* rewrote most of the execution for my tlcs870 core
* no longer the case (nw)
* note updates (nw)
* address concerns, const qualify more things where possible (nw)
* more const (nw)
* oops (nw)
* consistency (nw)
* Make more #include guards follow standard format - using MAME_ as the prefix makes it easy to see which ones come from our code in a preprocessor dump, and having both src/devices/machine/foo.h and src/mame/machine/foo.h causes issues anyway
* Get #include "emu.h" out of headers - it should only be the first thing in a complilation unit or we get differences in behaviour with PCH on/off
* Add out-of-line destructors to some devices - it forces the compiler to instantiate the vtable in a certain location and avoids some non-deterministic compiler behaviours
- Split execution of long branch/long skip instructions into two separate states
- Eliminate reset state
- Sample pushed EF lines at the right time
- Implement a few CDP1801 differences
- Correct disassembly of destinations for skip instructions
- SC callback also includes state of N lines for I/O instructions
- TPB callback added (not used yet)
- Callbacks can be configured through devcb3 bindings
Input and screen tags are now resolved relative to a layout's owner
device.
Easy way to demonstrate is with: mame64 intlc440 -tty ie15
Previously you'd only get the IE15 terminal's layout and you'd be unable
to use the INTELLEC 4/40 front panel. Now you'll get the choice of
layouts from both the system and the terminal device in video options.
There are multiple issues with the current device callbacks:
* They always dispatch through a pointer-to-member
* Chained callbacks are a linked list so the branch unit can't predict the early
* There's a runtime decision made on the left/right shift direction
* There are runtime NULL checks on various objects
* Binding a lambda isn't practical
* Arbitrary transformations are not supported
* When chaining callbacks it isn't clear what the MCFG_DEVCB_ modifiers apply to
* It isn't possible to just append to a callback in derived configuration
* The macros need a magic, hidden local called devcb
* Moving code that uses the magic locals around is error-prone
* Writing the MCFG_ macros to make a device usable is a pain
* You can't discover applicable MCFG_ macros with intellisense
* Macros are not scoped
* Using an inappropriate macro isn't detected at compile time
* Lots of other things
This changeset overcomes the biggest obstacle to remving MCFG_ macros
altogether. Essentially, to allow a devcb to be configured, call
.bind() and expose the result (a bind target for the callback). Bind
target methods starting with "set" repace the current callbacks; methods
starting with "append" append to them. You can't reconfigure a callback
after resolving it. There's no need to use a macro matching the
handler signatures - use FUNC for everything. Current device is implied
if no tag/finder is supplied (no need for explicit this).
Lambdas are supported, and the memory space and offset are optional.
These kinds of things work:
* .read_cb().set([this] () { return something; });
* .read_cb().set([this] (offs_t offset) { return ~offset; });
* .write_cb().set([this] (offs_t offset, u8 data) { m_array[offset] = data; });
* .write_cb().set([this] (int state) { some_var = state; });
Arbitrary transforms are allowed, and they can modify offset/mask for example:
* .read_cb().set(FUNC(my_state::handler)).transform([] (u8 data) { return bitswap<4>(data, 1, 3, 0, 2); });
* .read_cb().set(m_dev, FUNC(some_device::member)).transform([] (offs_t &offset, u8 data) { offset ^= 3; return data; });
It's possible to stack arbitrary transforms, at the cost of compile
time (the whole transform stack gets inlined at compile time). Shifts
count as an arbitrary transform, but mask/exor does not.
Order of mask/shift/exor now matters. Modifications are applied in the
specified order. These are NOT EQUIVALENT:
* .read_cb().set(FUNC(my_state::handler)).mask(0x06).lshift(2);
* .read_cb().set(FUNC(my_state::handler)).lshift(2).mask(0x06);
The bit helper no longer reverses its behaviour for read callbacks, and
I/O ports are no longer aware of the field mask. Binding a read
callback to no-op is not supported - specify a constant. The GND and
VCC aliases have been removed intentionally - they're TTL-centric, and
were already being abused.
Other quirks have been preserved, including write logger only logging
when the data is non-zero (quite unhelpful in many of the cases where
it's used). Legacy syntax is still supported for simple cases, but will
be phased out. New devices should not have MCFG_ macros.
I don't think I've missed any fundamental issues, but if I've broken
something, let me know.
Too many changes to describe in detail. A rewrite of the interrupt and dma code in the ioga, and fixes to the cpu and mmu were the most important things.