is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
- Created new central header "emu.h"; this should be included
by pretty much any driver or device as the first include. This
file in turn includes pretty much everything a driver or device
will need, minus any other devices it references. Note that
emu.h should *never* be included by another header file.
- Updated all files in the core (src/emu) to use emu.h.
- Removed a ton of redundant and poorly-tracked header includes
from within other header files.
- Temporarily changed driver.h to map to emu.h until we update
files outside of the core.
Added class wrapper around tagmap so it can be directly included
and accessed within objects that need it. Updated all users to
embed tagmap objects and changed them to call through the class.
Added nicer functions for finding devices, ports, and regions in
a machine:
machine->device("tag") -- return the named device, or NULL
machine->port("tag") -- return the named port, or NULL
machine->region("tag"[, &length[, &flags]]) -- return the
named region and optionally its length and flags
Made the device tag an astring. This required touching a lot of
code that printed the device to explicitly fetch the C-string
from it. (Thank you gcc for flagging that issue!)
- Reworked PMMU/core interface so PMMU now sees all cop 0 instructions
- Improved disassembly of PMMU instructions
- Preliminary 68LC040 support
- Fixed disassembly for EC/LC variants of '030/'040
- Added working PMMU address translation (not feature complete, but sufficient
to boot several 68030 Macs in MESS)
- Fixed up disassembly of some PMMU instructions
- Added "68020 with 68851" CPU type
Date: Sat, 25 Jul 2009 11:57:29 -0700
To: submit@mamedev.org<submit@mamedev.org>
Subject: 68k cpu reset eat cycles fix
Hello,
Attached is a diff for 0133 that fixes a bug related to eating cycles
during 68k cpu reset. Previously, initial_cycles had a wrong value
after reset, and if cycles were < 0, it'd always return 0, .. check
the diff to see what I mean.
This change also happens to fix a scrolling bug in Fantasy Zone,
introduced when that cycle eating thing was added.
Greets,
hap
to devintrf (including endianness). Removed space array from the
CPU class header. Made the memory system much more device-neutral.
Various other cleanups along the way.
The plan is to add the on-chip peripherals on the magicard.c driver then, when I get some consistency, hardwire it to the cpu core.
Please check this modification asap (should be fine, but I haven't compiled with a clean build)
function here. Remaining devices have been converted to have
device-specific functions to do the same thing with proper type
checking.
CPUs still have a set_info function but it is CPU-specific now and
no longer piggybacks on the general device function.
describes the interface, but does not contain any implementation.
All remaining bits of implementation have been migrated either to
cpuexec.c or to debugcpu.c. Specifically, cpu_dasm() is now
debug_cpu_disassemble(), and cpu_set_dasm_override() is now
debug_cpu_set_dasm_override(). Also moved memory_address_physical()
to debug_cpu_translate(), since it was only ever used for
debugging.
Changed all CPU and sound cores to use memory_find_address_space()
instead of cpu_get_address_space(). The former is reliable even
during early initialization when the CPU cores generally need it.
Removed the dummy CPU core and cpuintrf.c.
Changed the core execution loop to directly call the execute
function instead of using the inline helper (which has been removed).
bus width and shift CPU interface constants. Changed all the cores
to use them.
Minor spacing cleanup in Z80, Z180, TMS34010, ADSP21xx cores.
Changed ADSP21xx cores to accept a configuration struct instead of
using set_info to specify serial port callbacks. Simplified the
ADSP21xx get/set info significantly. Removed support for only
including certain variants of the chips; they are now either all
supported or all unsupported.
specified when the device is added, and the clock is available in
the device_config directly via device->clock. Updated all devices
that have a clock to specify it when adding the device, rather than
as part of their configuration. As part of this work, also created
device-specific _ADD and _REMOVE macros to simplify configuration.
Dfined a generic device execute function callback, though it
is not used yet. The long term plan is that any device with an
execute callback will be scheduled along with the CPUs. Now that
CPUs are devices, their scheduling will be moved over to this
logic eventually.
Changed various NVRAM devices to fetch their default memory region
from the device->region rather than specifying it in the
configuration.
Moved a number of CPUINFO_PTR_* constants to CPUINFO_FCT_*.
