cases, we can get rid of the postload function entirely and just
call directly to the target function. Drivers eventually should
just override device_postload() instead of registering for callbacks.
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
space by index. Update functions and methods that accepted an
address space index to take an address_spacenum instead. Note that
this means you can't use a raw integer in ADDRESS_SPACE macros, so
instead of 0 use the enumerated AS_0.
Standardized the project on the shortened constants AS_* over the
older ADDRESS_SPACE_*. Removed the latter to prevent confusion.
Also centralized the location of these definitions to memory.h.
are still intact. The new state_manager class has templatized methods
for saving the various types, and through template specialization can
save more complex system types cleanly (like bitmaps and attotimes).
Added new mechanism to detect proper state save types. This is much
more strict and there will likely be some games/devices that fatalerror
at startup until they are remedied. Spot checking has caught the more
common situations.
The new state_manager is embedded directly in the running_machine,
allowing objects to register state saving in their constructors now.
Added NAME() macro which is a generalization of FUNC() and can be
used to wrap variables that are registered when directly using the
new methods as opposed to the previous macros. For example:
machine->state().save_item(NAME(global_item))
Added methods in the device_t class that implicitly register state
against the current device, making for a cleaner interface.
Just a couple of required regexes for now:
state_save_register_postload( *)\(( *)([^,;]+), *
\3->state().register_postload\1\(\2
state_save_register_presave( *)\(( *)([^,;]+), *
\3->state().register_presave\1\(\2
timers into the scheduler. Retain TIMER devices as a separate wrapper
in timer.c/.h. Inline wrappers are currently provided for all timer
operations; a future update will bulk clean these up.
Rather than using macros which hide generation of a string-ified name
for callback functions, the new methods require passing both a function
pointer plus a name string. A new macro FUNC() can be used to output
both, and another macro MFUNC() can be used to output a stub-wrapped
class member as a callback.
Also added a time() method on the machine, so that machine->time() gives
the current emulated time. A wrapper for timer_get_time is currently
provided but will be bulk replaced in the future.
For this update, convert all classic timer_alloc, timer_set,
timer_pulse, and timer_call_after_resynch calls into method calls on
the scheduler.
For new device timers, added methods to the device_t class that make
creating and managing these much simpler. Modern devices were updated
to use these.
Here are the regexes used; some manual cleanup (compiler-caught) will
be needed since regex doesn't handle nested parentheses cleanly
1. Convert timer_call_after_resynch calls
timer_call_after_resynch( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().synchronize\1\(\2FUNC(\6), \5, \4\)
2. Clean up trailing 0, NULL parameters
(synchronize[^;]+), 0, NULL\)
\1)
3. Clean up trailing NULL parameters
(synchronize[^;]+), NULL\)
\1)
4. Clean up completely empty parameter lists
synchronize\(FUNC\(NULL\)\)
synchronize()
5. Convert timer_set calls
timer_set( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_set\1\(\2\4, FUNC(\7), \6, \5\)
6. Clean up trailing 0, NULL parameters
(timer_set[^;]+), 0, NULL\)
\1)
7. Clean up trailing NULL parameters
(timer_set[^;]+), NULL\)
\1)
8. Convert timer_set calls
timer_pulse( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_pulse\1\(\2\4, FUNC(\7), \6, \5\)
9. Clean up trailing 0, NULL parameters
(timer_pulse[^;]+), 0, NULL\)
\1)
10. Clean up trailing NULL parameters
(timer_pulse[^;]+), NULL\)
\1)
11. Convert timer_alloc calls
timer_alloc( *)\(( *)([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_alloc\1\(\2FUNC(\4), \5\)
12. Clean up trailing NULL parameters
(timer_alloc[^;]+), NULL\)
\1)
13. Clean up trailing 0 parameters
