All of the once-numerous validation failures that this change induced have been fixed in preceding commits. Unmerged drivers may need to be modified to comply with this.
fundamental change to show device delegates are configured.
Device delegates are now aware of the current device during
configuration and will resolve string tags relative to it. This means
that device delegates need a device to be supplied on construction so
they can find the machine configuration object. There's a
one-dimensional array helper to make it easier to construct arrays of
device delegates with the same owner. (I didn't make an n-dimensional
one because I didn't hit a use case, but it would be a simple addition.)
There's no more bind_relative_to member - just call resolve() like you
would for a devcb. There's also no need to cast nullptr when creating a
late bind device delegate. The flip side is that for an overloaded or
non-capturing lambda you'll need to cast to the desired type.
There is one less conditional branch in the hot path for calls for
delegates bound to a function pointer of member function pointer. This
comes at the cost of one additional unconditional branch in the hot
path for calls to delegates bound to functoids (lambdas, functions that
don't take an object reference, other callable objects). This applies
to all delegates, not just device delegates.
Address spaces will now print an error message if a late bind error is
encountered while installing a handler. This will give the range and
address range, hopefully making it easier to guess which memory map is
faulty.
For the simple case of allowing a device_delegate member to be
configured, use a member like this:
template <typename... T> void set_foo(T &&...args) { m_foo_cb.set(std::forward<T>(args)...); }
For a case where different delegates need to be used depending on the
function signature, see src/emu/screen.h (the screen update function
setters).
Device delegates now take a target specification and function pointer.
The target may be:
* Target omitted, implying the current device being configured. This
can only be used during configuration. It will work as long as the
current device is not removed/replaced.
* A tag string relative to the current device being configured. This
can only be used during configuration. It will not be callable until
.resolve() is called. It will work as long as the current device is
not removed/replaced.
* A device finder (required_device/optional_device). The delegate will
late bind to the current target of the device finder. It will not
be callable until .resolve() is called. It will work properly if the
target device is replaced, as long as the device finder's base object
isn't removed/replaced.
* A reference to an object. It will be callable immediately. It will
work as long as the target object is not removed/replaced.
The target types and restrictions are pretty similar to what you already
have on object finders and devcb, so it shouldn't cause any surprises.
Note that dereferencing a device finder will changes the effect. To
illustrate this:
...
required_device<some_device> m_dev;
...
m_dev(*this, "dev")
...
// will late bind to "dev" relative to *this
// will work if "dev" hasn't been created yet or is replaced later
// won't work if *this is removed/replaced
// won't be callable until resolve() is called
cb1.set(m_dev, FUNC(some_device::w));
...
// will bind to current target of m_dev
// will not work if m_dev is not resolved
// will not work if "dev" is replaced later
// will be callable immediately
cb2.set(*m_dev, FUNC(some_device::w));
...
The order of the target and name has been reversed for functoids
(lambdas and other callable objects). This allows the NAME macro to
be used on lambdas and functoids. For example:
foo.set_something(NAME([this] (u8 data) { m_something = data; }));
I realise the diagnostic messages get ugly if you use NAME on a large
lambda. You can still give a literal name, you just have to place it
after the lambda rather than before. This is uglier, but it's
intentional. I'm trying to drive developers away from a certain style.
While it's nice that you can put half the driver code in the memory map,
it detracts from readability. It's hard to visualise the memory range
mappings if the memory map functions are punctuated by large lambdas.
There's also slightly higher overhead for calling a delegate bound to a
functoid.
If the code is prettier for trivial lambdas but uglier for non-trivial
lambdas in address maps, it will hopefully steer people away from
putting non-trivial lambdas in memory maps.
There were some devices that were converted from using plain delegates
without adding bind_relative_to calls. I fixed some of them (e.g.
LaserDisc) but I probably missed some. These will likely crash on
unresolved delegate calls.
There are some devices that reset delegates at configuration complete or
start time, preventing them from being set up during configuration (e.g.
src/devices/video/ppu2c0x.cpp and src/devices/machine/68307.cpp). This
goes against the design principles of how device delegates should be
used, but I didn't change them because I don't trust myself to find all
the places they're used.