Fixed several drivers that manually created their own gfx_elements
to fill in the machine object, so they no longer crash.
Fixed incorrect CPU display on info screen (recently broken).
Moved device startup to *before* the DRIVER_INIT is called. This
is to allow the DRIVER_INIT to configure devices that have been
properly allocated. So far I don't see any negative effects, but
be on the lookout if something weird shows up.
Rewrote the device iteration logic to make use of the typenext
field and the newly-introduced classnext field for iterating more
efficiently through devices of a given type or class.
Fixed behavior of MDRV_CPU_REPLACE so it does not delete and then
re-add a CPU (causing the order to change).
from the CPU cores.
Disabled the use of PULSE_LINE for any input lines except NMI and RESET.
Added a helper function generic_pulse_irq_line() for doing a single-cycle
assert/deassert for those few drivers remaining that were trying to use
PULSE_LINE directly.
appropriate, and to keep all global variables hanging off the
machine structure. Once again, this means all state registration
call sites have been touched:
- state_save_register_global* now takes a machine parameter
- state_save_register_item* now takes a machine parameter
- added new state_save_register_device_item* which now uses
the device name and tag to generate the base name
Extended the fake sound devices to have more populated fields.
Modified sound cores to use tags from the devices and simplified
the start function.
Renumbered CPU and sound get/set info constants to align with
the device constants, and shared values where they were perfectly
aligned.
Set the type field in the fake device_configs for CPU and sound
chips to a get_info stub which calls through to the CPU and sound
specific get_info functions. This means the device_get_info()
functions work for CPU and sound cores, even in their fake state.
Changed device information getters from device_info() to
device_get_info() to match the CPU and sound macros.
works. Added callback parameters to the expression engine. Improved
CPU parsing so you can use a CPU tag or index in most commands that
take one. Switched to passing CPU and address space objects around
where appropriate. Lots of other minor tweaks.
Removed opbase globals to the address_space structure.
Cleaned up names of pointers (decrypted and raw versus rom and ram).
Added inline functions to read/write data via any address space.
Added macros for existing functions to point them to the new functions.
Other related cleanups.
into the core proper and removed unused macros. Changed all
external interfaces to pass the CPU device. Enabled 64-bit
operations by default. Re-derived the interface functions to
cascade and share code more aggressively.
These changes also seem to have cured the taito_f3 issues as
far as I can tell (at least pbobble3 seems right now).
state_save_combine_module_and_tag() function in favor of passing
the tag when registering. Revisited all save state item registrations
and changed them to use the tag where appropriate.
* added a set of cpu_* calls which accept a CPU device object;
these are now the preferred means of manipulating a CPU
* removed the cpunum_* calls; added an array of cpu[] to the
running_machine object; converted all existing cpunum_* calls
to cpu_* calls, pulling the CPU device object from the new
array in the running_machine
* removed the activecpu_* calls; added an activecpu member to
the running_machine object; converted all existing activecpu_*
calls to cpu_* calls, pulling the active CPU device object
from the running_machine
* changed cpuintrf_push_context() to cpu_push_context(), taking
a CPU object pointer; changed cpuintrf_pop_context() to
cpu_pop_context(); eventually these will go away
* many other similar changes moving toward a model where all CPU
references are done by the CPU object and not by index
working on something, hold off syncing.
Defined macros for core CPU functions: CPU_INIT, CPU_RESET, CPU_EXIT,
CPU_EXECUTE, along with macros for the name and for calling, in the
spirit of the devintrf.h macros. More will come later.
Changed init, reset, exit, and execute interfaces to be passed a
const device_config * object. This is a fake object for the moment,
but encapsulates the machine pointer and token. Eventually this will
be a real device.
Changed the CPU IRQ callbacks to a proper type, and added a device
parameter to them.
Updated all CPU cores to the new macros and parameters.
Note that this changes the way we "pointer"-ify cores. I'll send an
update shortly.
Began the process of pruning options from the 68000 core, hard-coding it
for MAME's needs. We've hacked on it sufficiently that it is no longer
generic, so this is a good opportunity to simplify the code so that it
can actually be followed.