(timer_alloc[^;]+), 0\)
\1)
14. Fix oddities introduced
\&m_machine->scheduler()
m_machine.scheduler()
global functions which are now superceded by the operators and
methods on the class. [Aaron Giles]
Required mappings are:
attotime_make(a,b) => attotime(a,b)
attotime_to_double(t) => t.as_double()
double_to_attotime(d) => attotime::from_double(d)
attotime_to_attoseconds(t) => t.as_attoseconds()
attotime_to_ticks(t,f) => t.as_ticks(f)
ticks_to_attotime(t,f) => attotime::from_ticks(t,f)
attotime_add(a,b) => a + b
attotime_add_attoseconds(a,b) => a + attotime(0, b)
attotime_sub(a,b) => a - b
attotime_sub_attoseconds(a,b) => a - attotime(0, b)
attotime_compare(a,b) == 0 => a == b
attotime_compare(a,b) != 0 => a != b
attotime_compare(a,b) < 0 => a < b
attotime_compare(a,b) <= 0 => a <= b
attotime_compare(a,b) > 0 => a > b
attotime_compare(a,b) >= 0 => a >= b
attotime_mul(a,f) => a * f
attotime_div(a,f) => a / f
attotime_min(a,b) => min(a,b)
attotime_max(a,b) => max(a,b)
attotime_is_never(t) => t.is_never()
attotime_string(t,p) => t.as_string(p)
In addition, some existing #defines still exist but will go away:
attotime_zero => attotime::zero
attotime_never => attotime::never
ATTOTIME_IN_SEC(s) => attotime::from_seconds(s)
ATTOTIME_IN_MSEC(m) => attotime::from_msec(m)
ATTOTIME_IN_USEC(u) => attotime::from_usec(u)
ATTOTIME_IN_NSEC(n) => attotime::from_nsec(n)
ATTOTIME_IN_HZ(h) => attotime::from_hz(h)
DECLARE_LEGACY_CPU_DEVICE and DEFINE_LEGACY_CPU_DEVICE. Changed CPUs
to be their own device types, rather than all of type CPU with a
special internal subtype. Note that as part of this process I removed
the CPU_ prefix from the ALL-CAPS device name, so CPU_Z80 is just
plain old Z80 now. This required changing a couple of names like
8080 to I8080 so that there was an alphabetic first character.
Added memory interfaces to the list of fast-access interfaces. To do
this properly I had to add a separate method to devices which is
called immediately after construction, when it is possible to perform
dynamic_casts on fully-constructed objects. (This is just internal,
no changes necessary to the devices themselves.)
Some additional notes:
* SH2 and SH4 had typedefs that conflicted with their CPU_-less names
so I bulk renamed to structures to sh2_state and sh4_state; RB, feel
free to choose alternate names if you don't like 'em
* SCSP was caught doing something to the 3rd indexed CPU. Since several
systems that use SCSP don't even have 3 CPUs, I had no idea what
this was supposed to do, so I changed to it reference "audiocpu"
assuming that stv was the assumed target. This is really gross and
should be a configuration parameter, not a hard-coded assumption.
atarijsa.c: just use a generic device for the tms5220 to handle variants until
we have a proper base class (fixes eprom, eprom2 - eprom.c
"assert: src/emu/emucore.h:328: dynamic_cast<_Dest>(src) == src")
decocass.c: invert sense of reset line to MCU (fixes All sets in decocass.c -
Games no longer begin loading (countdown))
metro.c: use generic device for the YM sound since multiple YM chips are used.
(fixes 3kokushi, blzntrnd, dharma, dharmak, dokyusei, dokyusp, gstrik2, gstrik2j,
karatour, ladykill, lastfort, lastforte, lastforte, lastfortg, lastfortk, skyalert,
toride2g, toride2gg, toride2j - metro.c
"assert: src/emu/emucore.h:328: dynamic_cast<_Dest>(src) == src")
mitchell.c: when swapping the OKIM6295 for an MSM5205, use a different tag.
(fixes pangba, spangbl - mitchell.c
"assert: src/emu/emucore.h:328: dynamic_cast<_Dest>(src) == src")
deco32.c: use a proper EEPROM device to fetch the space from.
(fixes tattass, tattassa - deco32.c - Crash while checking "Jack Ram" before start
"assert: src/emu/emucore.h:328: dynamic_cast<_Dest>(src) == src")
system1.c: use a proper z80pio_device (cleanup)
vconv.c: support -g* options for MSVC builds (cleanup)
m377101.c/g65816.c: fix fault logic for mapping icount (fixes
All sets in namcofl.c, namcona1.c, namconb1.c, nss.c, sfcbox.c, snesb.c
airco22b, cybrcycc, dirtdash, rrf, timecrs, timecrsa - namcos22.c
Hanging immediately or shortly after start.