I've definitely broken some stuff with this (I know about asterix), so
report issues and bear with me until I get it all fixed.
(nw) This has been a long time coming but it's here at last. It should
be easier now that logerror, popmessage and osd_printf_* behave like
string_format and stream_format. Remember the differences from printf:
* Any object with a stream out operator works with %s
* %d, %i, %o, %x, %X, etc. work out the size by magic
* No sign extending promotion to int for short/char
* No widening/narrowing conversions for characters/strings
* Same rules on all platforms, insulated from C runtime library
* No format warnings from compiler
* Assert in debug builds if number of arguments doesn't match format
(nw) Also removed a pile of redundant c_str and string_format, and some
workarounds for not being able to portably format 64-bit integers or
long long.
This effectively reverts b380514764 and
c24473ddff, restoring the state at
598cd52272.
Before pushing, please check that what you're about to push is sane.
Check your local commit log and ensure there isn't anything out-of-place
before pushing to mainline. When things like this happen, it wastes
everyone's time. I really don't need this in a week when real work™ is
busting my balls and I'm behind where I want to be with preparing for
MAME release.
Since all device address maps are now class methods defined in ordinary C++, default RAM maps can be provided more simply with an explicit has_configured_map check in an internal map definition.
A number of default address maps that probably weren't meant to be overridden have also been changed to ordinary internal maps.
A standard memory handler has as a prototype (where uX = u8, u16, u32 or u64):
uX device::read(address_space &space, offs_t offset, uX mem_mask);
void device::write(address_space &space, offs_t offset, uX data, uX mem_mask);
We now allow simplified versions which are:
uX device::read(offs_t offset, uX mem_mask);
void device::write(offs_t offset, uX data, uX mem_mask);
uX device::read(offs_t offset);
void device::write(offs_t offset, uX data);
uX device::read();
void device::write(uX data);
Use them at will. Also consider
(DECLARE_)(READ|WRITE)(8|16|32|64)_MEMBER on the way out, use the
explicit prototypes.
Same for lambdas in the memory map, the parameters are now optional
following the same combinations.
This change is intended to expedite debugging of software written for the TMPZ84C015 or similar Z80-based controllers which use 8-bit I/O addressing for the on-chip peripherals but may use either 8-bit or 16-bit addressing externally.
The new cswidth address map constructor method overrides the masking normally performed on narrow-width accesses. This entailed a lot of reconfiguration to make the shifting and masking of subunits independent operations. There is unlikely to have any significant performance impact on drivers that don't frequently reconfigure their memory handlers.
* direct_read_data is now a template which takes the address bus shift
as a parameter.
* address_space::direct<shift>() is now a template method that takes
the shift as a parameter and returns a pointer instead of a
reference
* the address to give to {read|write}_* on address_space or
direct_read_data is now the address one wants to access
Longer explanation:
Up until now, the {read|write}_* methods required the caller to give
the byte offset instead of the actual address. That's the same on
byte-addressing CPUs, e.g. the ones everyone knows, but it's different
on the word/long/quad addressing ones (tms, sharc, etc...) or the
bit-addressing one (tms340x0). Changing that required templatizing
the direct access interface on the bus addressing granularity,
historically called address bus shift. Also, since everybody was
taking the address of the reference returned by direct(), and
structurally didn't have much choice in the matter, it got changed to
return a pointer directly.
Longest historical explanation:
In a cpu core, the hottest memory access, by far, is the opcode
fetching. It's also an access with very good locality (doesn't move
much, tends to stay in the same rom/ram zone even when jumping around,
tends not to hit handlers), which makes efficient caching worthwhile
(as in, 30-50% faster core iirc on something like the 6502, but that
was 20 years ago and a number of things changed since then). In fact,
opcode fetching was, in the distant past, just an array lookup indexed
by pc on an offset pointer, which was updated on branches. It didn't
stay that way because more elaborate access is often needed (handlers,
banking with instructions crossing a bank...) but it still ends up with
a frontend of "if the address is still in the current range read from
pointer+address otherwise do the slowpath", e.g. two usually correctly
predicted branches plus the read most of the time.
