use the new mechanism for stream updates.
Primary changes outside of the core are:
stream_update(stream) == stream->update()
stream_create(device,...) == machine->sound().stream_alloc(*device,...)
sound_global_enable(machine,enable) == machine->sound().system_enable(enable)
Beyond this, the patterns are relatively obvious for the remaining calls.
that manually XORed addresses to pass the XOR instead.
This improves behavior when direct accessors hit non-RAM regions, or
when watchpoints are used, because we now know the original, un-xored
address and can fall back to standard read/write handlers properly.
Also fixes glitched disassembly when read watchpoints are enabled.
module osdepend.c with default empty implementations. Changed
mame_execute() and cli_execute() to accept a reference to an
osd_interface which is provided by the caller.
Updated SDL and Windows OSD to create an osd_interface-derived
class and moved their OSD callbacks to be members.
debugger do it. This allows the device to start itself up before the
debugger tries to figure out what to do with it. Fixes the problem
where register names were not populated into the symbol table
correctly after I shuffled the initialization order.
The purpose of making it const before was to discourage direct tampering,
but private/protected does a better job of that now anyhow, and it is
annoying now.
s/const[ \t]+address_space\b/address_space/g;
Is basically what I did.
supporting cleaner implementations of drivers in the explicitly OO world.
Expect a follow-on of several more changes to clean up from this one, which
deliberately tried to avoid touching much driver code.
Converted address_space to a class, and moved most members behind accessor
methods, apart from space->machine and space->cpu. Removed external references
to 8le/8be/16le/16be/32le/32be/64le/64be. All external access is now done via
virtual functions read_byte()/read_word()/etc. Moved differentiation between
the endianness and the bus width internal to memory.c, and also added a new
axis to support small/large address spaces, which allows for faster lookups
on spaces smaller than 18 bits.
Provided methods for most global memory operations within the new address_space
class. These will be bulk converted in a future update, but for now there are
inline wrappers to hide this change from existing callers.
Created new module delegate.h which implements C++ delegates in a form that
works for MAME. Details are in the opening comment. Delegates allow member
functions of certain classes to be used as callbacks, which will hopefully
be the beginning of the end of fetching the driver_data field in most
callbacks. All classes that host delegates must derive from bindable_object.
Today, all devices and driver_data do implicitly via their base class.
Defined delegates for read/write handlers. The new delegates are always
passed an address_space reference, along with offset, data, and mask. Delegates
can refer to methods either in the driver_data class or in a device class.
To specify a callback in an address map, just use AM_READ_MEMBER(class, member).
In fact, all existing AM_ macros that take read/write handlers can now accept
delegates in their place. Delegates that are specified in an address map are
proto-delegates which have no object; they are bound to their object when
the corresponding address_space is created.
Added machine->m_nonspecific_space which can be passed as the required
address_space parameter to the new read/write methods in legacy situations
where the space is not provided. Eventually this can go away but we will
need it for a while yet.
Added methods to the new address_space class to dynamically install delegates
just like you can dynamically install handlers today. Delegates installed this
way must be pre-bound to their object.
Moved beathead's read/write handlers into members of beathead_state as an
example of using the new delegates. This provides examples of both static (via
an address_map) and dynamic (via install_handler calls) mapping using delegates.
Added read/write member functions to okim6295_device as an example of using
delegates to call devices. Updated audio/williams.c as a single example of
calling the device via its member function callbacks. These will be bulk
updated in a future update, and the old global callbacks removed.
Changed the DIRECT_UPDATE_CALLBACKs into delegates as well. Updated all users
to the new function format. Added methods on direct_read_data for configuring the
parameters in a standard way to make the implementation clearer.
Created a simple_list template container class for managing the common
singly-linked lists we use all over in the project.
Many other internal changes in memory.c, mostly involving restructuring the code
into proper classes.