"assert: src/emu/schedule.c:189: ran >= *exec->m_icount")
schedule.c/diexec.c/timer.c: add temporary logging to permit direct comparisons with
earlier games timing (cleanup)
generic.c: fix computation of time for turning off the IRQ when using
generic_pulse_irq() to account for CPU-local time (fixes
Any sets in bublbobl.c which use the which use m6801 - Frequent/Random watchdog resets.)
z80pio.c: convert internal line states to bool, and fix typo (control_write should have
been data_write in one place) (fixes Any system1.c games which use z80pio - No sound)
performance as a result of this change. Do not panic; report issues to the
list in the short term and I will look into them. There are probably also
some details I forgot to mention. Please ask questions if anything is not
clear.
NOTE: This is a major internal change to the way devices are handled in
MAME. There is a small impact on drivers, but the bulk of the changes are
to the devices themselves. Full documentation on the new device handling
is in progress at http://mamedev.org/devwiki/index.php/MAME_Device_Basics
Defined two new casting helpers: [Aaron Giles]
downcast<type>(value) should be used for safe and efficient downcasting
from a base class to a derived class. It wraps static_cast<> by adding
an assert that a matching dynamic_cast<> returns the same result in
debug builds.
crosscast<type>(value) should be used for safe casting from one type to
another in multiple inheritance scenarios. It compiles to a
dynamic_cast<> plus an assert on the result. Since it does not optimize
down to static_cast<>, you should prefer downcast<> over crosscast<>
when you can.
Redefined running_device to be a proper C++ class (now called device_t).
Same for device_config (still called device_config). All devices and
device_configs must now be derived from these base classes. This means
each device type now has a pair of its own unique classes that describe
the device. Drivers are encouraged to use the specific device types
instead of the generic running_device or device_t classes. Drivers that
have a state class defined in their header file are encouraged to use
initializers off the constructor to locate devices. [Aaron Giles]
Removed the following fields from the device and device configuration
classes as they never were necessary or provided any use: device class,
device family, source file, version, credits. [Aaron Giles]
Added templatized variant of machine->device() which performs a downcast
as part of the device fetch. Thus machine->device<timer_device>("timer")
will locate a device named "timer", downcast it to a timer_device, and
assert if the downcast fails. [Aaron Giles]
Removed most publically accessible members of running_device/device_t in
favor of inline accessor functions. The only remaining public member is
machine. Thus all references to device->type are now device->type(), etc.
[Aaron Giles]
Created a number of device interface classes which are designed to be mix-
ins for the device classes, providing specific extended functionality and
information. There are standard interface classes for sound, execution,
state, nvram, memory, and disassembly. Devices can opt into 0 or more of
these classes. [Aaron Giles]
Converted the classic CPU device to a standard device that uses the
execution, state, memory, and disassembly interfaces. Used this new class
(cpu_device) to implement the existing CPU device interface. In the future
it will be possible to convert each CPU core to its own device type, but
for now they are still all CPU devices with a cpu_type() that specifies
exactly which kind of CPU. [Aaron Giles]
Created a new header devlegcy.h which wraps the old device interface using
some special template classes. To use these with an existing device,
simply remove from the device header the DEVICE_GET_INFO() declaration and
the #define mapping the ALL_CAPS name to the DEVICE_GET_INFO. In their
place #include "devlegcy.h" and use the DECLARE_LEGACY_DEVICE() macro.
In addition, there is a DECLARE_LEGACY_SOUND_DEVICE() macro for wrapping
existing sound devices into new-style devices, and a
DECLARE_LEGACY_NVRAM_DEVICE() for wrapping NVRAM devices. Also moved the
token and inline_config members to the legacy device class, as these are
not used in modern devices. [Aaron Giles]
Converted the standard base devices (VIDEO_SCREEN, SPEAKER, and TIMER)
from legacy devices to the new C++ style. Also renamed VIDEO_SCREEN to
simply SCREEN. The various global functions that were previously used to
access information or modify the state of these devices are now replaced
by methods on the device classes. Specifically:
video_screen_configure() == screen->configure()
video_screen_set_visarea() == screen->set_visible_area()
video_screen_update_partial() == screen->update_partial()
video_screen_update_now() == screen->update_now()
video_screen_get_vpos() == screen->vpos()
video_screen_get_hpos() == screen->hpos()
video_screen_get_vblank() == screen->vblank()
video_screen_get_hblank() == screen->hblank()
video_screen_get_width() == screen->width()
video_screen_get_height() == screen->height()