Then the >8 bits cpus arrived. That was ok, it just required to do
the add to a u8 *, then convert to a u16/u32 * and do the read. At
the asm level, it was all identical except for the final read, and
read_byte/word/long being separate there was no test (and associated
overhead) added in the path.
Then the word-addressing CPUs arrived with, iirc, the tms cpus used in
atari games. They require, to read from the pointer, to shift the
address, either explicitely, or implicitely through indexing a u16 *.
There were three possibilities:
1- create a new read_* method for each size and granularity. That
amounts to a lot of copy/paste in the end, and functions with
identical prototypes so the compiler can't detect you're using the
wrong one.
2- put a variable shift in the read path. That was too expensive
especially since the most critical cpus are byte-addressing (68000 at
the time was the key). Having bit-adressing cpus which means the
shift can either be right or left depending on the variable makes
things even worse.
3- require the caller to do the shift himself when needed.
The last solution was chosen, and starting that day the address was a
byte offset and not the real address. Which is, actually, quite
surprising when writing a new cpu core or, worse, when using the
read/write methods from the driver code.
But since then, C++ happened. And, in particular, templates with
non-type parameters. Suddendly, solution 1 can be done without the
copy/paste and with different types allowing to detect (at runtime,
but systematically and at startup) if you got it wrong, while still
generating optimal code. So it was time to switch to that solution
and makes the address parameter sane again. Especially since it makes
mucking in the rest of the memory subsystem code a lot more
understandable.
- Fix a bug which effectively treated AM_MIRROR as AM_SELECT when applied to a single-address range mirrored into a contiguous block. The automatic expansion of zero address masks now only applies to those stemming from (default) configuration, not from optimization. (This allows the assertion in latch8_device to be reinstated.)
- Fix a bug where AM_SELECT applied to narrow-width handlers with a submaximal number of subunits would select the wrong address bits or none at all. (This allows rpunch_gga_w to be WRITE8 as intended.)
- Add more stringent appropriateness checking of unit masks for narrow-width handlers.
- tms32025: Correct space of internal data maps
- mc1000: Separate out opcodes map
- addrmap.cpp: Replace a few debug asserts with friendlier error messages (makes validation less dangerous in debug builds)
* New abbreviated types are in osd and util namespaces, and also in global namespace for things that #include "emu.h"
* Get rid of import of cstdint types to global namespace (C99 does this anyway)
* Remove the cstdint types from everything in emu
* Get rid of U64/S64 macros
* Fix a bug in dps16 caused by incorrect use of macro
* Fix debugcon not checking for "do " prefix case-insensitively
* Fix a lot of messed up tabulation
* More constexpr
* Fix up many __names
Use standard uint64_t, uint32_t, uint16_t or uint8_t instead of UINT64, UINT32, UINT16 or UINT8
also use standard int64_t, int32_t, int16_t or int8_t instead of INT64, INT32, INT16 or INT8
- Alter a bunch of address maps so all validity checks pass. These includes global address masks in Hexaa and the Newbrain FDC (regression testing should be done here).
- Remove the Lisa wraparound read/write handlers.
- Added AM_SELECT/addrselect field. Replaces the old
AM_MIRROR/AM_MASK combo used to mirror a handler and get the mirrored
bits in the offset.
- Removed mask and/or mirror from where it didn't belong. Simplified
a lot of instances of mask that just weren't needed, especially in bus
handlers. Used the short forms of install handlers where possible.
- Replaced the 60s hippy, "It's cool man" range parameter handling in
map_range that tried to guess what was meant when the values passed
were not entirely sensible, by a cranky, diner waitress-turned IRS
auditor curmudgeon. Main control function has a series of 14 tests
just to find a reason to fatalerror out your requests. You have
been warned.
Some drivers, hopefully not many, will fail the gate-guarding
bureaucrat trials. Should be easy to fix actually, I worked on the
error messages. A full regression test would be welcome.