video_screen_get_visible_area() == screen->visible_area()
video_screen_get_time_until_pos() == screen->time_until_pos()
video_screen_get_time_until_vblank_start() ==
screen->time_until_vblank_start()
video_screen_get_time_until_vblank_end() ==
screen->time_until_vblank_end()
video_screen_get_time_until_update() == screen->time_until_update()
video_screen_get_scan_period() == screen->scan_period()
video_screen_get_frame_period() == screen->frame_period()
video_screen_get_frame_number() == screen->frame_number()
timer_device_adjust_oneshot() == timer->adjust()
timer_device_adjust_periodic() == timer->adjust()
timer_device_reset() == timer->reset()
timer_device_enable() == timer->enable()
timer_device_enabled() == timer->enabled()
timer_device_get_param() == timer->param()
timer_device_set_param() == timer->set_param()
timer_device_get_ptr() == timer->get_ptr()
timer_device_set_ptr() == timer->set_ptr()
timer_device_timeelapsed() == timer->time_elapsed()
timer_device_timeleft() == timer->time_left()
timer_device_starttime() == timer->start_time()
timer_device_firetime() == timer->fire_time()
Updated all drivers that use the above functions to fetch the specific
device type (timer_device or screen_device) and call the appropriate
method. [Aaron Giles]
Changed machine->primary_screen and the 'screen' parameter to VIDEO_UPDATE
to specifically pass in a screen_device object. [Aaron Giles]
Defined a new custom interface for the Z80 daisy chain. This interface
behaves like the standard interfaces, and can be added to any device that
implements the Z80 daisy chain behavior. Converted all existing Z80 daisy
chain devices to new-style devices that inherit this interface.
[Aaron Giles]
Changed the way CPU state tables are built up. Previously, these were data
structures defined by a CPU core which described all the registers and how
to output them. This functionality is now part of the state interface and
is implemented via the device_state_entry class. Updated all CPU cores
which were using the old data structure to use the new form. The syntax is
currently awkward, but will be cleaner for CPUs that are native new
devices. [Aaron Giles]
Converted the okim6295 and eeprom devices to the new model. These were
necessary because they both require multiple interfaces to operate and it
didn't make sense to create legacy device templates for these single cases.
(okim6295 needs the sound interface and the memory interface, while eeprom
requires both the nvram and memory interfaces). [Aaron Giles]
Changed parameters in a few callback functions from pointers to references
in situations where they are guaranteed to never be NULL. [Aaron Giles]
Removed MDRV_CPU_FLAGS() which was only used for disabling a CPU. Changed
it to MDRV_DEVICE_DISABLE() instead. Updated drivers. [Aaron Giles]
Reorganized the token parsing for machine configurations. The core parsing
code knows how to create/replace/remove devices, but all device token
parsing is now handled in the device_config class, which in turn will make
use of any interface classes or device-specific token handling for custom
token processing. [Aaron Giles]
Moved many validity checks out of validity.c and into the device interface
classes. For example, address space validation is now part of the memory
interface class. [Aaron Giles]
Consolidated address space parameters (bus width, endianness, etc.) into
a single address_space_config class. Updated all code that queried for
address space parameters to use the new mechanism. [Aaron Giles]
- Created new central header "emu.h"; this should be included
by pretty much any driver or device as the first include. This
file in turn includes pretty much everything a driver or device
will need, minus any other devices it references. Note that
emu.h should *never* be included by another header file.
- Updated all files in the core (src/emu) to use emu.h.
- Removed a ton of redundant and poorly-tracked header includes
from within other header files.
- Temporarily changed driver.h to map to emu.h until we update
files outside of the core.
Added class wrapper around tagmap so it can be directly included
and accessed within objects that need it. Updated all users to
embed tagmap objects and changed them to call through the class.
Added nicer functions for finding devices, ports, and regions in
a machine:
machine->device("tag") -- return the named device, or NULL
machine->port("tag") -- return the named port, or NULL
machine->region("tag"[, &length[, &flags]]) -- return the
named region and optionally its length and flags
Made the device tag an astring. This required touching a lot of
code that printed the device to explicitly fetch the C-string
from it. (Thank you gcc for flagging that issue!)
to devintrf (including endianness). Removed space array from the
CPU class header. Made the memory system much more device-neutral.
Various other cleanups along the way.
Sent: Sunday, June 07, 2009 9:54 AM
To: submit@mamedev.org
Cc: atariace@hotmail.com
Subject: [patch] "Regularize" some interfaces in MAME
Hi mamedev,
This patch adjusts the code in a few places to be more regular in it
object approach. It recognizes five idioms.
1. device_configs should be passed const. dsp56k.h took a non-const
device_config for no particular reason, necessitating casting where
used. A few other places cast to non-const, in most cases
unnecessarily.
2. running_machines should be passed non-const. A few places used
const in different ways on running_machines, instead of the idiomatic
non-const running_machine.
3. Eliminate passing running_machine explicitly where it can be
computed. esrip.c, m37710.c, sfbonus.c had cases where the machine
could easily be eliminated.
4. Pass the object machine/config first. In some cases this makes
the interface object oriented, in some cases it simply makes it more
idiomatic with the rest of MAME.
5. Prefer (screen, bitmap, cliprect) to (machine, bitmap, cliprect).
Fully implementing this would be a large patch, this patch simply does
it for the one core 'device', tms9928a.c.
Sent: Sunday, January 11, 2009 5:52 AM
To: submit@mamedev.org
Subject: unreachable code cleanup
This patch cleans up the usage of unreachable code (mostly
unnecessary breaks after returns in switch - case). A few case of
really unused code were also discovered. I marked thos with FIXME
comments.
I based this cleanup on teh output of cppcheck. It does still missing
a few cases of unreachable code, so there might be future patches to
address more cases.
Sent: Saturday, January 03, 2009 10:20 AM
To: submit@mamedev.org
Cc: atariace@hotmail.com
Subject: [patch] static/const/include fixes
Hi mamedev,
Here's my aperiodic code cleanup patch for MAME, adding static/const
and adjusting header files. In a few places I went a bit further.
1. arm7core.[ch],segas24.[ch]: Rewrote some abuses of the HANDLER
macros to use _func types instead.
2. m37710: Removed some long dead state save functions.
3. spc700: Removed the interface declarations and functions. Most of
it is handled by CPU_GET_INFO, some of it was no longer implemented,
and since pointerization it wasn't possible to call it externally
anyhow.
4. segac2: I removed the palette variables aliasing the megadrive ones
and just used the megadrive ones directly.
5. snes: All the obc1_, DSP1_, DSP2_ exports were made static. I'd
avoided doing this previously for fear it might break MESS, but after
auditing I'm fairly certain this shouldn't cause problems.
~aa
bus width and shift CPU interface constants. Changed all the cores
to use them.
Minor spacing cleanup in Z80, Z180, TMS34010, ADSP21xx cores.
Changed ADSP21xx cores to accept a configuration struct instead of
using set_info to specify serial port callbacks. Simplified the
ADSP21xx get/set info significantly. Removed support for only
including certain variants of the chips; they are now either all
supported or all unsupported.
Added new function cpuexec_describe_context(machine) which can be
used in logerror() and other printf-style functions to return a
description of the current CPU/PC given only the machine. Changed
several dozen sites to use this instead of directly interrogating
the activecpu.
Removed all other uses of activecpu throughout the system. Removed
activecpu from the machine structure to prevent future abuse.
Removed cpu_push_context() and cpu_pop_context(), and all call
sites.
Voodoo devices now require a CPU to be defined in the configuration
in order to know whom to steal cycles from or stall when FIFOs get
full. Updated all voodoo users to specify one.
CPD1869 devices now also require a CPU to be defined in the
configuration, in order to know which CPU's registers to fetch.
Updated all cdp1869 users to specify one.
Many other small changes to make this all work.
from the CPU cores.
Disabled the use of PULSE_LINE for any input lines except NMI and RESET.
Added a helper function generic_pulse_irq_line() for doing a single-cycle
assert/deassert for those few drivers remaining that were trying to use
PULSE_LINE directly.
appropriate, and to keep all global variables hanging off the
machine structure. Once again, this means all state registration
call sites have been touched:
- state_save_register_global* now takes a machine parameter
- state_save_register_item* now takes a machine parameter
- added new state_save_register_device_item* which now uses
the device name and tag to generate the base name
Extended the fake sound devices to have more populated fields.
Modified sound cores to use tags from the devices and simplified
the start function.
Renumbered CPU and sound get/set info constants to align with
the device constants, and shared values where they were perfectly
aligned.
Set the type field in the fake device_configs for CPU and sound
chips to a get_info stub which calls through to the CPU and sound
specific get_info functions. This means the device_get_info()
functions work for CPU and sound cores, even in their fake state.
Changed device information getters from device_info() to
device_get_info() to match the CPU and sound macros.
state_save_combine_module_and_tag() function in favor of passing
the tag when registering. Revisited all save state item registrations
and changed them to use the tag where appropriate.